/* SSA-PRE for trees. Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by Daniel Berlin and Steven Bosscher This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "ggc.h" #include "tree.h" #include "basic-block.h" #include "diagnostic.h" #include "tree-inline.h" #include "tree-flow.h" #include "tree-gimple.h" #include "tree-dump.h" #include "timevar.h" #include "fibheap.h" #include "hashtab.h" #include "tree-iterator.h" #include "real.h" #include "alloc-pool.h" #include "obstack.h" #include "tree-pass.h" #include "flags.h" #include "bitmap.h" #include "langhooks.h" #include "cfgloop.h" #include "tree-ssa-sccvn.h" #include "params.h" /* TODO: 1. Avail sets can be shared by making an avail_find_leader that walks up the dominator tree and looks in those avail sets. This might affect code optimality, it's unclear right now. 2. Strength reduction can be performed by anticipating expressions we can repair later on. 3. We can do back-substitution or smarter value numbering to catch commutative expressions split up over multiple statements. */ /* For ease of terminology, "expression node" in the below refers to every expression node but GIMPLE_MODIFY_STMT, because GIMPLE_MODIFY_STMT's represent the actual statement containing the expressions we care about, and we cache the value number by putting it in the expression. */ /* Basic algorithm First we walk the statements to generate the AVAIL sets, the EXP_GEN sets, and the tmp_gen sets. EXP_GEN sets represent the generation of values/expressions by a given block. We use them when computing the ANTIC sets. The AVAIL sets consist of SSA_NAME's that represent values, so we know what values are available in what blocks. AVAIL is a forward dataflow problem. In SSA, values are never killed, so we don't need a kill set, or a fixpoint iteration, in order to calculate the AVAIL sets. In traditional parlance, AVAIL sets tell us the downsafety of the expressions/values. Next, we generate the ANTIC sets. These sets represent the anticipatable expressions. ANTIC is a backwards dataflow problem. An expression is anticipatable in a given block if it could be generated in that block. This means that if we had to perform an insertion in that block, of the value of that expression, we could. Calculating the ANTIC sets requires phi translation of expressions, because the flow goes backwards through phis. We must iterate to a fixpoint of the ANTIC sets, because we have a kill set. Even in SSA form, values are not live over the entire function, only from their definition point onwards. So we have to remove values from the ANTIC set once we go past the definition point of the leaders that make them up. compute_antic/compute_antic_aux performs this computation. Third, we perform insertions to make partially redundant expressions fully redundant. An expression is partially redundant (excluding partial anticipation) if: 1. It is AVAIL in some, but not all, of the predecessors of a given block. 2. It is ANTIC in all the predecessors. In order to make it fully redundant, we insert the expression into the predecessors where it is not available, but is ANTIC. For the partial anticipation case, we only perform insertion if it is partially anticipated in some block, and fully available in all of the predecessors. insert/insert_aux/do_regular_insertion/do_partial_partial_insertion performs these steps. Fourth, we eliminate fully redundant expressions. This is a simple statement walk that replaces redundant calculations with the now available values. */ /* Representations of value numbers: Value numbers are represented using the "value handle" approach. This means that each SSA_NAME (and for other reasons to be disclosed in a moment, expression nodes) has a value handle that can be retrieved through get_value_handle. This value handle *is* the value number of the SSA_NAME. You can pointer compare the value handles for equivalence purposes. For debugging reasons, the value handle is internally more than just a number, it is a VALUE_HANDLE named "VH.x", where x is a unique number for each value number in use. This allows expressions with SSA_NAMES replaced by value handles to still be pretty printed in a sane way. They simply print as "VH.3 * VH.5", etc. Expression nodes have value handles associated with them as a cache. Otherwise, we'd have to look them up again in the hash table This makes significant difference (factor of two or more) on some test cases. They can be thrown away after the pass is finished. */ /* Representation of expressions on value numbers: In some portions of this code, you will notice we allocate "fake" analogues to the expression we are value numbering, and replace the operands with the values of the expression. Since we work on values, and not just names, we canonicalize expressions to value expressions for use in the ANTIC sets, the EXP_GEN set, etc. This is theoretically unnecessary, it just saves a bunch of repeated get_value_handle and find_leader calls in the remainder of the code, trading off temporary memory usage for speed. The tree nodes aren't actually creating more garbage, since they are allocated in a special pools which are thrown away at the end of this pass. All of this also means that if you print the EXP_GEN or ANTIC sets, you will see "VH.5 + VH.7" in the set, instead of "a_55 + b_66" or something. The only thing that actually cares about seeing the value leaders is phi translation, and it needs to be able to find the leader for a value in an arbitrary block, so this "value expression" form is perfect for it (otherwise you'd do get_value_handle->find_leader->translate->get_value_handle->find_leader).*/ /* Representation of sets: There are currently two types of sets used, hopefully to be unified soon. The AVAIL sets do not need to be sorted in any particular order, and thus, are simply represented as two bitmaps, one that keeps track of values present in the set, and one that keeps track of expressions present in the set. The other sets are represented as doubly linked lists kept in topological order, with an optional supporting bitmap of values present in the set. The sets represent values, and the elements can be values or expressions. The elements can appear in different sets, but each element can only appear once in each set. Since each node in the set represents a value, we also want to be able to map expression, set pairs to something that tells us whether the value is present is a set. We use a per-set bitmap for that. The value handles also point to a linked list of the expressions they represent via a tree annotation. This is mainly useful only for debugging, since we don't do identity lookups. */ /* Next global expression id number. */ static unsigned int next_expression_id; typedef VEC(tree, gc) *vuse_vec; DEF_VEC_P (vuse_vec); DEF_VEC_ALLOC_P (vuse_vec, heap); static VEC(vuse_vec, heap) *expression_vuses; /* Mapping from expression to id number we can use in bitmap sets. */ static VEC(tree, heap) *expressions; /* Allocate an expression id for EXPR. */ static inline unsigned int alloc_expression_id (tree expr) { tree_ann_common_t ann; ann = get_tree_common_ann (expr); /* Make sure we won't overflow. */ gcc_assert (next_expression_id + 1 > next_expression_id); ann->aux = XNEW (unsigned int); * ((unsigned int *)ann->aux) = next_expression_id++; VEC_safe_push (tree, heap, expressions, expr); VEC_safe_push (vuse_vec, heap, expression_vuses, NULL); return next_expression_id - 1; } /* Return the expression id for tree EXPR. */ static inline unsigned int get_expression_id (tree expr) { tree_ann_common_t ann = tree_common_ann (expr); gcc_assert (ann); gcc_assert (ann->aux); return *((unsigned int *)ann->aux); } /* Return the existing expression id for EXPR, or create one if one does not exist yet. */ static inline unsigned int get_or_alloc_expression_id (tree expr) { tree_ann_common_t ann = tree_common_ann (expr); if (ann == NULL || !ann->aux) return alloc_expression_id (expr); return get_expression_id (expr); } /* Return the expression that has expression id ID */ static inline tree expression_for_id (unsigned int id) { return VEC_index (tree, expressions, id); } /* Return the expression vuses for EXPR, if there are any. */ static inline vuse_vec get_expression_vuses (tree expr) { unsigned int expr_id = get_or_alloc_expression_id (expr); return VEC_index (vuse_vec, expression_vuses, expr_id); } /* Set the expression vuses for EXPR to VUSES. */ static inline void set_expression_vuses (tree expr, vuse_vec vuses) { unsigned int expr_id = get_or_alloc_expression_id (expr); VEC_replace (vuse_vec, expression_vuses, expr_id, vuses); } /* Free the expression id field in all of our expressions, and then destroy the expressions array. */ static void clear_expression_ids (void) { int i; tree expr; for (i = 0; VEC_iterate (tree, expressions, i, expr); i++) { free (tree_common_ann (expr)->aux); tree_common_ann (expr)->aux = NULL; } VEC_free (tree, heap, expressions); VEC_free (vuse_vec, heap, expression_vuses); } static bool in_fre = false; /* An unordered bitmap set. One bitmap tracks values, the other, expressions. */ typedef struct bitmap_set { bitmap expressions; bitmap values; } *bitmap_set_t; #define FOR_EACH_EXPR_ID_IN_SET(set, id, bi) \ EXECUTE_IF_SET_IN_BITMAP(set->expressions, 0, id, bi) /* Sets that we need to keep track of. */ typedef struct bb_bitmap_sets { /* The EXP_GEN set, which represents expressions/values generated in a basic block. */ bitmap_set_t exp_gen; /* The PHI_GEN set, which represents PHI results generated in a basic block. */ bitmap_set_t phi_gen; /* The TMP_GEN set, which represents results/temporaries generated in a basic block. IE the LHS of an expression. */ bitmap_set_t tmp_gen; /* The AVAIL_OUT set, which represents which values are available in a given basic block. */ bitmap_set_t avail_out; /* The ANTIC_IN set, which represents which values are anticipatable in a given basic block. */ bitmap_set_t antic_in; /* The PA_IN set, which represents which values are partially anticipatable in a given basic block. */ bitmap_set_t pa_in; /* The NEW_SETS set, which is used during insertion to augment the AVAIL_OUT set of blocks with the new insertions performed during the current iteration. */ bitmap_set_t new_sets; /* True if we have visited this block during ANTIC calculation. */ unsigned int visited:1; /* True we have deferred processing this block during ANTIC calculation until its successor is processed. */ unsigned int deferred : 1; } *bb_value_sets_t; #define EXP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->exp_gen #define PHI_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->phi_gen #define TMP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->tmp_gen #define AVAIL_OUT(BB) ((bb_value_sets_t) ((BB)->aux))->avail_out #define ANTIC_IN(BB) ((bb_value_sets_t) ((BB)->aux))->antic_in #define PA_IN(BB) ((bb_value_sets_t) ((BB)->aux))->pa_in #define NEW_SETS(BB) ((bb_value_sets_t) ((BB)->aux))->new_sets #define BB_VISITED(BB) ((bb_value_sets_t) ((BB)->aux))->visited #define BB_DEFERRED(BB) ((bb_value_sets_t) ((BB)->aux))->deferred /* Maximal set of values, used to initialize the ANTIC problem, which is an intersection problem. */ static bitmap_set_t maximal_set; /* Basic block list in postorder. */ static int *postorder; /* This structure is used to keep track of statistics on what optimization PRE was able to perform. */ static struct { /* The number of RHS computations eliminated by PRE. */ int eliminations; /* The number of new expressions/temporaries generated by PRE. */ int insertions; /* The number of inserts found due to partial anticipation */ int pa_insert; /* The number of new PHI nodes added by PRE. */ int phis; /* The number of values found constant. */ int constified; } pre_stats; static bool do_partial_partial; static tree bitmap_find_leader (bitmap_set_t, tree); static void bitmap_value_insert_into_set (bitmap_set_t, tree); static void bitmap_value_replace_in_set (bitmap_set_t, tree); static void bitmap_set_copy (bitmap_set_t, bitmap_set_t); static bool bitmap_set_contains_value (bitmap_set_t, tree); static void bitmap_insert_into_set (bitmap_set_t, tree); static bitmap_set_t bitmap_set_new (void); static tree create_expression_by_pieces (basic_block, tree, tree); static tree find_or_generate_expression (basic_block, tree, tree); /* We can add and remove elements and entries to and from sets and hash tables, so we use alloc pools for them. */ static alloc_pool bitmap_set_pool; static alloc_pool binary_node_pool; static alloc_pool unary_node_pool; static alloc_pool reference_node_pool; static alloc_pool comparison_node_pool; static alloc_pool modify_expr_node_pool; static bitmap_obstack grand_bitmap_obstack; /* We can't use allocation pools to hold temporary CALL_EXPR objects, since they are not of fixed size. Instead, use an obstack. */ static struct obstack temp_call_expr_obstack; /* To avoid adding 300 temporary variables when we only need one, we only create one temporary variable, on demand, and build ssa names off that. We do have to change the variable if the types don't match the current variable's type. */ static tree pretemp; static tree storetemp; static tree prephitemp; /* Set of blocks with statements that have had its EH information cleaned up. */ static bitmap need_eh_cleanup; /* Which expressions have been seen during a given phi translation. */ static bitmap seen_during_translate; /* The phi_translate_table caches phi translations for a given expression and predecessor. */ static htab_t phi_translate_table; /* A three tuple {e, pred, v} used to cache phi translations in the phi_translate_table. */ typedef struct expr_pred_trans_d { /* The expression. */ tree e; /* The predecessor block along which we translated the expression. */ basic_block pred; /* vuses associated with the expression. */ VEC (tree, gc) *vuses; /* The value that resulted from the translation. */ tree v; /* The hashcode for the expression, pred pair. This is cached for speed reasons. */ hashval_t hashcode; } *expr_pred_trans_t; typedef const struct expr_pred_trans_d *const_expr_pred_trans_t; /* Return the hash value for a phi translation table entry. */ static hashval_t expr_pred_trans_hash (const void *p) { const_expr_pred_trans_t const ve = (const_expr_pred_trans_t) p; return ve->hashcode; } /* Return true if two phi translation table entries are the same. P1 and P2 should point to the expr_pred_trans_t's to be compared.*/ static int expr_pred_trans_eq (const void *p1, const void *p2) { const_expr_pred_trans_t const ve1 = (const_expr_pred_trans_t) p1; const_expr_pred_trans_t const ve2 = (const_expr_pred_trans_t) p2; basic_block b1 = ve1->pred; basic_block b2 = ve2->pred; int i; tree vuse1; /* If they are not translations for the same basic block, they can't be equal. */ if (b1 != b2) return false; /* If they are for the same basic block, determine if the expressions are equal. */ if (!expressions_equal_p (ve1->e, ve2->e)) return false; /* Make sure the vuses are equivalent. */ if (ve1->vuses == ve2->vuses) return true; if (VEC_length (tree, ve1->vuses) != VEC_length (tree, ve2->vuses)) return false; for (i = 0; VEC_iterate (tree, ve1->vuses, i, vuse1); i++) { if (VEC_index (tree, ve2->vuses, i) != vuse1) return false; } return true; } /* Search in the phi translation table for the translation of expression E in basic block PRED with vuses VUSES. Return the translated value, if found, NULL otherwise. */ static inline tree phi_trans_lookup (tree e, basic_block pred, VEC (tree, gc) *vuses) { void **slot; struct expr_pred_trans_d ept; ept.e = e; ept.pred = pred; ept.vuses = vuses; ept.hashcode = iterative_hash_expr (e, (unsigned long) pred); slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode, NO_INSERT); if (!slot) return NULL; else return ((expr_pred_trans_t) *slot)->v; } /* Add the tuple mapping from {expression E, basic block PRED, vuses VUSES} to value V, to the phi translation table. */ static inline void phi_trans_add (tree e, tree v, basic_block pred, VEC (tree, gc) *vuses) { void **slot; expr_pred_trans_t new_pair = XNEW (struct expr_pred_trans_d); new_pair->e = e; new_pair->pred = pred; new_pair->vuses = vuses; new_pair->v = v; new_pair->hashcode = iterative_hash_expr (e, (unsigned long) pred); slot = htab_find_slot_with_hash (phi_translate_table, new_pair, new_pair->hashcode, INSERT); if (*slot) free (*slot); *slot = (void *) new_pair; } /* Return true if V is a value expression that represents itself. In our world, this is *only* non-value handles. */ static inline bool constant_expr_p (tree v) { return TREE_CODE (v) != VALUE_HANDLE && (TREE_CODE (v) == FIELD_DECL || is_gimple_min_invariant (v)); } /* Add expression E to the expression set of value V. */ void add_to_value (tree v, tree e) { /* Constants have no expression sets. */ if (constant_expr_p (v)) return; if (VALUE_HANDLE_EXPR_SET (v) == NULL) VALUE_HANDLE_EXPR_SET (v) = bitmap_set_new (); bitmap_insert_into_set (VALUE_HANDLE_EXPR_SET (v), e); } /* Create a new bitmap set and return it. */ static bitmap_set_t bitmap_set_new (void) { bitmap_set_t ret = (bitmap_set_t) pool_alloc (bitmap_set_pool); ret->expressions = BITMAP_ALLOC (&grand_bitmap_obstack); ret->values = BITMAP_ALLOC (&grand_bitmap_obstack); return ret; } /* Remove an expression EXPR from a bitmapped set. */ static void bitmap_remove_from_set (bitmap_set_t set, tree expr) { tree val = get_value_handle (expr); gcc_assert (val); if (!constant_expr_p (val)) { bitmap_clear_bit (set->values, VALUE_HANDLE_ID (val)); bitmap_clear_bit (set->expressions, get_expression_id (expr)); } } /* Insert an expression EXPR into a bitmapped set. */ static void bitmap_insert_into_set (bitmap_set_t set, tree expr) { tree val = get_value_handle (expr); gcc_assert (val); if (!constant_expr_p (val)) { bitmap_set_bit (set->values, VALUE_HANDLE_ID (val)); bitmap_set_bit (set->expressions, get_or_alloc_expression_id (expr)); } } /* Copy a bitmapped set ORIG, into bitmapped set DEST. */ static void bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig) { bitmap_copy (dest->expressions, orig->expressions); bitmap_copy (dest->values, orig->values); } /* Free memory used up by SET. */ static void bitmap_set_free (bitmap_set_t set) { BITMAP_FREE (set->expressions); BITMAP_FREE (set->values); } /* A comparison function for use in qsort to top sort a bitmap set. Simply subtracts value handle ids, since they are created in topo-order. */ static int vh_compare (const void *pa, const void *pb) { const tree vha = get_value_handle (*((const tree *)pa)); const tree vhb = get_value_handle (*((const tree *)pb)); /* This can happen when we constify things. */ if (constant_expr_p (vha)) { if (constant_expr_p (vhb)) return -1; return -1; } else if (constant_expr_p (vhb)) return 1; return VALUE_HANDLE_ID (vha) - VALUE_HANDLE_ID (vhb); } /* Generate an topological-ordered array of bitmap set SET. */ static VEC(tree, heap) * sorted_array_from_bitmap_set (bitmap_set_t set) { unsigned int i; bitmap_iterator bi; VEC(tree, heap) *result = NULL; FOR_EACH_EXPR_ID_IN_SET (set, i, bi) VEC_safe_push (tree, heap, result, expression_for_id (i)); qsort (VEC_address (tree, result), VEC_length (tree, result), sizeof (tree), vh_compare); return result; } /* Perform bitmapped set operation DEST &= ORIG. */ static void bitmap_set_and (bitmap_set_t dest, bitmap_set_t orig) { bitmap_iterator bi; unsigned int i; if (dest != orig) { bitmap temp = BITMAP_ALLOC (&grand_bitmap_obstack); bitmap_and_into (dest->values, orig->values); bitmap_copy (temp, dest->expressions); EXECUTE_IF_SET_IN_BITMAP (temp, 0, i, bi) { tree expr = expression_for_id (i); tree val = get_value_handle (expr); if (!bitmap_bit_p (dest->values, VALUE_HANDLE_ID (val))) bitmap_clear_bit (dest->expressions, i); } BITMAP_FREE (temp); } } /* Subtract all values and expressions contained in ORIG from DEST. */ static bitmap_set_t bitmap_set_subtract (bitmap_set_t dest, bitmap_set_t orig) { bitmap_set_t result = bitmap_set_new (); bitmap_iterator bi; unsigned int i; bitmap_and_compl (result->expressions, dest->expressions, orig->expressions); FOR_EACH_EXPR_ID_IN_SET (result, i, bi) { tree expr = expression_for_id (i); tree val = get_value_handle (expr); bitmap_set_bit (result->values, VALUE_HANDLE_ID (val)); } return result; } /* Subtract all the values in bitmap set B from bitmap set A. */ static void bitmap_set_subtract_values (bitmap_set_t a, bitmap_set_t b) { unsigned int i; bitmap_iterator bi; bitmap temp = BITMAP_ALLOC (&grand_bitmap_obstack); bitmap_copy (temp, a->expressions); EXECUTE_IF_SET_IN_BITMAP (temp, 0, i, bi) { tree expr = expression_for_id (i); if (bitmap_set_contains_value (b, get_value_handle (expr))) bitmap_remove_from_set (a, expr); } BITMAP_FREE (temp); } /* Return true if bitmapped set SET contains the value VAL. */ static bool bitmap_set_contains_value (bitmap_set_t set, tree val) { if (constant_expr_p (val)) return true; if (!set || bitmap_empty_p (set->expressions)) return false; return bitmap_bit_p (set->values, VALUE_HANDLE_ID (val)); } static inline bool bitmap_set_contains_expr (bitmap_set_t set, tree expr) { return bitmap_bit_p (set->expressions, get_expression_id (expr)); } /* Replace an instance of value LOOKFOR with expression EXPR in SET. */ static void bitmap_set_replace_value (bitmap_set_t set, tree lookfor, tree expr) { bitmap_set_t exprset; unsigned int i; bitmap_iterator bi; if (constant_expr_p (lookfor)) return; if (!bitmap_set_contains_value (set, lookfor)) return; /* The number of expressions having a given value is usually significantly less than the total number of expressions in SET. Thus, rather than check, for each expression in SET, whether it has the value LOOKFOR, we walk the reverse mapping that tells us what expressions have a given value, and see if any of those expressions are in our set. For large testcases, this is about 5-10x faster than walking the bitmap. If this is somehow a significant lose for some cases, we can choose which set to walk based on the set size. */ exprset = VALUE_HANDLE_EXPR_SET (lookfor); FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi) { if (bitmap_bit_p (set->expressions, i)) { bitmap_clear_bit (set->expressions, i); bitmap_set_bit (set->expressions, get_expression_id (expr)); return; } } } /* Return true if two bitmap sets are equal. */ static bool bitmap_set_equal (bitmap_set_t a, bitmap_set_t b) { return bitmap_equal_p (a->values, b->values); } /* Replace an instance of EXPR's VALUE with EXPR in SET if it exists, and add it otherwise. */ static void bitmap_value_replace_in_set (bitmap_set_t set, tree expr) { tree val = get_value_handle (expr); if (bitmap_set_contains_value (set, val)) bitmap_set_replace_value (set, val, expr); else bitmap_insert_into_set (set, expr); } /* Insert EXPR into SET if EXPR's value is not already present in SET. */ static void bitmap_value_insert_into_set (bitmap_set_t set, tree expr) { tree val = get_value_handle (expr); if (constant_expr_p (val)) return; if (!bitmap_set_contains_value (set, val)) bitmap_insert_into_set (set, expr); } /* Print out SET to OUTFILE. */ static void print_bitmap_set (FILE *outfile, bitmap_set_t set, const char *setname, int blockindex) { fprintf (outfile, "%s[%d] := { ", setname, blockindex); if (set) { bool first = true; unsigned i; bitmap_iterator bi; FOR_EACH_EXPR_ID_IN_SET (set, i, bi) { tree expr = expression_for_id (i); if (!first) fprintf (outfile, ", "); first = false; print_generic_expr (outfile, expr, 0); fprintf (outfile, " ("); print_generic_expr (outfile, get_value_handle (expr), 0); fprintf (outfile, ") "); } } fprintf (outfile, " }\n"); } void debug_bitmap_set (bitmap_set_t); void debug_bitmap_set (bitmap_set_t set) { print_bitmap_set (stderr, set, "debug", 0); } /* Print out the expressions that have VAL to OUTFILE. */ void print_value_expressions (FILE *outfile, tree val) { if (VALUE_HANDLE_EXPR_SET (val)) { char s[10]; sprintf (s, "VH.%04d", VALUE_HANDLE_ID (val)); print_bitmap_set (outfile, VALUE_HANDLE_EXPR_SET (val), s, 0); } } void debug_value_expressions (tree val) { print_value_expressions (stderr, val); } /* Return the folded version of T if T, when folded, is a gimple min_invariant. Otherwise, return T. */ static tree fully_constant_expression (tree t) { tree folded; folded = fold (t); if (folded && is_gimple_min_invariant (folded)) return folded; return t; } /* Make a temporary copy of a CALL_EXPR object NODE. */ static tree temp_copy_call_expr (tree node) { return (tree) obstack_copy (&temp_call_expr_obstack, node, tree_size (node)); } /* Translate the vuses in the VUSES vector backwards through phi nodes in PHIBLOCK, so that they have the value they would have in BLOCK. */ static VEC(tree, gc) * translate_vuses_through_block (VEC (tree, gc) *vuses, basic_block phiblock, basic_block block) { tree oldvuse; VEC(tree, gc) *result = NULL; int i; for (i = 0; VEC_iterate (tree, vuses, i, oldvuse); i++) { tree phi = SSA_NAME_DEF_STMT (oldvuse); if (TREE_CODE (phi) == PHI_NODE && bb_for_stmt (phi) == phiblock) { edge e = find_edge (block, bb_for_stmt (phi)); if (e) { tree def = PHI_ARG_DEF (phi, e->dest_idx); if (def != oldvuse) { if (!result) result = VEC_copy (tree, gc, vuses); VEC_replace (tree, result, i, def); } } } } /* We avoid creating a new copy of the vuses unless something actually changed, so result can be NULL. */ if (result) { sort_vuses (result); return result; } return vuses; } /* Like find_leader, but checks for the value existing in SET1 *or* SET2. This is used to avoid making a set consisting of the union of PA_IN and ANTIC_IN during insert. */ static inline tree find_leader_in_sets (tree expr, bitmap_set_t set1, bitmap_set_t set2) { tree result; result = bitmap_find_leader (set1, expr); if (!result && set2) result = bitmap_find_leader (set2, expr); return result; } /* Translate EXPR using phis in PHIBLOCK, so that it has the values of the phis in PRED. SEEN is a bitmap saying which expression we have translated since we started translation of the toplevel expression. Return NULL if we can't find a leader for each part of the translated expression. */ static tree phi_translate_1 (tree expr, bitmap_set_t set1, bitmap_set_t set2, basic_block pred, basic_block phiblock, bitmap seen) { tree phitrans = NULL; tree oldexpr = expr; if (expr == NULL) return NULL; if (constant_expr_p (expr)) return expr; /* Phi translations of a given expression don't change. */ if (EXPR_P (expr) || GIMPLE_STMT_P (expr)) { phitrans = phi_trans_lookup (expr, pred, get_expression_vuses (expr)); } else phitrans = phi_trans_lookup (expr, pred, NULL); if (phitrans) return phitrans; /* Prevent cycles when we have recursively dependent leaders. This can only happen when phi translating the maximal set. */ if (seen) { unsigned int expr_id = get_expression_id (expr); if (bitmap_bit_p (seen, expr_id)) return NULL; bitmap_set_bit (seen, expr_id); } switch (TREE_CODE_CLASS (TREE_CODE (expr))) { case tcc_expression: return NULL; case tcc_vl_exp: { if (TREE_CODE (expr) != CALL_EXPR) return NULL; else { tree oldfn = CALL_EXPR_FN (expr); tree oldsc = CALL_EXPR_STATIC_CHAIN (expr); tree newfn, newsc = NULL; tree newexpr = NULL_TREE; bool invariantarg = false; int i, nargs; VEC (tree, gc) *vuses = get_expression_vuses (expr); VEC (tree, gc) *tvuses; newfn = phi_translate_1 (find_leader_in_sets (oldfn, set1, set2), set1, set2, pred, phiblock, seen); if (newfn == NULL) return NULL; if (newfn != oldfn) { newexpr = temp_copy_call_expr (expr); CALL_EXPR_FN (newexpr) = get_value_handle (newfn); } if (oldsc) { newsc = phi_translate_1 (find_leader_in_sets (oldsc, set1, set2), set1, set2, pred, phiblock, seen); if (newsc == NULL) return NULL; if (newsc != oldsc) { if (!newexpr) newexpr = temp_copy_call_expr (expr); CALL_EXPR_STATIC_CHAIN (newexpr) = get_value_handle (newsc); } } /* phi translate the argument list piece by piece. */ nargs = call_expr_nargs (expr); for (i = 0; i < nargs; i++) { tree oldval = CALL_EXPR_ARG (expr, i); tree newval; if (oldval) { /* This may seem like a weird place for this check, but it's actually the easiest place to do it. We can't do it lower on in the recursion because it's valid for pieces of a component ref to be of AGGREGATE_TYPE, as long as the outermost one is not. To avoid *that* case, we have a check for AGGREGATE_TYPE_P in insert_aux. However, that check will *not* catch this case because here it occurs in the argument list. */ if (AGGREGATE_TYPE_P (TREE_TYPE (oldval))) return NULL; oldval = find_leader_in_sets (oldval, set1, set2); newval = phi_translate_1 (oldval, set1, set2, pred, phiblock, seen); if (newval == NULL) return NULL; if (newval != oldval) { invariantarg |= is_gimple_min_invariant (newval); if (!newexpr) newexpr = temp_copy_call_expr (expr); CALL_EXPR_ARG (newexpr, i) = get_value_handle (newval); } } } /* In case of new invariant args we might try to fold the call again. */ if (invariantarg && !newsc) { tree tmp1 = build_call_array (TREE_TYPE (expr), newfn, call_expr_nargs (newexpr), CALL_EXPR_ARGP (newexpr)); tree tmp2 = fold (tmp1); if (tmp2 != tmp1) { STRIP_TYPE_NOPS (tmp2); if (is_gimple_min_invariant (tmp2)) return tmp2; } } tvuses = translate_vuses_through_block (vuses, phiblock, pred); if (vuses != tvuses && ! newexpr) newexpr = temp_copy_call_expr (expr); if (newexpr) { newexpr->base.ann = NULL; vn_lookup_or_add_with_vuses (newexpr, tvuses); expr = newexpr; set_expression_vuses (newexpr, tvuses); } phi_trans_add (oldexpr, expr, pred, tvuses); } } return expr; case tcc_declaration: { VEC (tree, gc) * oldvuses = NULL; VEC (tree, gc) * newvuses = NULL; oldvuses = get_expression_vuses (expr); if (oldvuses) newvuses = translate_vuses_through_block (oldvuses, phiblock, pred); if (oldvuses != newvuses) { vn_lookup_or_add_with_vuses (expr, newvuses); set_expression_vuses (expr, newvuses); } phi_trans_add (oldexpr, expr, pred, newvuses); } return expr; case tcc_reference: { tree oldop0 = TREE_OPERAND (expr, 0); tree oldop1 = NULL; tree newop0; tree newop1 = NULL; tree oldop2 = NULL; tree newop2 = NULL; tree oldop3 = NULL; tree newop3 = NULL; tree newexpr; VEC (tree, gc) * oldvuses = NULL; VEC (tree, gc) * newvuses = NULL; if (TREE_CODE (expr) != INDIRECT_REF && TREE_CODE (expr) != COMPONENT_REF && TREE_CODE (expr) != ARRAY_REF) return NULL; oldop0 = find_leader_in_sets (oldop0, set1, set2); newop0 = phi_translate_1 (oldop0, set1, set2, pred, phiblock, seen); if (newop0 == NULL) return NULL; if (TREE_CODE (expr) == ARRAY_REF) { oldop1 = TREE_OPERAND (expr, 1); oldop1 = find_leader_in_sets (oldop1, set1, set2); newop1 = phi_translate_1 (oldop1, set1, set2, pred, phiblock, seen); if (newop1 == NULL) return NULL; oldop2 = TREE_OPERAND (expr, 2); if (oldop2) { oldop2 = find_leader_in_sets (oldop2, set1, set2); newop2 = phi_translate_1 (oldop2, set1, set2, pred, phiblock, seen); if (newop2 == NULL) return NULL; } oldop3 = TREE_OPERAND (expr, 3); if (oldop3) { oldop3 = find_leader_in_sets (oldop3, set1, set2); newop3 = phi_translate_1 (oldop3, set1, set2, pred, phiblock, seen); if (newop3 == NULL) return NULL; } } oldvuses = get_expression_vuses (expr); if (oldvuses) newvuses = translate_vuses_through_block (oldvuses, phiblock, pred); if (newop0 != oldop0 || newvuses != oldvuses || newop1 != oldop1 || newop2 != oldop2 || newop3 != oldop3) { tree t; newexpr = (tree) pool_alloc (reference_node_pool); memcpy (newexpr, expr, tree_size (expr)); TREE_OPERAND (newexpr, 0) = get_value_handle (newop0); if (TREE_CODE (expr) == ARRAY_REF) { TREE_OPERAND (newexpr, 1) = get_value_handle (newop1); if (newop2) TREE_OPERAND (newexpr, 2) = get_value_handle (newop2); if (newop3) TREE_OPERAND (newexpr, 3) = get_value_handle (newop3); } t = fully_constant_expression (newexpr); if (t != newexpr) { pool_free (reference_node_pool, newexpr); newexpr = t; } else { newexpr->base.ann = NULL; vn_lookup_or_add_with_vuses (newexpr, newvuses); set_expression_vuses (newexpr, newvuses); } expr = newexpr; } phi_trans_add (oldexpr, expr, pred, newvuses); } return expr; break; case tcc_binary: case tcc_comparison: { tree oldop1 = TREE_OPERAND (expr, 0); tree oldval1 = oldop1; tree oldop2 = TREE_OPERAND (expr, 1); tree oldval2 = oldop2; tree newop1; tree newop2; tree newexpr; oldop1 = find_leader_in_sets (oldop1, set1, set2); newop1 = phi_translate_1 (oldop1, set1, set2, pred, phiblock, seen); if (newop1 == NULL) return NULL; oldop2 = find_leader_in_sets (oldop2, set1, set2); newop2 = phi_translate_1 (oldop2, set1, set2, pred, phiblock, seen); if (newop2 == NULL) return NULL; if (newop1 != oldop1 || newop2 != oldop2) { tree t; newexpr = (tree) pool_alloc (binary_node_pool); memcpy (newexpr, expr, tree_size (expr)); TREE_OPERAND (newexpr, 0) = newop1 == oldop1 ? oldval1 : get_value_handle (newop1); TREE_OPERAND (newexpr, 1) = newop2 == oldop2 ? oldval2 : get_value_handle (newop2); t = fully_constant_expression (newexpr); if (t != newexpr) { pool_free (binary_node_pool, newexpr); newexpr = t; } else { newexpr->base.ann = NULL; vn_lookup_or_add (newexpr); } expr = newexpr; } phi_trans_add (oldexpr, expr, pred, NULL); } return expr; case tcc_unary: { tree oldop1 = TREE_OPERAND (expr, 0); tree newop1; tree newexpr; oldop1 = find_leader_in_sets (oldop1, set1, set2); newop1 = phi_translate_1 (oldop1, set1, set2, pred, phiblock, seen); if (newop1 == NULL) return NULL; if (newop1 != oldop1) { tree t; newexpr = (tree) pool_alloc (unary_node_pool); memcpy (newexpr, expr, tree_size (expr)); TREE_OPERAND (newexpr, 0) = get_value_handle (newop1); t = fully_constant_expression (newexpr); if (t != newexpr) { pool_free (unary_node_pool, newexpr); newexpr = t; } else { newexpr->base.ann = NULL; vn_lookup_or_add (newexpr); } expr = newexpr; } phi_trans_add (oldexpr, expr, pred, NULL); } return expr; case tcc_exceptional: { tree phi = NULL; edge e; tree def_stmt; gcc_assert (TREE_CODE (expr) == SSA_NAME); def_stmt = SSA_NAME_DEF_STMT (expr); if (TREE_CODE (def_stmt) == PHI_NODE && bb_for_stmt (def_stmt) == phiblock) phi = def_stmt; else return expr; e = find_edge (pred, bb_for_stmt (phi)); if (e) { tree val; tree def = PHI_ARG_DEF (phi, e->dest_idx); if (is_gimple_min_invariant (def)) return def; if (TREE_CODE (def) == SSA_NAME && ssa_undefined_value_p (def)) return NULL; val = get_value_handle (def); gcc_assert (val); return def; } } return expr; default: gcc_unreachable (); } } /* Translate EXPR using phis in PHIBLOCK, so that it has the values of the phis in PRED. Return NULL if we can't find a leader for each part of the translated expression. */ static tree phi_translate (tree expr, bitmap_set_t set1, bitmap_set_t set2, basic_block pred, basic_block phiblock) { bitmap_clear (seen_during_translate); return phi_translate_1 (expr, set1, set2, pred, phiblock, seen_during_translate); } /* For each expression in SET, translate the value handles through phi nodes in PHIBLOCK using edge PHIBLOCK->PRED, and store the resulting expressions in DEST. */ static void phi_translate_set (bitmap_set_t dest, bitmap_set_t set, basic_block pred, basic_block phiblock) { VEC (tree, heap) *exprs; tree expr; int i; if (!phi_nodes (phiblock)) { bitmap_set_copy (dest, set); return; } exprs = sorted_array_from_bitmap_set (set); for (i = 0; VEC_iterate (tree, exprs, i, expr); i++) { tree translated; translated = phi_translate (expr, set, NULL, pred, phiblock); /* Don't add constants or empty translations to the cache, since we won't look them up that way, or use the result, anyway. */ if (translated && !is_gimple_min_invariant (translated)) { phi_trans_add (expr, translated, pred, get_expression_vuses (translated)); } if (translated != NULL) bitmap_value_insert_into_set (dest, translated); } VEC_free (tree, heap, exprs); } /* Find the leader for a value (i.e., the name representing that value) in a given set, and return it. Return NULL if no leader is found. */ static tree bitmap_find_leader (bitmap_set_t set, tree val) { if (val == NULL) return NULL; if (constant_expr_p (val)) return val; if (bitmap_set_contains_value (set, val)) { /* Rather than walk the entire bitmap of expressions, and see whether any of them has the value we are looking for, we look at the reverse mapping, which tells us the set of expressions that have a given value (IE value->expressions with that value) and see if any of those expressions are in our set. The number of expressions per value is usually significantly less than the number of expressions in the set. In fact, for large testcases, doing it this way is roughly 5-10x faster than walking the bitmap. If this is somehow a significant lose for some cases, we can choose which set to walk based on which set is smaller. */ unsigned int i; bitmap_iterator bi; bitmap_set_t exprset = VALUE_HANDLE_EXPR_SET (val); EXECUTE_IF_AND_IN_BITMAP (exprset->expressions, set->expressions, 0, i, bi) return expression_for_id (i); } return NULL; } /* Determine if EXPR, a memory expression, is ANTIC_IN at the top of BLOCK by seeing if it is not killed in the block. Note that we are only determining whether there is a store that kills it. Because of the order in which clean iterates over values, we are guaranteed that altered operands will have caused us to be eliminated from the ANTIC_IN set already. */ static bool value_dies_in_block_x (tree expr, basic_block block) { int i; tree vuse; VEC (tree, gc) *vuses = get_expression_vuses (expr); /* Conservatively, a value dies if it's vuses are defined in this block, unless they come from phi nodes (which are merge operations, rather than stores. */ for (i = 0; VEC_iterate (tree, vuses, i, vuse); i++) { tree def = SSA_NAME_DEF_STMT (vuse); if (bb_for_stmt (def) != block) continue; if (TREE_CODE (def) == PHI_NODE) continue; return true; } return false; } /* Determine if the expression EXPR is valid in SET1 U SET2. ONLY SET2 CAN BE NULL. This means that we have a leader for each part of the expression (if it consists of values), or the expression is an SSA_NAME. For loads/calls, we also see if the vuses are killed in this block. NB: We never should run into a case where we have SSA_NAME + SSA_NAME or SSA_NAME + value. The sets valid_in_sets is called on, the ANTIC sets, will only ever have SSA_NAME's or value expressions (IE VALUE1 + VALUE2, *VALUE1, VALUE1 < VALUE2) */ #define union_contains_value(SET1, SET2, VAL) \ (bitmap_set_contains_value ((SET1), (VAL)) \ || ((SET2) && bitmap_set_contains_value ((SET2), (VAL)))) static bool valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, tree expr, basic_block block) { switch (TREE_CODE_CLASS (TREE_CODE (expr))) { case tcc_binary: case tcc_comparison: { tree op1 = TREE_OPERAND (expr, 0); tree op2 = TREE_OPERAND (expr, 1); return union_contains_value (set1, set2, op1) && union_contains_value (set1, set2, op2); } case tcc_unary: { tree op1 = TREE_OPERAND (expr, 0); return union_contains_value (set1, set2, op1); } case tcc_expression: return false; case tcc_vl_exp: { if (TREE_CODE (expr) == CALL_EXPR) { tree fn = CALL_EXPR_FN (expr); tree sc = CALL_EXPR_STATIC_CHAIN (expr); tree arg; call_expr_arg_iterator iter; /* Check the non-argument operands first. */ if (!union_contains_value (set1, set2, fn) || (sc && !union_contains_value (set1, set2, sc))) return false; /* Now check the operands. */ FOR_EACH_CALL_EXPR_ARG (arg, iter, expr) { if (!union_contains_value (set1, set2, arg)) return false; } return !value_dies_in_block_x (expr, block); } return false; } case tcc_reference: { if (TREE_CODE (expr) == INDIRECT_REF || TREE_CODE (expr) == COMPONENT_REF || TREE_CODE (expr) == ARRAY_REF) { tree op0 = TREE_OPERAND (expr, 0); gcc_assert (is_gimple_min_invariant (op0) || TREE_CODE (op0) == VALUE_HANDLE); if (!union_contains_value (set1, set2, op0)) return false; if (TREE_CODE (expr) == ARRAY_REF) { tree op1 = TREE_OPERAND (expr, 1); tree op2 = TREE_OPERAND (expr, 2); tree op3 = TREE_OPERAND (expr, 3); gcc_assert (is_gimple_min_invariant (op1) || TREE_CODE (op1) == VALUE_HANDLE); if (!union_contains_value (set1, set2, op1)) return false; gcc_assert (!op2 || is_gimple_min_invariant (op2) || TREE_CODE (op2) == VALUE_HANDLE); if (op2 && !union_contains_value (set1, set2, op2)) return false; gcc_assert (!op3 || is_gimple_min_invariant (op3) || TREE_CODE (op3) == VALUE_HANDLE); if (op3 && !union_contains_value (set1, set2, op3)) return false; } return !value_dies_in_block_x (expr, block); } } return false; case tcc_exceptional: { gcc_assert (TREE_CODE (expr) == SSA_NAME); return bitmap_set_contains_expr (AVAIL_OUT (block), expr); } case tcc_declaration: return !value_dies_in_block_x (expr, block); default: /* No other cases should be encountered. */ gcc_unreachable (); } } /* Clean the set of expressions that are no longer valid in SET1 or SET2. This means expressions that are made up of values we have no leaders for in SET1 or SET2. This version is used for partial anticipation, which means it is not valid in either ANTIC_IN or PA_IN. */ static void dependent_clean (bitmap_set_t set1, bitmap_set_t set2, basic_block block) { VEC (tree, heap) *exprs = sorted_array_from_bitmap_set (set1); tree expr; int i; for (i = 0; VEC_iterate (tree, exprs, i, expr); i++) { if (!valid_in_sets (set1, set2, expr, block)) bitmap_remove_from_set (set1, expr); } VEC_free (tree, heap, exprs); } /* Clean the set of expressions that are no longer valid in SET. This means expressions that are made up of values we have no leaders for in SET. */ static void clean (bitmap_set_t set, basic_block block) { VEC (tree, heap) *exprs = sorted_array_from_bitmap_set (set); tree expr; int i; for (i = 0; VEC_iterate (tree, exprs, i, expr); i++) { if (!valid_in_sets (set, NULL, expr, block)) bitmap_remove_from_set (set, expr); } VEC_free (tree, heap, exprs); } static sbitmap has_abnormal_preds; /* List of blocks that may have changed during ANTIC computation and thus need to be iterated over. */ static sbitmap changed_blocks; /* Decide whether to defer a block for a later iteration, or PHI translate SOURCE to DEST using phis in PHIBLOCK. Return false if we should defer the block, and true if we processed it. */ static bool defer_or_phi_translate_block (bitmap_set_t dest, bitmap_set_t source, basic_block block, basic_block phiblock) { if (!BB_VISITED (phiblock)) { SET_BIT (changed_blocks, block->index); BB_VISITED (block) = 0; BB_DEFERRED (block) = 1; return false; } else phi_translate_set (dest, source, block, phiblock); return true; } /* Compute the ANTIC set for BLOCK. If succs(BLOCK) > 1 then ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK) else if succs(BLOCK) == 1 then ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)]) ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK]) */ static bool compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge) { bool changed = false; bitmap_set_t S, old, ANTIC_OUT; bitmap_iterator bi; unsigned int bii; edge e; edge_iterator ei; old = ANTIC_OUT = S = NULL; BB_VISITED (block) = 1; /* If any edges from predecessors are abnormal, antic_in is empty, so do nothing. */ if (block_has_abnormal_pred_edge) goto maybe_dump_sets; old = ANTIC_IN (block); ANTIC_OUT = bitmap_set_new (); /* If the block has no successors, ANTIC_OUT is empty. */ if (EDGE_COUNT (block->succs) == 0) ; /* If we have one successor, we could have some phi nodes to translate through. */ else if (single_succ_p (block)) { basic_block succ_bb = single_succ (block); /* We trade iterations of the dataflow equations for having to phi translate the maximal set, which is incredibly slow (since the maximal set often has 300+ members, even when you have a small number of blocks). Basically, we defer the computation of ANTIC for this block until we have processed it's successor, which will inevitably have a *much* smaller set of values to phi translate once clean has been run on it. The cost of doing this is that we technically perform more iterations, however, they are lower cost iterations. Timings for PRE on tramp3d-v4: without maximal set fix: 11 seconds with maximal set fix/without deferring: 26 seconds with maximal set fix/with deferring: 11 seconds */ if (!defer_or_phi_translate_block (ANTIC_OUT, ANTIC_IN (succ_bb), block, succ_bb)) { changed = true; goto maybe_dump_sets; } } /* If we have multiple successors, we take the intersection of all of them. Note that in the case of loop exit phi nodes, we may have phis to translate through. */ else { VEC(basic_block, heap) * worklist; size_t i; basic_block bprime, first; worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs)); FOR_EACH_EDGE (e, ei, block->succs) VEC_quick_push (basic_block, worklist, e->dest); first = VEC_index (basic_block, worklist, 0); if (phi_nodes (first)) { bitmap_set_t from = ANTIC_IN (first); if (!BB_VISITED (first)) from = maximal_set; phi_translate_set (ANTIC_OUT, from, block, first); } else { if (!BB_VISITED (first)) bitmap_set_copy (ANTIC_OUT, maximal_set); else bitmap_set_copy (ANTIC_OUT, ANTIC_IN (first)); } for (i = 1; VEC_iterate (basic_block, worklist, i, bprime); i++) { if (phi_nodes (bprime)) { bitmap_set_t tmp = bitmap_set_new (); bitmap_set_t from = ANTIC_IN (bprime); if (!BB_VISITED (bprime)) from = maximal_set; phi_translate_set (tmp, from, block, bprime); bitmap_set_and (ANTIC_OUT, tmp); bitmap_set_free (tmp); } else { if (!BB_VISITED (bprime)) bitmap_set_and (ANTIC_OUT, maximal_set); else bitmap_set_and (ANTIC_OUT, ANTIC_IN (bprime)); } } VEC_free (basic_block, heap, worklist); } /* Generate ANTIC_OUT - TMP_GEN. */ S = bitmap_set_subtract (ANTIC_OUT, TMP_GEN (block)); /* Start ANTIC_IN with EXP_GEN - TMP_GEN. */ ANTIC_IN (block) = bitmap_set_subtract (EXP_GEN (block), TMP_GEN (block)); /* Then union in the ANTIC_OUT - TMP_GEN values, to get ANTIC_OUT U EXP_GEN - TMP_GEN */ FOR_EACH_EXPR_ID_IN_SET (S, bii, bi) bitmap_value_insert_into_set (ANTIC_IN (block), expression_for_id (bii)); clean (ANTIC_IN (block), block); /* !old->expressions can happen when we deferred a block. */ if (!old->expressions || !bitmap_set_equal (old, ANTIC_IN (block))) { changed = true; SET_BIT (changed_blocks, block->index); FOR_EACH_EDGE (e, ei, block->preds) SET_BIT (changed_blocks, e->src->index); } else RESET_BIT (changed_blocks, block->index); maybe_dump_sets: if (dump_file && (dump_flags & TDF_DETAILS)) { if (!BB_DEFERRED (block) || BB_VISITED (block)) { if (ANTIC_OUT) print_bitmap_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index); print_bitmap_set (dump_file, ANTIC_IN (block), "ANTIC_IN", block->index); if (S) print_bitmap_set (dump_file, S, "S", block->index); } else { fprintf (dump_file, "Block %d was deferred for a future iteration.\n", block->index); } } if (old) bitmap_set_free (old); if (S) bitmap_set_free (S); if (ANTIC_OUT) bitmap_set_free (ANTIC_OUT); return changed; } /* Compute PARTIAL_ANTIC for BLOCK. If succs(BLOCK) > 1 then PA_OUT[BLOCK] = value wise union of PA_IN[b] + all ANTIC_IN not in ANTIC_OUT for all succ(BLOCK) else if succs(BLOCK) == 1 then PA_OUT[BLOCK] = phi_translate (PA_IN[succ(BLOCK)]) PA_IN[BLOCK] = dependent_clean(PA_OUT[BLOCK] - TMP_GEN[BLOCK] - ANTIC_IN[BLOCK]) */ static bool compute_partial_antic_aux (basic_block block, bool block_has_abnormal_pred_edge) { bool changed = false; bitmap_set_t old_PA_IN; bitmap_set_t PA_OUT; edge e; edge_iterator ei; unsigned long max_pa = PARAM_VALUE (PARAM_MAX_PARTIAL_ANTIC_LENGTH); old_PA_IN = PA_OUT = NULL; /* If any edges from predecessors are abnormal, antic_in is empty, so do nothing. */ if (block_has_abnormal_pred_edge) goto maybe_dump_sets; /* If there are too many partially anticipatable values in the block, phi_translate_set can take an exponential time: stop before the translation starts. */ if (max_pa && single_succ_p (block) && bitmap_count_bits (PA_IN (single_succ (block))->values) > max_pa) goto maybe_dump_sets; old_PA_IN = PA_IN (block); PA_OUT = bitmap_set_new (); /* If the block has no successors, ANTIC_OUT is empty. */ if (EDGE_COUNT (block->succs) == 0) ; /* If we have one successor, we could have some phi nodes to translate through. Note that we can't phi translate across DFS back edges in partial antic, because it uses a union operation on the successors. For recurrences like IV's, we will end up generating a new value in the set on each go around (i + 3 (VH.1) VH.1 + 1 (VH.2), VH.2 + 1 (VH.3), etc), forever. */ else if (single_succ_p (block)) { basic_block succ = single_succ (block); if (!(single_succ_edge (block)->flags & EDGE_DFS_BACK)) phi_translate_set (PA_OUT, PA_IN (succ), block, succ); } /* If we have multiple successors, we take the union of all of them. */ else { VEC(basic_block, heap) * worklist; size_t i; basic_block bprime; worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs)); FOR_EACH_EDGE (e, ei, block->succs) { if (e->flags & EDGE_DFS_BACK) continue; VEC_quick_push (basic_block, worklist, e->dest); } if (VEC_length (basic_block, worklist) > 0) { for (i = 0; VEC_iterate (basic_block, worklist, i, bprime); i++) { unsigned int i; bitmap_iterator bi; FOR_EACH_EXPR_ID_IN_SET (ANTIC_IN (bprime), i, bi) bitmap_value_insert_into_set (PA_OUT, expression_for_id (i)); if (phi_nodes (bprime)) { bitmap_set_t pa_in = bitmap_set_new (); phi_translate_set (pa_in, PA_IN (bprime), block, bprime); FOR_EACH_EXPR_ID_IN_SET (pa_in, i, bi) bitmap_value_insert_into_set (PA_OUT, expression_for_id (i)); bitmap_set_free (pa_in); } else FOR_EACH_EXPR_ID_IN_SET (PA_IN (bprime), i, bi) bitmap_value_insert_into_set (PA_OUT, expression_for_id (i)); } } VEC_free (basic_block, heap, worklist); } /* PA_IN starts with PA_OUT - TMP_GEN. Then we subtract things from ANTIC_IN. */ PA_IN (block) = bitmap_set_subtract (PA_OUT, TMP_GEN (block)); /* For partial antic, we want to put back in the phi results, since we will properly avoid making them partially antic over backedges. */ bitmap_ior_into (PA_IN (block)->values, PHI_GEN (block)->values); bitmap_ior_into (PA_IN (block)->expressions, PHI_GEN (block)->expressions); /* PA_IN[block] = PA_IN[block] - ANTIC_IN[block] */ bitmap_set_subtract_values (PA_IN (block), ANTIC_IN (block)); dependent_clean (PA_IN (block), ANTIC_IN (block), block); if (!bitmap_set_equal (old_PA_IN, PA_IN (block))) { changed = true; SET_BIT (changed_blocks, block->index); FOR_EACH_EDGE (e, ei, block->preds) SET_BIT (changed_blocks, e->src->index); } else RESET_BIT (changed_blocks, block->index); maybe_dump_sets: if (dump_file && (dump_flags & TDF_DETAILS)) { if (PA_OUT) print_bitmap_set (dump_file, PA_OUT, "PA_OUT", block->index); print_bitmap_set (dump_file, PA_IN (block), "PA_IN", block->index); } if (old_PA_IN) bitmap_set_free (old_PA_IN); if (PA_OUT) bitmap_set_free (PA_OUT); return changed; } /* Compute ANTIC and partial ANTIC sets. */ static void compute_antic (void) { bool changed = true; int num_iterations = 0; basic_block block; int i; /* If any predecessor edges are abnormal, we punt, so antic_in is empty. We pre-build the map of blocks with incoming abnormal edges here. */ has_abnormal_preds = sbitmap_alloc (last_basic_block); sbitmap_zero (has_abnormal_preds); FOR_EACH_BB (block) { edge_iterator ei; edge e; FOR_EACH_EDGE (e, ei, block->preds) { e->flags &= ~EDGE_DFS_BACK; if (e->flags & EDGE_ABNORMAL) { SET_BIT (has_abnormal_preds, block->index); break; } } BB_VISITED (block) = 0; BB_DEFERRED (block) = 0; /* While we are here, give empty ANTIC_IN sets to each block. */ ANTIC_IN (block) = bitmap_set_new (); PA_IN (block) = bitmap_set_new (); } /* At the exit block we anticipate nothing. */ ANTIC_IN (EXIT_BLOCK_PTR) = bitmap_set_new (); BB_VISITED (EXIT_BLOCK_PTR) = 1; PA_IN (EXIT_BLOCK_PTR) = bitmap_set_new (); changed_blocks = sbitmap_alloc (last_basic_block + 1); sbitmap_ones (changed_blocks); while (changed) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Starting iteration %d\n", num_iterations); num_iterations++; changed = false; for (i = 0; i < last_basic_block - NUM_FIXED_BLOCKS; i++) { if (TEST_BIT (changed_blocks, postorder[i])) { basic_block block = BASIC_BLOCK (postorder[i]); changed |= compute_antic_aux (block, TEST_BIT (has_abnormal_preds, block->index)); } } /* Theoretically possible, but *highly* unlikely. */ gcc_assert (num_iterations < 50); } if (dump_file && (dump_flags & TDF_STATS)) fprintf (dump_file, "compute_antic required %d iterations\n", num_iterations); if (do_partial_partial) { sbitmap_ones (changed_blocks); mark_dfs_back_edges (); num_iterations = 0; changed = true; while (changed) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Starting iteration %d\n", num_iterations); num_iterations++; changed = false; for (i = 0; i < last_basic_block - NUM_FIXED_BLOCKS; i++) { if (TEST_BIT (changed_blocks, postorder[i])) { basic_block block = BASIC_BLOCK (postorder[i]); changed |= compute_partial_antic_aux (block, TEST_BIT (has_abnormal_preds, block->index)); } } /* Theoretically possible, but *highly* unlikely. */ gcc_assert (num_iterations < 50); } if (dump_file && (dump_flags & TDF_STATS)) fprintf (dump_file, "compute_partial_antic required %d iterations\n", num_iterations); } sbitmap_free (has_abnormal_preds); sbitmap_free (changed_blocks); } /* Return true if we can value number the call in STMT. This is true if we have a pure or constant call. */ static bool can_value_number_call (tree stmt) { tree call = get_call_expr_in (stmt); if (call_expr_flags (call) & (ECF_PURE | ECF_CONST)) return true; return false; } /* Return true if OP is an exception handler related operation, such as FILTER_EXPR or EXC_PTR_EXPR. */ static bool is_exception_related (tree op) { return TREE_CODE (op) == FILTER_EXPR || TREE_CODE (op) == EXC_PTR_EXPR; } /* Return true if OP is a tree which we can perform value numbering on. */ static bool can_value_number_operation (tree op) { return (UNARY_CLASS_P (op) && !is_exception_related (TREE_OPERAND (op, 0))) || BINARY_CLASS_P (op) || COMPARISON_CLASS_P (op) || REFERENCE_CLASS_P (op) || (TREE_CODE (op) == CALL_EXPR && can_value_number_call (op)); } /* Return true if OP is a tree which we can perform PRE on on. This may not match the operations we can value number, but in a perfect world would. */ static bool can_PRE_operation (tree op) { return UNARY_CLASS_P (op) || BINARY_CLASS_P (op) || COMPARISON_CLASS_P (op) || TREE_CODE (op) == INDIRECT_REF || TREE_CODE (op) == COMPONENT_REF || TREE_CODE (op) == CALL_EXPR || TREE_CODE (op) == ARRAY_REF; } /* Inserted expressions are placed onto this worklist, which is used for performing quick dead code elimination of insertions we made that didn't turn out to be necessary. */ static VEC(tree,heap) *inserted_exprs; /* Pool allocated fake store expressions are placed onto this worklist, which, after performing dead code elimination, is walked to see which expressions need to be put into GC'able memory */ static VEC(tree, heap) *need_creation; /* For COMPONENT_REF's and ARRAY_REF's, we can't have any intermediates for the COMPONENT_REF or INDIRECT_REF or ARRAY_REF portion, because we'd end up with trying to rename aggregates into ssa form directly, which is a no no. Thus, this routine doesn't create temporaries, it just builds a single access expression for the array, calling find_or_generate_expression to build the innermost pieces. This function is a subroutine of create_expression_by_pieces, and should not be called on it's own unless you really know what you are doing. */ static tree create_component_ref_by_pieces (basic_block block, tree expr, tree stmts) { tree genop = expr; tree folded; if (TREE_CODE (genop) == VALUE_HANDLE) { tree found = bitmap_find_leader (AVAIL_OUT (block), expr); if (found) return found; } if (TREE_CODE (genop) == VALUE_HANDLE) { bitmap_set_t exprset = VALUE_HANDLE_EXPR_SET (expr); unsigned int firstbit = bitmap_first_set_bit (exprset->expressions); genop = expression_for_id (firstbit); } switch TREE_CODE (genop) { case ARRAY_REF: { tree op0; tree op1, op2, op3; op0 = create_component_ref_by_pieces (block, TREE_OPERAND (genop, 0), stmts); op1 = TREE_OPERAND (genop, 1); if (TREE_CODE (op1) == VALUE_HANDLE) op1 = find_or_generate_expression (block, op1, stmts); op2 = TREE_OPERAND (genop, 2); if (op2 && TREE_CODE (op2) == VALUE_HANDLE) op2 = find_or_generate_expression (block, op2, stmts); op3 = TREE_OPERAND (genop, 3); if (op3 && TREE_CODE (op3) == VALUE_HANDLE) op3 = find_or_generate_expression (block, op3, stmts); folded = build4 (ARRAY_REF, TREE_TYPE (genop), op0, op1, op2, op3); return folded; } case COMPONENT_REF: { tree op0; tree op1; op0 = create_component_ref_by_pieces (block, TREE_OPERAND (genop, 0), stmts); /* op1 should be a FIELD_DECL, which are represented by themselves. */ op1 = TREE_OPERAND (genop, 1); folded = fold_build3 (COMPONENT_REF, TREE_TYPE (genop), op0, op1, NULL_TREE); return folded; } break; case INDIRECT_REF: { tree op1 = TREE_OPERAND (genop, 0); tree genop1 = find_or_generate_expression (block, op1, stmts); folded = fold_build1 (TREE_CODE (genop), TREE_TYPE (genop), genop1); return folded; } break; case VAR_DECL: case PARM_DECL: case RESULT_DECL: case SSA_NAME: case STRING_CST: return genop; default: gcc_unreachable (); } return NULL_TREE; } /* Find a leader for an expression, or generate one using create_expression_by_pieces if it's ANTIC but complex. BLOCK is the basic_block we are looking for leaders in. EXPR is the expression to find a leader or generate for. STMTS is the statement list to put the inserted expressions on. Returns the SSA_NAME of the LHS of the generated expression or the leader. */ static tree find_or_generate_expression (basic_block block, tree expr, tree stmts) { tree genop = bitmap_find_leader (AVAIL_OUT (block), expr); /* If it's still NULL, it must be a complex expression, so generate it recursively. */ if (genop == NULL) { bitmap_set_t exprset = VALUE_HANDLE_EXPR_SET (expr); bool handled = false; bitmap_iterator bi; unsigned int i; /* We will hit cases where we have SSA_NAME's in exprset before other operations, because we may have come up with the SCCVN value before getting to the RHS of the expression. */ FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi) { genop = expression_for_id (i); if (can_PRE_operation (genop)) { handled = true; genop = create_expression_by_pieces (block, genop, stmts); break; } } gcc_assert (handled); } return genop; } #define NECESSARY(stmt) stmt->base.asm_written_flag /* Create an expression in pieces, so that we can handle very complex expressions that may be ANTIC, but not necessary GIMPLE. BLOCK is the basic block the expression will be inserted into, EXPR is the expression to insert (in value form) STMTS is a statement list to append the necessary insertions into. This function will die if we hit some value that shouldn't be ANTIC but is (IE there is no leader for it, or its components). This function may also generate expressions that are themselves partially or fully redundant. Those that are will be either made fully redundant during the next iteration of insert (for partially redundant ones), or eliminated by eliminate (for fully redundant ones). */ static tree create_expression_by_pieces (basic_block block, tree expr, tree stmts) { tree temp, name; tree folded, forced_stmts, newexpr; tree v; tree_stmt_iterator tsi; switch (TREE_CODE_CLASS (TREE_CODE (expr))) { case tcc_vl_exp: { tree fn, sc; tree genfn; int i, nargs; tree *buffer; gcc_assert (TREE_CODE (expr) == CALL_EXPR); fn = CALL_EXPR_FN (expr); sc = CALL_EXPR_STATIC_CHAIN (expr); genfn = find_or_generate_expression (block, fn, stmts); nargs = call_expr_nargs (expr); buffer = (tree*) alloca (nargs * sizeof (tree)); for (i = 0; i < nargs; i++) { tree arg = CALL_EXPR_ARG (expr, i); buffer[i] = find_or_generate_expression (block, arg, stmts); } folded = build_call_array (TREE_TYPE (expr), genfn, nargs, buffer); if (sc) CALL_EXPR_STATIC_CHAIN (folded) = find_or_generate_expression (block, sc, stmts); folded = fold (folded); break; } break; case tcc_reference: { if (TREE_CODE (expr) == COMPONENT_REF || TREE_CODE (expr) == ARRAY_REF) { folded = create_component_ref_by_pieces (block, expr, stmts); } else { tree op1 = TREE_OPERAND (expr, 0); tree genop1 = find_or_generate_expression (block, op1, stmts); folded = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), genop1); } break; } case tcc_binary: case tcc_comparison: { tree op1 = TREE_OPERAND (expr, 0); tree op2 = TREE_OPERAND (expr, 1); tree genop1 = find_or_generate_expression (block, op1, stmts); tree genop2 = find_or_generate_expression (block, op2, stmts); folded = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), genop1, genop2); break; } case tcc_unary: { tree op1 = TREE_OPERAND (expr, 0); tree genop1 = find_or_generate_expression (block, op1, stmts); folded = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), genop1); break; } default: gcc_unreachable (); } /* Force the generated expression to be a sequence of GIMPLE statements. We have to call unshare_expr because force_gimple_operand may modify the tree we pass to it. */ newexpr = force_gimple_operand (unshare_expr (folded), &forced_stmts, false, NULL); /* If we have any intermediate expressions to the value sets, add them to the value sets and chain them on in the instruction stream. */ if (forced_stmts) { tsi = tsi_start (forced_stmts); for (; !tsi_end_p (tsi); tsi_next (&tsi)) { tree stmt = tsi_stmt (tsi); tree forcedname = GIMPLE_STMT_OPERAND (stmt, 0); tree forcedexpr = GIMPLE_STMT_OPERAND (stmt, 1); tree val = vn_lookup_or_add (forcedexpr); VEC_safe_push (tree, heap, inserted_exprs, stmt); VN_INFO_GET (forcedname)->valnum = forcedname; vn_add (forcedname, val); bitmap_value_replace_in_set (NEW_SETS (block), forcedname); bitmap_value_replace_in_set (AVAIL_OUT (block), forcedname); mark_symbols_for_renaming (stmt); } tsi = tsi_last (stmts); tsi_link_after (&tsi, forced_stmts, TSI_CONTINUE_LINKING); } /* Build and insert the assignment of the end result to the temporary that we will return. */ if (!pretemp || TREE_TYPE (expr) != TREE_TYPE (pretemp)) { pretemp = create_tmp_var (TREE_TYPE (expr), "pretmp"); get_var_ann (pretemp); } temp = pretemp; add_referenced_var (temp); if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE || TREE_CODE (TREE_TYPE (expr)) == VECTOR_TYPE) DECL_GIMPLE_REG_P (temp) = 1; newexpr = build_gimple_modify_stmt (temp, newexpr); name = make_ssa_name (temp, newexpr); GIMPLE_STMT_OPERAND (newexpr, 0) = name; NECESSARY (newexpr) = 0; tsi = tsi_last (stmts); tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING); VEC_safe_push (tree, heap, inserted_exprs, newexpr); /* All the symbols in NEWEXPR should be put into SSA form. */ mark_symbols_for_renaming (newexpr); /* Add a value handle to the temporary. The value may already exist in either NEW_SETS, or AVAIL_OUT, because we are creating the expression by pieces, and this particular piece of the expression may have been represented. There is no harm in replacing here. */ v = get_value_handle (expr); vn_add (name, v); VN_INFO_GET (name)->valnum = name; get_or_alloc_expression_id (name); bitmap_value_replace_in_set (NEW_SETS (block), name); bitmap_value_replace_in_set (AVAIL_OUT (block), name); pre_stats.insertions++; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Inserted "); print_generic_expr (dump_file, newexpr, 0); fprintf (dump_file, " in predecessor %d\n", block->index); } return name; } /* Insert the to-be-made-available values of expression EXPRNUM for each predecessor, stored in AVAIL, into the predecessors of BLOCK, and merge the result with a phi node, given the same value handle as NODE. Return true if we have inserted new stuff. */ static bool insert_into_preds_of_block (basic_block block, unsigned int exprnum, tree *avail) { tree expr = expression_for_id (exprnum); tree val = get_value_handle (expr); edge pred; bool insertions = false; bool nophi = false; basic_block bprime; tree eprime; edge_iterator ei; tree type = TREE_TYPE (avail[EDGE_PRED (block, 0)->src->index]); tree temp; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found partial redundancy for expression "); print_generic_expr (dump_file, expr, 0); fprintf (dump_file, " ("); print_generic_expr (dump_file, val, 0); fprintf (dump_file, ")"); fprintf (dump_file, "\n"); } /* Make sure we aren't creating an induction variable. */ if (block->loop_depth > 0 && EDGE_COUNT (block->preds) == 2 && TREE_CODE_CLASS (TREE_CODE (expr)) != tcc_reference ) { bool firstinsideloop = false; bool secondinsideloop = false; firstinsideloop = flow_bb_inside_loop_p (block->loop_father, EDGE_PRED (block, 0)->src); secondinsideloop = flow_bb_inside_loop_p (block->loop_father, EDGE_PRED (block, 1)->src); /* Induction variables only have one edge inside the loop. */ if (firstinsideloop ^ secondinsideloop) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n"); nophi = true; } } /* Make the necessary insertions. */ FOR_EACH_EDGE (pred, ei, block->preds) { tree stmts = alloc_stmt_list (); tree builtexpr; bprime = pred->src; eprime = avail[bprime->index]; if (can_PRE_operation (eprime)) { builtexpr = create_expression_by_pieces (bprime, eprime, stmts); gcc_assert (!(pred->flags & EDGE_ABNORMAL)); bsi_insert_on_edge (pred, stmts); avail[bprime->index] = builtexpr; insertions = true; } } /* If we didn't want a phi node, and we made insertions, we still have inserted new stuff, and thus return true. If we didn't want a phi node, and didn't make insertions, we haven't added anything new, so return false. */ if (nophi && insertions) return true; else if (nophi && !insertions) return false; /* Now build a phi for the new variable. */ if (!prephitemp || TREE_TYPE (prephitemp) != type) { prephitemp = create_tmp_var (type, "prephitmp"); get_var_ann (prephitemp); } temp = prephitemp; add_referenced_var (temp); if (TREE_CODE (type) == COMPLEX_TYPE || TREE_CODE (type) == VECTOR_TYPE) DECL_GIMPLE_REG_P (temp) = 1; temp = create_phi_node (temp, block); NECESSARY (temp) = 0; VN_INFO_GET (PHI_RESULT (temp))->valnum = PHI_RESULT (temp); VEC_safe_push (tree, heap, inserted_exprs, temp); FOR_EACH_EDGE (pred, ei, block->preds) add_phi_arg (temp, avail[pred->src->index], pred); vn_add (PHI_RESULT (temp), val); /* The value should *not* exist in PHI_GEN, or else we wouldn't be doing this insertion, since we test for the existence of this value in PHI_GEN before proceeding with the partial redundancy checks in insert_aux. The value may exist in AVAIL_OUT, in particular, it could be represented by the expression we are trying to eliminate, in which case we want the replacement to occur. If it's not existing in AVAIL_OUT, we want it inserted there. Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of this block, because if it did, it would have existed in our dominator's AVAIL_OUT, and would have been skipped due to the full redundancy check. */ bitmap_insert_into_set (PHI_GEN (block), PHI_RESULT (temp)); bitmap_value_replace_in_set (AVAIL_OUT (block), PHI_RESULT (temp)); bitmap_insert_into_set (NEW_SETS (block), PHI_RESULT (temp)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Created phi "); print_generic_expr (dump_file, temp, 0); fprintf (dump_file, " in block %d\n", block->index); } pre_stats.phis++; return true; } /* Perform insertion of partially redundant values. For BLOCK, do the following: 1. Propagate the NEW_SETS of the dominator into the current block. If the block has multiple predecessors, 2a. Iterate over the ANTIC expressions for the block to see if any of them are partially redundant. 2b. If so, insert them into the necessary predecessors to make the expression fully redundant. 2c. Insert a new PHI merging the values of the predecessors. 2d. Insert the new PHI, and the new expressions, into the NEW_SETS set. 3. Recursively call ourselves on the dominator children of BLOCK. Steps 1, 2a, and 3 are done by insert_aux. 2b, 2c and 2d are done by do_regular_insertion and do_partial_insertion. */ static bool do_regular_insertion (basic_block block, basic_block dom) { bool new_stuff = false; VEC (tree, heap) *exprs = sorted_array_from_bitmap_set (ANTIC_IN (block)); tree expr; int i; for (i = 0; VEC_iterate (tree, exprs, i, expr); i++) { if (can_PRE_operation (expr) && !AGGREGATE_TYPE_P (TREE_TYPE (expr))) { tree *avail; tree val; bool by_some = false; bool cant_insert = false; bool all_same = true; tree first_s = NULL; edge pred; basic_block bprime; tree eprime = NULL_TREE; edge_iterator ei; val = get_value_handle (expr); if (bitmap_set_contains_value (PHI_GEN (block), val)) continue; if (bitmap_set_contains_value (AVAIL_OUT (dom), val)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found fully redundant value\n"); continue; } avail = XCNEWVEC (tree, last_basic_block); FOR_EACH_EDGE (pred, ei, block->preds) { tree vprime; tree edoubleprime; /* This can happen in the very weird case that our fake infinite loop edges have caused a critical edge to appear. */ if (EDGE_CRITICAL_P (pred)) { cant_insert = true; break; } bprime = pred->src; eprime = phi_translate (expr, ANTIC_IN (block), NULL, bprime, block); /* eprime will generally only be NULL if the value of the expression, translated through the PHI for this predecessor, is undefined. If that is the case, we can't make the expression fully redundant, because its value is undefined along a predecessor path. We can thus break out early because it doesn't matter what the rest of the results are. */ if (eprime == NULL) { cant_insert = true; break; } eprime = fully_constant_expression (eprime); vprime = get_value_handle (eprime); gcc_assert (vprime); edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime), vprime); if (edoubleprime == NULL) { avail[bprime->index] = eprime; all_same = false; } else { avail[bprime->index] = edoubleprime; by_some = true; if (first_s == NULL) first_s = edoubleprime; else if (!operand_equal_p (first_s, edoubleprime, 0)) all_same = false; } } /* If we can insert it, it's not the same value already existing along every predecessor, and it's defined by some predecessor, it is partially redundant. */ if (!cant_insert && !all_same && by_some) { if (insert_into_preds_of_block (block, get_expression_id (expr), avail)) new_stuff = true; } /* If all edges produce the same value and that value is an invariant, then the PHI has the same value on all edges. Note this. */ else if (!cant_insert && all_same && eprime && is_gimple_min_invariant (eprime) && !is_gimple_min_invariant (val)) { unsigned int j; bitmap_iterator bi; bitmap_set_t exprset = VALUE_HANDLE_EXPR_SET (val); FOR_EACH_EXPR_ID_IN_SET (exprset, j, bi) { tree expr = expression_for_id (j); if (TREE_CODE (expr) == SSA_NAME) { vn_add (expr, eprime); pre_stats.constified++; } } } free (avail); } } VEC_free (tree, heap, exprs); return new_stuff; } /* Perform insertion for partially anticipatable expressions. There is only one case we will perform insertion for these. This case is if the expression is partially anticipatable, and fully available. In this case, we know that putting it earlier will enable us to remove the later computation. */ static bool do_partial_partial_insertion (basic_block block, basic_block dom) { bool new_stuff = false; VEC (tree, heap) *exprs = sorted_array_from_bitmap_set (PA_IN (block)); tree expr; int i; for (i = 0; VEC_iterate (tree, exprs, i, expr); i++) { if (can_PRE_operation (expr) && !AGGREGATE_TYPE_P (TREE_TYPE (expr))) { tree *avail; tree val; bool by_all = true; bool cant_insert = false; edge pred; basic_block bprime; tree eprime = NULL_TREE; edge_iterator ei; val = get_value_handle (expr); if (bitmap_set_contains_value (PHI_GEN (block), val)) continue; if (bitmap_set_contains_value (AVAIL_OUT (dom), val)) continue; avail = XCNEWVEC (tree, last_basic_block); FOR_EACH_EDGE (pred, ei, block->preds) { tree vprime; tree edoubleprime; /* This can happen in the very weird case that our fake infinite loop edges have caused a critical edge to appear. */ if (EDGE_CRITICAL_P (pred)) { cant_insert = true; break; } bprime = pred->src; eprime = phi_translate (expr, ANTIC_IN (block), PA_IN (block), bprime, block); /* eprime will generally only be NULL if the value of the expression, translated through the PHI for this predecessor, is undefined. If that is the case, we can't make the expression fully redundant, because its value is undefined along a predecessor path. We can thus break out early because it doesn't matter what the rest of the results are. */ if (eprime == NULL) { cant_insert = true; break; } eprime = fully_constant_expression (eprime); vprime = get_value_handle (eprime); gcc_assert (vprime); edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime), vprime); if (edoubleprime == NULL) { by_all = false; break; } else avail[bprime->index] = edoubleprime; } /* If we can insert it, it's not the same value already existing along every predecessor, and it's defined by some predecessor, it is partially redundant. */ if (!cant_insert && by_all) { pre_stats.pa_insert++; if (insert_into_preds_of_block (block, get_expression_id (expr), avail)) new_stuff = true; } free (avail); } } VEC_free (tree, heap, exprs); return new_stuff; } static bool insert_aux (basic_block block) { basic_block son; bool new_stuff = false; if (block) { basic_block dom; dom = get_immediate_dominator (CDI_DOMINATORS, block); if (dom) { unsigned i; bitmap_iterator bi; bitmap_set_t newset = NEW_SETS (dom); if (newset) { /* Note that we need to value_replace both NEW_SETS, and AVAIL_OUT. For both the case of NEW_SETS, the value may be represented by some non-simple expression here that we want to replace it with. */ FOR_EACH_EXPR_ID_IN_SET (newset, i, bi) { tree expr = expression_for_id (i); bitmap_value_replace_in_set (NEW_SETS (block), expr); bitmap_value_replace_in_set (AVAIL_OUT (block), expr); } } if (!single_pred_p (block)) { new_stuff |= do_regular_insertion (block, dom); if (do_partial_partial) new_stuff |= do_partial_partial_insertion (block, dom); } } } for (son = first_dom_son (CDI_DOMINATORS, block); son; son = next_dom_son (CDI_DOMINATORS, son)) { new_stuff |= insert_aux (son); } return new_stuff; } /* Perform insertion of partially redundant values. */ static void insert (void) { bool new_stuff = true; basic_block bb; int num_iterations = 0; FOR_ALL_BB (bb) NEW_SETS (bb) = bitmap_set_new (); while (new_stuff) { num_iterations++; new_stuff = false; new_stuff = insert_aux (ENTRY_BLOCK_PTR); } if (num_iterations > 2 && dump_file && (dump_flags & TDF_STATS)) fprintf (dump_file, "insert required %d iterations\n", num_iterations); } /* Add OP to EXP_GEN (block), and possibly to the maximal set if it is not defined by a phi node. PHI nodes can't go in the maximal sets because they are not in TMP_GEN, so it is possible to get into non-monotonic situations during ANTIC calculation, because it will *add* bits. */ static void add_to_exp_gen (basic_block block, tree op) { if (!in_fre) { if (TREE_CODE (op) == SSA_NAME && ssa_undefined_value_p (op)) return; bitmap_value_insert_into_set (EXP_GEN (block), op); if (TREE_CODE (op) != SSA_NAME || TREE_CODE (SSA_NAME_DEF_STMT (op)) != PHI_NODE) bitmap_value_insert_into_set (maximal_set, op); } } /* Given an SSA variable VAR and an expression EXPR, compute the value number for EXPR and create a value handle (VAL) for it. If VAR and EXPR are not the same, associate VAL with VAR. Finally, add VAR to S1 and its value handle to S2, and to the maximal set if ADD_TO_MAXIMAL is true. VUSES represent the virtual use operands associated with EXPR (if any). */ static inline void add_to_sets (tree var, tree expr, VEC(tree, gc) *vuses, bitmap_set_t s1, bitmap_set_t s2) { tree val; val = vn_lookup_or_add_with_vuses (expr, vuses); /* VAR and EXPR may be the same when processing statements for which we are not computing value numbers (e.g., non-assignments, or statements that make aliased stores). In those cases, we are only interested in making VAR available as its own value. */ if (var != expr) vn_add (var, val); if (s1) bitmap_insert_into_set (s1, var); bitmap_value_insert_into_set (s2, var); } /* Find existing value expression that is the same as T, and return it if it exists. */ static inline tree find_existing_value_expr (tree t, VEC (tree, gc) *vuses) { bitmap_iterator bi; unsigned int bii; tree vh; bitmap_set_t exprset; if (REFERENCE_CLASS_P (t) || TREE_CODE (t) == CALL_EXPR || DECL_P (t)) vh = vn_lookup_with_vuses (t, vuses); else vh = vn_lookup (t); if (!vh) return NULL; exprset = VALUE_HANDLE_EXPR_SET (vh); FOR_EACH_EXPR_ID_IN_SET (exprset, bii, bi) { tree efi = expression_for_id (bii); if (expressions_equal_p (t, efi)) return efi; } return NULL; } /* Given a unary or binary expression EXPR, create and return a new expression with the same structure as EXPR but with its operands replaced with the value handles of each of the operands of EXPR. VUSES represent the virtual use operands associated with EXPR (if any). Insert EXPR's operands into the EXP_GEN set for BLOCK. */ static inline tree create_value_expr_from (tree expr, basic_block block, VEC (tree, gc) *vuses) { int i; enum tree_code code = TREE_CODE (expr); tree vexpr; alloc_pool pool = NULL; tree efi; gcc_assert (TREE_CODE_CLASS (code) == tcc_unary || TREE_CODE_CLASS (code) == tcc_binary || TREE_CODE_CLASS (code) == tcc_comparison || TREE_CODE_CLASS (code) == tcc_reference || TREE_CODE_CLASS (code) == tcc_expression || TREE_CODE_CLASS (code) == tcc_vl_exp || TREE_CODE_CLASS (code) == tcc_exceptional || TREE_CODE_CLASS (code) == tcc_declaration); if (TREE_CODE_CLASS (code) == tcc_unary) pool = unary_node_pool; else if (TREE_CODE_CLASS (code) == tcc_reference) pool = reference_node_pool; else if (TREE_CODE_CLASS (code) == tcc_binary) pool = binary_node_pool; else if (TREE_CODE_CLASS (code) == tcc_comparison) pool = comparison_node_pool; else gcc_assert (code == CALL_EXPR); if (code == CALL_EXPR) vexpr = temp_copy_call_expr (expr); else { vexpr = (tree) pool_alloc (pool); memcpy (vexpr, expr, tree_size (expr)); } for (i = 0; i < TREE_OPERAND_LENGTH (expr); i++) { tree val = NULL_TREE; tree op; op = TREE_OPERAND (expr, i); if (op == NULL_TREE) continue; /* Recursively value-numberize reference ops and tree lists. */ if (REFERENCE_CLASS_P (op)) { tree tempop = create_value_expr_from (op, block, vuses); op = tempop ? tempop : op; val = vn_lookup_or_add_with_vuses (op, vuses); set_expression_vuses (op, vuses); } else { val = vn_lookup_or_add (op); } if (TREE_CODE (op) != TREE_LIST) add_to_exp_gen (block, op); if (TREE_CODE (val) == VALUE_HANDLE) TREE_TYPE (val) = TREE_TYPE (TREE_OPERAND (vexpr, i)); TREE_OPERAND (vexpr, i) = val; } efi = find_existing_value_expr (vexpr, vuses); if (efi) return efi; get_or_alloc_expression_id (vexpr); return vexpr; } /* Return a copy of NODE that is stored in the temporary alloc_pool's. This is made recursively true, so that the operands are stored in the pool as well. */ static tree poolify_tree (tree node) { switch (TREE_CODE (node)) { case INDIRECT_REF: { tree temp = (tree) pool_alloc (reference_node_pool); memcpy (temp, node, tree_size (node)); TREE_OPERAND (temp, 0) = poolify_tree (TREE_OPERAND (temp, 0)); return temp; } break; case GIMPLE_MODIFY_STMT: { tree temp = (tree) pool_alloc (modify_expr_node_pool); memcpy (temp, node, tree_size (node)); GIMPLE_STMT_OPERAND (temp, 0) = poolify_tree (GIMPLE_STMT_OPERAND (temp, 0)); GIMPLE_STMT_OPERAND (temp, 1) = poolify_tree (GIMPLE_STMT_OPERAND (temp, 1)); return temp; } break; case SSA_NAME: case INTEGER_CST: case STRING_CST: case REAL_CST: case FIXED_CST: case PARM_DECL: case VAR_DECL: case RESULT_DECL: return node; default: gcc_unreachable (); } } static tree modify_expr_template; /* Allocate a GIMPLE_MODIFY_STMT with TYPE, and operands OP1, OP2 in the alloc pools and return it. */ static tree poolify_modify_stmt (tree op1, tree op2) { if (modify_expr_template == NULL) modify_expr_template = build_gimple_modify_stmt (op1, op2); GIMPLE_STMT_OPERAND (modify_expr_template, 0) = op1; GIMPLE_STMT_OPERAND (modify_expr_template, 1) = op2; return poolify_tree (modify_expr_template); } /* For each real store operation of the form *a = that we see, create a corresponding fake store of the form storetmp_ = *a. This enables AVAIL computation to mark the results of stores as available. Without this, you'd need to do some computation to mark the result of stores as ANTIC and AVAIL at all the right points. To save memory, we keep the store statements pool allocated until we decide whether they are necessary or not. */ static void insert_fake_stores (void) { basic_block block; FOR_ALL_BB (block) { block_stmt_iterator bsi; for (bsi = bsi_start (block); !bsi_end_p (bsi); bsi_next (&bsi)) { tree stmt = bsi_stmt (bsi); /* We can't generate SSA names for stores that are complex or aggregate. We also want to ignore things whose virtual uses occur in abnormal phis. */ if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == INDIRECT_REF && !AGGREGATE_TYPE_P (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 0))) && TREE_CODE (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 0))) != COMPLEX_TYPE) { ssa_op_iter iter; def_operand_p defp; tree lhs = GIMPLE_STMT_OPERAND (stmt, 0); tree rhs = GIMPLE_STMT_OPERAND (stmt, 1); tree new_tree; bool notokay = false; FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_VIRTUAL_DEFS) { tree defvar = DEF_FROM_PTR (defp); if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (defvar)) { notokay = true; break; } } if (notokay) continue; if (!storetemp || TREE_TYPE (rhs) != TREE_TYPE (storetemp)) { storetemp = create_tmp_var (TREE_TYPE (rhs), "storetmp"); if (TREE_CODE (TREE_TYPE (storetemp)) == VECTOR_TYPE) DECL_GIMPLE_REG_P (storetemp) = 1; get_var_ann (storetemp); } new_tree = poolify_modify_stmt (storetemp, lhs); lhs = make_ssa_name (storetemp, new_tree); GIMPLE_STMT_OPERAND (new_tree, 0) = lhs; create_ssa_artificial_load_stmt (new_tree, stmt, false); NECESSARY (new_tree) = 0; VEC_safe_push (tree, heap, inserted_exprs, new_tree); VEC_safe_push (tree, heap, need_creation, new_tree); bsi_insert_after (&bsi, new_tree, BSI_NEW_STMT); } } } } /* Turn the pool allocated fake stores that we created back into real GC allocated ones if they turned out to be necessary to PRE some expressions. */ static void realify_fake_stores (void) { unsigned int i; tree stmt; for (i = 0; VEC_iterate (tree, need_creation, i, stmt); i++) { if (NECESSARY (stmt)) { block_stmt_iterator bsi; tree newstmt, tmp; /* Mark the temp variable as referenced */ add_referenced_var (SSA_NAME_VAR (GIMPLE_STMT_OPERAND (stmt, 0))); /* Put the new statement in GC memory, fix up the SSA_NAME_DEF_STMT on it, and then put it in place of the old statement before the store in the IR stream as a plain ssa name copy. */ bsi = bsi_for_stmt (stmt); bsi_prev (&bsi); tmp = GIMPLE_STMT_OPERAND (bsi_stmt (bsi), 1); newstmt = build_gimple_modify_stmt (GIMPLE_STMT_OPERAND (stmt, 0), tmp); SSA_NAME_DEF_STMT (GIMPLE_STMT_OPERAND (newstmt, 0)) = newstmt; bsi_insert_before (&bsi, newstmt, BSI_SAME_STMT); bsi = bsi_for_stmt (stmt); bsi_remove (&bsi, true); } else release_defs (stmt); } } /* Given an SSA_NAME, see if SCCVN has a value number for it, and if so, return the value handle for this value number, creating it if necessary. Return NULL if SCCVN has no info for us. */ static tree get_sccvn_value (tree name) { if (TREE_CODE (name) == SSA_NAME && VN_INFO (name)->valnum != name && VN_INFO (name)->valnum != VN_TOP) { tree val = VN_INFO (name)->valnum; bool is_invariant = is_gimple_min_invariant (val); tree valvh = !is_invariant ? get_value_handle (val) : NULL_TREE; /* We may end up with situations where SCCVN has chosen a representative for the equivalence set that we have not visited yet. In this case, just create the value handle for it. */ if (!valvh && !is_invariant) { tree defstmt = SSA_NAME_DEF_STMT (val); gcc_assert (VN_INFO (val)->valnum == val); /* PHI nodes can't have vuses and attempts to iterate over their VUSE operands will crash. */ if (TREE_CODE (defstmt) == PHI_NODE || IS_EMPTY_STMT (defstmt)) defstmt = NULL; { tree defstmt2 = SSA_NAME_DEF_STMT (name); if (TREE_CODE (defstmt2) != PHI_NODE && !ZERO_SSA_OPERANDS (defstmt2, SSA_OP_ALL_VIRTUALS)) gcc_assert (defstmt); } /* We lookup with the LHS, so do not use vn_lookup_or_add_with_stmt here, as that will result in useless reference lookups. */ valvh = vn_lookup_or_add (val); } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "SCCVN says "); print_generic_expr (dump_file, name, 0); fprintf (dump_file, " value numbers to "); if (valvh && !is_invariant) { print_generic_expr (dump_file, val, 0); fprintf (dump_file, " ("); print_generic_expr (dump_file, valvh, 0); fprintf (dump_file, ")\n"); } else print_generic_stmt (dump_file, val, 0); } if (valvh) return valvh; else return val; } return NULL_TREE; } /* Create value handles for PHI in BLOCK. */ static void make_values_for_phi (tree phi, basic_block block) { tree result = PHI_RESULT (phi); /* We have no need for virtual phis, as they don't represent actual computations. */ if (is_gimple_reg (result)) { tree sccvnval = get_sccvn_value (result); if (sccvnval) { vn_add (result, sccvnval); bitmap_insert_into_set (PHI_GEN (block), result); bitmap_value_insert_into_set (AVAIL_OUT (block), result); } else add_to_sets (result, result, NULL, PHI_GEN (block), AVAIL_OUT (block)); } } /* Create value handles for STMT in BLOCK. Return true if we handled the statement. */ static bool make_values_for_stmt (tree stmt, basic_block block) { tree lhs = GIMPLE_STMT_OPERAND (stmt, 0); tree rhs = GIMPLE_STMT_OPERAND (stmt, 1); tree valvh = NULL_TREE; tree lhsval; VEC (tree, gc) *vuses = NULL; valvh = get_sccvn_value (lhs); if (valvh) { vn_add (lhs, valvh); bitmap_value_insert_into_set (AVAIL_OUT (block), lhs); /* Shortcut for FRE. We have no need to create value expressions, just want to know what values are available where. */ if (in_fre) return true; } else if (in_fre) { /* For FRE, if SCCVN didn't find anything, we aren't going to either, so just make up a new value number if necessary and call it a day */ if (get_value_handle (lhs) == NULL) vn_lookup_or_add (lhs); bitmap_value_insert_into_set (AVAIL_OUT (block), lhs); return true; } lhsval = valvh ? valvh : get_value_handle (lhs); vuses = copy_vuses_from_stmt (stmt); STRIP_USELESS_TYPE_CONVERSION (rhs); if (can_value_number_operation (rhs) && (!lhsval || !is_gimple_min_invariant (lhsval))) { /* For value numberable operation, create a duplicate expression with the operands replaced with the value handles of the original RHS. */ tree newt = create_value_expr_from (rhs, block, vuses); if (newt) { set_expression_vuses (newt, vuses); /* If we already have a value number for the LHS, reuse it rather than creating a new one. */ if (lhsval) { set_value_handle (newt, lhsval); if (!is_gimple_min_invariant (lhsval)) add_to_value (lhsval, newt); } else { tree val = vn_lookup_or_add_with_vuses (newt, vuses); vn_add (lhs, val); } add_to_exp_gen (block, newt); } bitmap_insert_into_set (TMP_GEN (block), lhs); bitmap_value_insert_into_set (AVAIL_OUT (block), lhs); return true; } else if ((TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs)) || is_gimple_min_invariant (rhs) || TREE_CODE (rhs) == ADDR_EXPR || TREE_INVARIANT (rhs) || DECL_P (rhs)) { if (lhsval) { set_expression_vuses (rhs, vuses); set_value_handle (rhs, lhsval); if (!is_gimple_min_invariant (lhsval)) add_to_value (lhsval, rhs); bitmap_insert_into_set (TMP_GEN (block), lhs); bitmap_value_insert_into_set (AVAIL_OUT (block), lhs); } else { /* Compute a value number for the RHS of the statement and add its value to the AVAIL_OUT set for the block. Add the LHS to TMP_GEN. */ set_expression_vuses (rhs, vuses); add_to_sets (lhs, rhs, vuses, TMP_GEN (block), AVAIL_OUT (block)); } /* None of the rest of these can be PRE'd. */ if (TREE_CODE (rhs) == SSA_NAME && !ssa_undefined_value_p (rhs)) add_to_exp_gen (block, rhs); return true; } return false; } /* Compute the AVAIL set for all basic blocks. This function performs value numbering of the statements in each basic block. The AVAIL sets are built from information we glean while doing this value numbering, since the AVAIL sets contain only one entry per value. AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)]. AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK]. */ static void compute_avail (void) { basic_block block, son; basic_block *worklist; size_t sp = 0; tree param; /* For arguments with default definitions, we pretend they are defined in the entry block. */ for (param = DECL_ARGUMENTS (current_function_decl); param; param = TREE_CHAIN (param)) { if (gimple_default_def (cfun, param) != NULL) { tree def = gimple_default_def (cfun, param); vn_lookup_or_add (def); if (!in_fre) { bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), def); bitmap_value_insert_into_set (maximal_set, def); } bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), def); } } /* Likewise for the static chain decl. */ if (cfun->static_chain_decl) { param = cfun->static_chain_decl; if (gimple_default_def (cfun, param) != NULL) { tree def = gimple_default_def (cfun, param); vn_lookup_or_add (def); if (!in_fre) { bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), def); bitmap_value_insert_into_set (maximal_set, def); } bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), def); } } /* Allocate the worklist. */ worklist = XNEWVEC (basic_block, n_basic_blocks); /* Seed the algorithm by putting the dominator children of the entry block on the worklist. */ for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR); son; son = next_dom_son (CDI_DOMINATORS, son)) worklist[sp++] = son; /* Loop until the worklist is empty. */ while (sp) { block_stmt_iterator bsi; tree stmt, phi; basic_block dom; unsigned int stmt_uid = 1; /* Pick a block from the worklist. */ block = worklist[--sp]; /* Initially, the set of available values in BLOCK is that of its immediate dominator. */ dom = get_immediate_dominator (CDI_DOMINATORS, block); if (dom) bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom)); /* Generate values for PHI nodes. */ for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi)) make_values_for_phi (phi, block); /* Now compute value numbers and populate value sets with all the expressions computed in BLOCK. */ for (bsi = bsi_start (block); !bsi_end_p (bsi); bsi_next (&bsi)) { stmt_ann_t ann; ssa_op_iter iter; tree op; stmt = bsi_stmt (bsi); ann = stmt_ann (stmt); ann->uid = stmt_uid++; /* For regular value numbering, we are only interested in assignments of the form X_i = EXPR, where EXPR represents an "interesting" computation, it has no volatile operands and X_i doesn't flow through an abnormal edge. */ if (TREE_CODE (stmt) == RETURN_EXPR && !ann->has_volatile_ops) { tree realstmt = stmt; tree lhs; tree rhs; stmt = TREE_OPERAND (stmt, 0); if (stmt && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT) { lhs = GIMPLE_STMT_OPERAND (stmt, 0); rhs = GIMPLE_STMT_OPERAND (stmt, 1); if (TREE_CODE (lhs) == SSA_NAME && is_gimple_min_invariant (VN_INFO (lhs)->valnum)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "SCCVN says "); print_generic_expr (dump_file, lhs, 0); fprintf (dump_file, " value numbers to "); print_generic_stmt (dump_file, VN_INFO (lhs)->valnum, 0); } vn_add (lhs, VN_INFO (lhs)->valnum); continue; } if (TREE_CODE (rhs) == SSA_NAME) add_to_exp_gen (block, rhs); FOR_EACH_SSA_TREE_OPERAND (op, realstmt, iter, SSA_OP_DEF) add_to_sets (op, op, NULL, TMP_GEN (block), AVAIL_OUT (block)); } continue; } else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT && !ann->has_volatile_ops && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME && (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (GIMPLE_STMT_OPERAND (stmt, 0))) && !tree_could_throw_p (stmt)) { if (make_values_for_stmt (stmt, block)) continue; } /* For any other statement that we don't recognize, simply make the names generated by the statement available in AVAIL_OUT and TMP_GEN. */ FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF) add_to_sets (op, op, NULL, TMP_GEN (block), AVAIL_OUT (block)); FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE) { add_to_sets (op, op, NULL, NULL , AVAIL_OUT (block)); if (TREE_CODE (op) == SSA_NAME || can_PRE_operation (op)) add_to_exp_gen (block, op); } } /* Put the dominator children of BLOCK on the worklist of blocks to compute available sets for. */ for (son = first_dom_son (CDI_DOMINATORS, block); son; son = next_dom_son (CDI_DOMINATORS, son)) worklist[sp++] = son; } free (worklist); } /* Eliminate fully redundant computations. */ static void eliminate (void) { basic_block b; FOR_EACH_BB (b) { block_stmt_iterator i; for (i = bsi_start (b); !bsi_end_p (i); bsi_next (&i)) { tree stmt = bsi_stmt (i); /* Lookup the RHS of the expression, see if we have an available computation for it. If so, replace the RHS with the available computation. */ if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) != SSA_NAME && !is_gimple_min_invariant (GIMPLE_STMT_OPERAND (stmt, 1)) && !stmt_ann (stmt)->has_volatile_ops) { tree lhs = GIMPLE_STMT_OPERAND (stmt, 0); tree *rhs_p = &GIMPLE_STMT_OPERAND (stmt, 1); tree sprime; sprime = bitmap_find_leader (AVAIL_OUT (b), get_value_handle (lhs)); if (sprime && sprime != lhs && (TREE_CODE (*rhs_p) != SSA_NAME || may_propagate_copy (*rhs_p, sprime))) { gcc_assert (sprime != *rhs_p); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Replaced "); print_generic_expr (dump_file, *rhs_p, 0); fprintf (dump_file, " with "); print_generic_expr (dump_file, sprime, 0); fprintf (dump_file, " in "); print_generic_stmt (dump_file, stmt, 0); } if (TREE_CODE (sprime) == SSA_NAME) NECESSARY (SSA_NAME_DEF_STMT (sprime)) = 1; /* We need to make sure the new and old types actually match, which may require adding a simple cast, which fold_convert will do for us. */ if (TREE_CODE (*rhs_p) != SSA_NAME && !useless_type_conversion_p (TREE_TYPE (*rhs_p), TREE_TYPE (sprime))) sprime = fold_convert (TREE_TYPE (*rhs_p), sprime); pre_stats.eliminations++; propagate_tree_value (rhs_p, sprime); update_stmt (stmt); /* If we removed EH side effects from the statement, clean its EH information. */ if (maybe_clean_or_replace_eh_stmt (stmt, stmt)) { bitmap_set_bit (need_eh_cleanup, bb_for_stmt (stmt)->index); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Removed EH side effects.\n"); } } } } } } /* Borrow a bit of tree-ssa-dce.c for the moment. XXX: In 4.1, we should be able to just run a DCE pass after PRE, though this may be a bit faster, and we may want critical edges kept split. */ /* If OP's defining statement has not already been determined to be necessary, mark that statement necessary. Return the stmt, if it is newly necessary. */ static inline tree mark_operand_necessary (tree op) { tree stmt; gcc_assert (op); if (TREE_CODE (op) != SSA_NAME) return NULL; stmt = SSA_NAME_DEF_STMT (op); gcc_assert (stmt); if (NECESSARY (stmt) || IS_EMPTY_STMT (stmt)) return NULL; NECESSARY (stmt) = 1; return stmt; } /* Because we don't follow exactly the standard PRE algorithm, and decide not to insert PHI nodes sometimes, and because value numbering of casts isn't perfect, we sometimes end up inserting dead code. This simple DCE-like pass removes any insertions we made that weren't actually used. */ static void remove_dead_inserted_code (void) { VEC(tree,heap) *worklist = NULL; int i; tree t; worklist = VEC_alloc (tree, heap, VEC_length (tree, inserted_exprs)); for (i = 0; VEC_iterate (tree, inserted_exprs, i, t); i++) { if (NECESSARY (t)) VEC_quick_push (tree, worklist, t); } while (VEC_length (tree, worklist) > 0) { t = VEC_pop (tree, worklist); /* PHI nodes are somewhat special in that each PHI alternative has data and control dependencies. All the statements feeding the PHI node's arguments are always necessary. */ if (TREE_CODE (t) == PHI_NODE) { int k; VEC_reserve (tree, heap, worklist, PHI_NUM_ARGS (t)); for (k = 0; k < PHI_NUM_ARGS (t); k++) { tree arg = PHI_ARG_DEF (t, k); if (TREE_CODE (arg) == SSA_NAME) { arg = mark_operand_necessary (arg); if (arg) VEC_quick_push (tree, worklist, arg); } } } else { /* Propagate through the operands. Examine all the USE, VUSE and VDEF operands in this statement. Mark all the statements which feed this statement's uses as necessary. */ ssa_op_iter iter; tree use; /* The operands of VDEF expressions are also needed as they represent potential definitions that may reach this statement (VDEF operands allow us to follow def-def links). */ FOR_EACH_SSA_TREE_OPERAND (use, t, iter, SSA_OP_ALL_USES) { tree n = mark_operand_necessary (use); if (n) VEC_safe_push (tree, heap, worklist, n); } } } for (i = 0; VEC_iterate (tree, inserted_exprs, i, t); i++) { if (!NECESSARY (t)) { block_stmt_iterator bsi; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Removing unnecessary insertion:"); print_generic_stmt (dump_file, t, 0); } if (TREE_CODE (t) == PHI_NODE) { remove_phi_node (t, NULL, true); } else { bsi = bsi_for_stmt (t); bsi_remove (&bsi, true); release_defs (t); } } } VEC_free (tree, heap, worklist); } /* Initialize data structures used by PRE. */ static void init_pre (bool do_fre) { basic_block bb; next_expression_id = 0; expressions = NULL; expression_vuses = NULL; in_fre = do_fre; inserted_exprs = NULL; need_creation = NULL; pretemp = NULL_TREE; storetemp = NULL_TREE; prephitemp = NULL_TREE; if (!do_fre) loop_optimizer_init (LOOPS_NORMAL); connect_infinite_loops_to_exit (); memset (&pre_stats, 0, sizeof (pre_stats)); postorder = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS); post_order_compute (postorder, false, false); FOR_ALL_BB (bb) bb->aux = xcalloc (1, sizeof (struct bb_bitmap_sets)); calculate_dominance_info (CDI_POST_DOMINATORS); calculate_dominance_info (CDI_DOMINATORS); bitmap_obstack_initialize (&grand_bitmap_obstack); phi_translate_table = htab_create (5110, expr_pred_trans_hash, expr_pred_trans_eq, free); seen_during_translate = BITMAP_ALLOC (&grand_bitmap_obstack); bitmap_set_pool = create_alloc_pool ("Bitmap sets", sizeof (struct bitmap_set), 30); binary_node_pool = create_alloc_pool ("Binary tree nodes", tree_code_size (PLUS_EXPR), 30); unary_node_pool = create_alloc_pool ("Unary tree nodes", tree_code_size (NEGATE_EXPR), 30); reference_node_pool = create_alloc_pool ("Reference tree nodes", tree_code_size (ARRAY_REF), 30); comparison_node_pool = create_alloc_pool ("Comparison tree nodes", tree_code_size (EQ_EXPR), 30); modify_expr_node_pool = create_alloc_pool ("GIMPLE_MODIFY_STMT nodes", tree_code_size (GIMPLE_MODIFY_STMT), 30); obstack_init (&temp_call_expr_obstack); modify_expr_template = NULL; FOR_ALL_BB (bb) { EXP_GEN (bb) = bitmap_set_new (); PHI_GEN (bb) = bitmap_set_new (); TMP_GEN (bb) = bitmap_set_new (); AVAIL_OUT (bb) = bitmap_set_new (); } maximal_set = in_fre ? NULL : bitmap_set_new (); need_eh_cleanup = BITMAP_ALLOC (NULL); } /* Deallocate data structures used by PRE. */ static void fini_pre (void) { basic_block bb; unsigned int i; free (postorder); VEC_free (tree, heap, inserted_exprs); VEC_free (tree, heap, need_creation); bitmap_obstack_release (&grand_bitmap_obstack); free_alloc_pool (bitmap_set_pool); free_alloc_pool (binary_node_pool); free_alloc_pool (reference_node_pool); free_alloc_pool (unary_node_pool); free_alloc_pool (comparison_node_pool); free_alloc_pool (modify_expr_node_pool); htab_delete (phi_translate_table); remove_fake_exit_edges (); FOR_ALL_BB (bb) { free (bb->aux); bb->aux = NULL; } free_dominance_info (CDI_POST_DOMINATORS); if (!bitmap_empty_p (need_eh_cleanup)) { tree_purge_all_dead_eh_edges (need_eh_cleanup); cleanup_tree_cfg (); } BITMAP_FREE (need_eh_cleanup); /* Wipe out pointers to VALUE_HANDLEs. In the not terribly distant future we will want them to be persistent though. */ for (i = 0; i < num_ssa_names; i++) { tree name = ssa_name (i); if (!name) continue; if (SSA_NAME_VALUE (name) && TREE_CODE (SSA_NAME_VALUE (name)) == VALUE_HANDLE) SSA_NAME_VALUE (name) = NULL; } if (current_loops != NULL) loop_optimizer_finalize (); } /* Main entry point to the SSA-PRE pass. DO_FRE is true if the caller only wants to do full redundancy elimination. */ static void execute_pre (bool do_fre) { do_partial_partial = optimize > 2; init_pre (do_fre); if (!do_fre) insert_fake_stores (); /* Collect and value number expressions computed in each basic block. */ if (!run_scc_vn ()) { if (!do_fre) remove_dead_inserted_code (); fini_pre (); return; } switch_to_PRE_table (); compute_avail (); if (dump_file && (dump_flags & TDF_DETAILS)) { basic_block bb; FOR_ALL_BB (bb) { print_bitmap_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index); print_bitmap_set (dump_file, TMP_GEN (bb), "tmp_gen", bb->index); print_bitmap_set (dump_file, AVAIL_OUT (bb), "avail_out", bb->index); } } /* Insert can get quite slow on an incredibly large number of basic blocks due to some quadratic behavior. Until this behavior is fixed, don't run it when he have an incredibly large number of bb's. If we aren't going to run insert, there is no point in computing ANTIC, either, even though it's plenty fast. */ if (!do_fre && n_basic_blocks < 4000) { compute_antic (); insert (); } /* Remove all the redundant expressions. */ eliminate (); if (dump_file && (dump_flags & TDF_STATS)) { fprintf (dump_file, "Insertions: %d\n", pre_stats.insertions); fprintf (dump_file, "PA inserted: %d\n", pre_stats.pa_insert); fprintf (dump_file, "New PHIs: %d\n", pre_stats.phis); fprintf (dump_file, "Eliminated: %d\n", pre_stats.eliminations); fprintf (dump_file, "Constified: %d\n", pre_stats.constified); } bsi_commit_edge_inserts (); free_scc_vn (); clear_expression_ids (); if (!do_fre) { remove_dead_inserted_code (); realify_fake_stores (); } fini_pre (); } /* Gate and execute functions for PRE. */ static unsigned int do_pre (void) { execute_pre (false); return TODO_rebuild_alias; } static bool gate_pre (void) { return flag_tree_pre != 0; } struct tree_opt_pass pass_pre = { "pre", /* name */ gate_pre, /* gate */ do_pre, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_PRE, /* tv_id */ PROP_no_crit_edges | PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa_only_virtuals | TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */ 0 /* letter */ }; /* Gate and execute functions for FRE. */ static unsigned int execute_fre (void) { execute_pre (true); return 0; } static bool gate_fre (void) { return flag_tree_fre != 0; } struct tree_opt_pass pass_fre = { "fre", /* name */ gate_fre, /* gate */ execute_fre, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_FRE, /* tv_id */ PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */ 0 /* letter */ };