/* Tail calls optimization on trees. Copyright (C) 2003 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "tm_p.h" #include "hard-reg-set.h" #include "basic-block.h" #include "function.h" #include "tree-flow.h" #include "tree-dump.h" #include "diagnostic.h" #include "except.h" #include "tree-pass.h" #include "flags.h" #include "langhooks.h" /* The file implements the tail recursion elimination. It is also used to analyze the tail calls in general, passing the results to the rtl level where they are used for sibcall optimization. In addition to the standard tail recursion elimination, we handle the most trivial cases of making the call tail recursive by creating accumulators. For example the following function int sum (int n) { if (n > 0) return n + sum (n - 1); else return 0; } is transformed into int sum (int n) { int acc = 0; while (n > 0) acc += n--; return acc; } To do this, we maintain two accumulators (a_acc and m_acc) that indicate when we reach the return x statement, we should return a_acc + x * m_acc instead. They are initially initialized to 0 and 1, respectively, so the semantics of the function is obviously preserved. If we are guaranteed that the value of the accumulator never change, we omit the accumulator. There are three cases how the function may exit. The first one is handled in adjust_return_value, the other two in adjust_accumulator_values (the second case is actually a special case of the third one and we present it separately just for clarity): 1) Just return x, where x is not in any of the remaining special shapes. We rewrite this to a gimple equivalent of return m_acc * x + a_acc. 2) return f (...), where f is the current function, is rewritten in a classical tail-recursion elimination way, into assignment of arguments and jump to the start of the function. Values of the accumulators are unchanged. 3) return a + m * f(...), where a and m do not depend on call to f. To preserve the semantics described before we want this to be rewritten in such a way that we finally return a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...). I.e. we increase a_acc by a * m_acc, multiply m_acc by m and eliminate the tail call to f. Special cases when the value is just added or just multiplied are obtained by setting a = 0 or m = 1. TODO -- it is possible to do similar tricks for other operations. */ /* A structure that describes the tailcall. */ struct tailcall { /* The block in that the call occur. */ basic_block call_block; /* The iterator pointing to the call statement. */ block_stmt_iterator call_bsi; /* True if it is a call to the current function. */ bool tail_recursion; /* The return value of the caller is mult * f + add, where f is the return value of the call. */ tree mult, add; /* Next tailcall in the chain. */ struct tailcall *next; }; /* The variables holding the value of multiplicative and additive accumulator. */ static tree m_acc, a_acc; static bool suitable_for_tail_opt_p (void); static bool optimize_tail_call (struct tailcall *, bool); static void eliminate_tail_call (struct tailcall *); static void find_tail_calls (basic_block, struct tailcall **); /* Returns false when the function is not suitable for tail call optimization from some reason (e.g. if it takes variable number of arguments). */ static bool suitable_for_tail_opt_p (void) { int i; if (current_function_stdarg) return false; /* No local variable should be call-clobbered. We ignore any kind of memory tag, as these are not real variables. */ for (i = 0; i < (int) VARRAY_ACTIVE_SIZE (referenced_vars); i++) { tree var = VARRAY_TREE (referenced_vars, i); if (decl_function_context (var) == current_function_decl && !TREE_STATIC (var) && var_ann (var)->mem_tag_kind == NOT_A_TAG && is_call_clobbered (var)) return false; } return true; } /* Returns false when the function is not suitable for tail call optimization from some reason (e.g. if it takes variable number of arguments). This test must pass in addition to suitable_for_tail_opt_p in order to make tail call discovery happen. */ static bool suitable_for_tail_call_opt_p (void) { /* alloca (until we have stack slot life analysis) inhibits sibling call optimizations, but not tail recursion. */ if (current_function_calls_alloca) return false; /* If we are using sjlj exceptions, we may need to add a call to _Unwind_SjLj_Unregister at exit of the function. Which means that we cannot do any sibcall transformations. */ if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ()) return false; /* Any function that calls setjmp might have longjmp called from any called function. ??? We really should represent this properly in the CFG so that this needn't be special cased. */ if (current_function_calls_setjmp) return false; return true; } /* Checks whether the expression EXPR in stmt AT is independent of the statement pointed by BSI (in a sense that we already know EXPR's value at BSI). We use the fact that we are only called from the chain of basic blocks that have only single successor. Returns the expression containing the value of EXPR at BSI. */ static tree independent_of_stmt_p (tree expr, tree at, block_stmt_iterator bsi) { basic_block bb, call_bb, at_bb; edge e; if (is_gimple_min_invariant (expr)) return expr; if (TREE_CODE (expr) != SSA_NAME) return NULL_TREE; /* Mark the blocks in the chain leading to the end. */ at_bb = bb_for_stmt (at); call_bb = bb_for_stmt (bsi_stmt (bsi)); for (bb = call_bb; bb != at_bb; bb = bb->succ->dest) bb->aux = &bb->aux; bb->aux = &bb->aux; while (1) { at = SSA_NAME_DEF_STMT (expr); bb = bb_for_stmt (at); /* The default defininition or defined before the chain. */ if (!bb || !bb->aux) break; if (bb == call_bb) { for (; !bsi_end_p (bsi); bsi_next (&bsi)) if (bsi_stmt (bsi) == at) break; if (!bsi_end_p (bsi)) expr = NULL_TREE; break; } if (TREE_CODE (at) != PHI_NODE) { expr = NULL_TREE; break; } for (e = bb->pred; e; e = e->pred_next) if (e->src->aux) break; if (!e) abort (); expr = phi_element_for_edge (at, e)->def; } /* Unmark the blocks. */ for (bb = call_bb; bb != at_bb; bb = bb->succ->dest) bb->aux = NULL; bb->aux = NULL; return expr; } /* Simulates the effect of an assignment of ASS in STMT on the return value of the tail recursive CALL passed in ASS_VAR. M and A are the multiplicative and the additive factor for the real return value. */ static bool process_assignment (tree ass, tree stmt, block_stmt_iterator call, tree *m, tree *a, tree *ass_var) { tree op0, op1, non_ass_var; tree dest = TREE_OPERAND (ass, 0); tree src = TREE_OPERAND (ass, 1); enum tree_code code = TREE_CODE (src); tree src_var = src; /* See if this is a simple copy operation of an SSA name to the function result. In that case we may have a simple tail call. Ignore type conversions that can never produce extra code between the function call and the function return. */ STRIP_NOPS (src_var); if (TREE_CODE (src_var) == SSA_NAME) { if (src_var != *ass_var) return false; *ass_var = dest; return true; } if (TREE_CODE_CLASS (code) != '2') return false; /* We only handle the code like x = call (); y = m * x; z = y + a; return z; TODO -- Extend it for cases where the linear transformation of the output is expressed in a more complicated way. */ op0 = TREE_OPERAND (src, 0); op1 = TREE_OPERAND (src, 1); if (op0 == *ass_var && (non_ass_var = independent_of_stmt_p (op1, stmt, call))) ; else if (op1 == *ass_var && (non_ass_var = independent_of_stmt_p (op0, stmt, call))) ; else return false; switch (code) { case PLUS_EXPR: /* There should be no previous addition. TODO -- it should be fairly straightforward to lift this restriction -- just allow storing more complicated expressions in *A, and gimplify it in adjust_accumulator_values. */ if (*a) return false; *a = non_ass_var; *ass_var = dest; return true; case MULT_EXPR: /* Similar remark applies here. Handling multiplication after addition is just slightly more complicated -- we need to multiply both *A and *M. */ if (*a || *m) return false; *m = non_ass_var; *ass_var = dest; return true; /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR). */ default: return false; } } /* Propagate VAR through phis on edge E. */ static tree propagate_through_phis (tree var, edge e) { basic_block dest = e->dest; tree phi; for (phi = phi_nodes (dest); phi; phi = TREE_CHAIN (phi)) if (phi_element_for_edge (phi, e)->def == var) return PHI_RESULT (phi); return var; } /* Finds tailcalls falling into basic block BB. The list of found tailcalls is added to the start of RET. */ static void find_tail_calls (basic_block bb, struct tailcall **ret) { tree ass_var, ret_var, stmt, func, param, args, call = NULL_TREE; block_stmt_iterator bsi, absi; bool tail_recursion; struct tailcall *nw; edge e; tree m, a; basic_block abb; stmt_ann_t ann; if (bb->succ->succ_next) return; for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi)) { stmt = bsi_stmt (bsi); /* Ignore labels. */ if (TREE_CODE (stmt) == LABEL_EXPR) continue; get_stmt_operands (stmt); /* Check for a call. */ if (TREE_CODE (stmt) == MODIFY_EXPR) { ass_var = TREE_OPERAND (stmt, 0); call = TREE_OPERAND (stmt, 1); } else { ass_var = NULL_TREE; call = stmt; } if (TREE_CODE (call) == CALL_EXPR) break; /* If the statement has virtual operands, fail. */ ann = stmt_ann (stmt); if (NUM_VDEFS (VDEF_OPS (ann)) || NUM_VUSES (VUSE_OPS (ann))) return; } if (bsi_end_p (bsi)) { /* Recurse to the predecessors. */ for (e = bb->pred; e; e = e->pred_next) find_tail_calls (e->src, ret); return; } /* We found the call, check whether it is suitable. */ tail_recursion = false; func = get_callee_fndecl (call); if (func == current_function_decl) { for (param = DECL_ARGUMENTS (func), args = TREE_OPERAND (call, 1); param && args; param = TREE_CHAIN (param), args = TREE_CHAIN (args)) { tree arg = TREE_VALUE (args); if (param != arg /* Make sure there are no problems with copying. Note we must have a copyable type and the two arguments must have reasonably equivalent types. The latter requirement could be relaxed if we emitted a suitable type conversion statement. */ && (!is_gimple_reg_type (TREE_TYPE (param)) || !lang_hooks.types_compatible_p (TREE_TYPE (param), TREE_TYPE (arg)))) break; } if (!args && !param) tail_recursion = true; } /* Now check the statements after the call. None of them has virtual operands, so they may only depend on the call through its return value. The return value should also be dependent on each of them, since we are running after dce. */ m = NULL_TREE; a = NULL_TREE; abb = bb; absi = bsi; while (1) { bsi_next (&absi); while (bsi_end_p (absi)) { ass_var = propagate_through_phis (ass_var, abb->succ); abb = abb->succ->dest; absi = bsi_start (abb); } stmt = bsi_stmt (absi); if (TREE_CODE (stmt) == LABEL_EXPR) continue; if (TREE_CODE (stmt) == RETURN_EXPR) break; if (TREE_CODE (stmt) != MODIFY_EXPR) return; /* Unless this is a tail recursive call, we cannot do anything with the statement anyway. */ if (!tail_recursion) return; if (!process_assignment (stmt, stmt, bsi, &m, &a, &ass_var)) return; } /* See if this is a tail call we can handle. */ ret_var = TREE_OPERAND (stmt, 0); if (ret_var && TREE_CODE (ret_var) == MODIFY_EXPR) { tree ret_op = TREE_OPERAND (ret_var, 1); STRIP_NOPS (ret_op); if (!tail_recursion && TREE_CODE (ret_op) != SSA_NAME) return; if (!process_assignment (ret_var, stmt, bsi, &m, &a, &ass_var)) return; ret_var = TREE_OPERAND (ret_var, 0); } /* We may proceed if there either is no return value, or the return value is identical to the call's return. */ if (ret_var && (ret_var != ass_var)) return; nw = xmalloc (sizeof (struct tailcall)); nw->call_block = bb; nw->call_bsi = bsi; nw->tail_recursion = tail_recursion; nw->mult = m; nw->add = a; nw->next = *ret; *ret = nw; } /* Adjust the accumulator values according to A and M after BSI, and update the phi nodes on edge BACK. */ static void adjust_accumulator_values (block_stmt_iterator bsi, tree m, tree a, edge back) { tree stmt, var, phi, tmp; tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); tree a_acc_arg = a_acc, m_acc_arg = m_acc; if (a) { if (m_acc) { if (integer_onep (a)) var = m_acc; else { stmt = build (MODIFY_EXPR, ret_type, NULL_TREE, build (MULT_EXPR, ret_type, m_acc, a)); tmp = create_tmp_var (ret_type, "acc_tmp"); add_referenced_tmp_var (tmp); var = make_ssa_name (tmp, stmt); TREE_OPERAND (stmt, 0) = var; bsi_insert_after (&bsi, stmt, BSI_NEW_STMT); } } else var = a; stmt = build (MODIFY_EXPR, ret_type, NULL_TREE, build (PLUS_EXPR, ret_type, a_acc, var)); var = make_ssa_name (SSA_NAME_VAR (a_acc), stmt); TREE_OPERAND (stmt, 0) = var; bsi_insert_after (&bsi, stmt, BSI_NEW_STMT); a_acc_arg = var; } if (m) { stmt = build (MODIFY_EXPR, ret_type, NULL_TREE, build (MULT_EXPR, ret_type, m_acc, m)); var = make_ssa_name (SSA_NAME_VAR (m_acc), stmt); TREE_OPERAND (stmt, 0) = var; bsi_insert_after (&bsi, stmt, BSI_NEW_STMT); m_acc_arg = var; } if (a_acc) { for (phi = phi_nodes (back->dest); phi; phi = TREE_CHAIN (phi)) if (PHI_RESULT (phi) == a_acc) break; add_phi_arg (&phi, a_acc_arg, back); } if (m_acc) { for (phi = phi_nodes (back->dest); phi; phi = TREE_CHAIN (phi)) if (PHI_RESULT (phi) == m_acc) break; add_phi_arg (&phi, m_acc_arg, back); } } /* Adjust value of the return at the end of BB according to M and A accumulators. */ static void adjust_return_value (basic_block bb, tree m, tree a) { tree ret_stmt = last_stmt (bb), ret_var, var, stmt, tmp; tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); block_stmt_iterator bsi = bsi_last (bb); if (TREE_CODE (ret_stmt) != RETURN_EXPR) abort (); ret_var = TREE_OPERAND (ret_stmt, 0); if (!ret_var) return; if (TREE_CODE (ret_var) == MODIFY_EXPR) { ret_var->common.ann = (tree_ann) stmt_ann (ret_stmt); bsi_replace (&bsi, ret_var, true); SSA_NAME_DEF_STMT (TREE_OPERAND (ret_var, 0)) = ret_var; ret_var = TREE_OPERAND (ret_var, 0); ret_stmt = build1 (RETURN_EXPR, TREE_TYPE (ret_stmt), ret_var); bsi_insert_after (&bsi, ret_stmt, BSI_NEW_STMT); } if (m) { stmt = build (MODIFY_EXPR, ret_type, NULL_TREE, build (MULT_EXPR, ret_type, m_acc, ret_var)); tmp = create_tmp_var (ret_type, "acc_tmp"); add_referenced_tmp_var (tmp); var = make_ssa_name (tmp, stmt); TREE_OPERAND (stmt, 0) = var; bsi_insert_before (&bsi, stmt, BSI_NEW_STMT); } else var = ret_var; if (a) { stmt = build (MODIFY_EXPR, ret_type, NULL_TREE, build (PLUS_EXPR, ret_type, a_acc, var)); tmp = create_tmp_var (ret_type, "acc_tmp"); add_referenced_tmp_var (tmp); var = make_ssa_name (tmp, stmt); TREE_OPERAND (stmt, 0) = var; bsi_insert_before (&bsi, stmt, BSI_NEW_STMT); } TREE_OPERAND (ret_stmt, 0) = var; modify_stmt (ret_stmt); } /* Eliminates tail call described by T. TMP_VARS is a list of temporary variables used to copy the function arguments. */ static void eliminate_tail_call (struct tailcall *t) { tree param, stmt, args, rslt, call; basic_block bb, first; edge e; tree phi; stmt_ann_t ann; vdef_optype vdefs; unsigned i; stmt = bsi_stmt (t->call_bsi); get_stmt_operands (stmt); ann = stmt_ann (stmt); bb = t->call_block; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Eliminated tail recursion in bb %d : ", bb->index); print_generic_stmt (dump_file, stmt, TDF_SLIM); fprintf (dump_file, "\n"); } if (TREE_CODE (stmt) == MODIFY_EXPR) stmt = TREE_OPERAND (stmt, 1); first = ENTRY_BLOCK_PTR->succ->dest; /* Replace the call by a jump to the start of function. */ e = redirect_edge_and_branch (t->call_block->succ, first); if (!e) abort (); PENDING_STMT (e) = NULL_TREE; /* Add phi node entries for arguments. Not every PHI node corresponds to a function argument (there may be PHI nodes for virtual definitions of the eliminated calls), so we search for a PHI corresponding to each argument rather than searching for which argument a PHI node corresponds to. */ for (param = DECL_ARGUMENTS (current_function_decl), args = TREE_OPERAND (stmt, 1); param; param = TREE_CHAIN (param), args = TREE_CHAIN (args)) { for (phi = phi_nodes (first); phi; phi = TREE_CHAIN (phi)) if (param == SSA_NAME_VAR (PHI_RESULT (phi))) break; /* The phi node indeed does not have to be there, in case the operand is invariant in the function. */ if (!phi) continue; add_phi_arg (&phi, TREE_VALUE (args), e); } /* Add phi nodes for the call clobbered variables. */ vdefs = VDEF_OPS (ann); for (i = 0; i < NUM_VDEFS (vdefs); i++) { param = SSA_NAME_VAR (VDEF_RESULT (vdefs, i)); for (phi = phi_nodes (first); phi; phi = TREE_CHAIN (phi)) if (param == SSA_NAME_VAR (PHI_RESULT (phi))) break; if (!phi) { tree name = var_ann (param)->default_def; tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name)); var_ann (param)->default_def = new_name; phi = create_phi_node (name, first); SSA_NAME_DEF_STMT (name) = phi; add_phi_arg (&phi, new_name, ENTRY_BLOCK_PTR->succ); /* For all calls the same set of variables should be clobbered. This means that there always should be the appropriate phi node except for the first time we eliminate the call. */ if (first->pred->pred_next->pred_next) abort (); } add_phi_arg (&phi, VDEF_OP (vdefs, i), e); } /* Update the values of accumulators. */ adjust_accumulator_values (t->call_bsi, t->mult, t->add, e); call = bsi_stmt (t->call_bsi); if (TREE_CODE (call) == MODIFY_EXPR) { rslt = TREE_OPERAND (call, 0); /* Result of the call will no longer be defined. So adjust the SSA_NAME_DEF_STMT accordingly. */ SSA_NAME_DEF_STMT (rslt) = build_empty_stmt (); } bsi_remove (&t->call_bsi); } /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also mark the tailcalls for the sibcall optimization. */ static bool optimize_tail_call (struct tailcall *t, bool opt_tailcalls) { if (t->tail_recursion) { eliminate_tail_call (t); return true; } if (opt_tailcalls) { tree stmt = bsi_stmt (t->call_bsi); if (TREE_CODE (stmt) == MODIFY_EXPR) stmt = TREE_OPERAND (stmt, 1); if (TREE_CODE (stmt) != CALL_EXPR) abort (); CALL_EXPR_TAILCALL (stmt) = 1; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found tail call "); print_generic_expr (dump_file, stmt, dump_flags); fprintf (dump_file, " in bb %i\n", t->call_block->index); } } return false; } /* Optimizes tail calls in the function, turning the tail recursion into iteration. */ static void tree_optimize_tail_calls_1 (bool opt_tailcalls) { edge e; bool phis_constructed = false; struct tailcall *tailcalls = NULL, *act, *next; bool changed = false; basic_block first = ENTRY_BLOCK_PTR->succ->dest; tree stmt, param, ret_type, tmp, phi; if (!suitable_for_tail_opt_p ()) return; if (opt_tailcalls) opt_tailcalls = suitable_for_tail_call_opt_p (); for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) { /* Only traverse the normal exits, i.e. those that end with return statement. */ stmt = last_stmt (e->src); if (stmt && TREE_CODE (stmt) == RETURN_EXPR) find_tail_calls (e->src, &tailcalls); } /* Construct the phi nodes and accumulators if necessary. */ a_acc = m_acc = NULL_TREE; for (act = tailcalls; act; act = act->next) { if (!act->tail_recursion) continue; if (!phis_constructed) { /* Ensure that there is only one predecessor of the block. */ if (first->pred->pred_next) first = split_edge (ENTRY_BLOCK_PTR->succ); /* Copy the args if needed. */ for (param = DECL_ARGUMENTS (current_function_decl); param; param = TREE_CHAIN (param)) if (var_ann (param) /* Also parameters that are only defined but never used need not be copied. */ && (var_ann (param)->default_def && TREE_CODE (var_ann (param)->default_def) == SSA_NAME)) { tree name = var_ann (param)->default_def; tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name)); tree phi; var_ann (param)->default_def = new_name; phi = create_phi_node (name, first); SSA_NAME_DEF_STMT (name) = phi; add_phi_arg (&phi, new_name, first->pred); } phis_constructed = true; } if (act->add && !a_acc) { ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); tmp = create_tmp_var (ret_type, "add_acc"); add_referenced_tmp_var (tmp); phi = create_phi_node (tmp, first); add_phi_arg (&phi, fold_convert (ret_type, integer_zero_node), first->pred); a_acc = PHI_RESULT (phi); } if (act->mult && !m_acc) { ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); tmp = create_tmp_var (ret_type, "mult_acc"); add_referenced_tmp_var (tmp); phi = create_phi_node (tmp, first); add_phi_arg (&phi, fold_convert (ret_type, integer_one_node), first->pred); m_acc = PHI_RESULT (phi); } } for (; tailcalls; tailcalls = next) { next = tailcalls->next; changed |= optimize_tail_call (tailcalls, opt_tailcalls); free (tailcalls); } if (a_acc || m_acc) { /* Modify the remaining return statements. */ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) { stmt = last_stmt (e->src); if (stmt && TREE_CODE (stmt) == RETURN_EXPR) adjust_return_value (e->src, m_acc, a_acc); } } if (changed) { free_dominance_info (CDI_DOMINATORS); cleanup_tree_cfg (); } } static void execute_tail_recursion (void) { tree_optimize_tail_calls_1 (false); } static bool gate_tail_calls (void) { return flag_optimize_sibling_calls != 0; } static void execute_tail_calls (void) { tree_optimize_tail_calls_1 (true); } struct tree_opt_pass pass_tail_recursion = { "tailr", /* name */ NULL, /* gate */ execute_tail_recursion, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ }; struct tree_opt_pass pass_tail_calls = { "tailc", /* name */ gate_tail_calls, /* gate */ execute_tail_calls, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ };