/* Statement Analysis and Transformation for Vectorization Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Dorit Naishlos and Ira Rosen This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "ggc.h" #include "tree.h" #include "target.h" #include "basic-block.h" #include "tree-pretty-print.h" #include "gimple-pretty-print.h" #include "tree-flow.h" #include "tree-dump.h" #include "cfgloop.h" #include "cfglayout.h" #include "expr.h" #include "recog.h" #include "optabs.h" #include "diagnostic-core.h" #include "toplev.h" #include "tree-vectorizer.h" #include "langhooks.h" /* Utility functions used by vect_mark_stmts_to_be_vectorized. */ /* Function vect_mark_relevant. Mark STMT as "relevant for vectorization" and add it to WORKLIST. */ static void vect_mark_relevant (VEC(gimple,heap) **worklist, gimple stmt, enum vect_relevant relevant, bool live_p) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info); bool save_live_p = STMT_VINFO_LIVE_P (stmt_info); if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p); if (STMT_VINFO_IN_PATTERN_P (stmt_info)) { gimple pattern_stmt; /* This is the last stmt in a sequence that was detected as a pattern that can potentially be vectorized. Don't mark the stmt as relevant/live because it's not going to be vectorized. Instead mark the pattern-stmt that replaces it. */ pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info); if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live."); stmt_info = vinfo_for_stmt (pattern_stmt); gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt); save_relevant = STMT_VINFO_RELEVANT (stmt_info); save_live_p = STMT_VINFO_LIVE_P (stmt_info); stmt = pattern_stmt; } STMT_VINFO_LIVE_P (stmt_info) |= live_p; if (relevant > STMT_VINFO_RELEVANT (stmt_info)) STMT_VINFO_RELEVANT (stmt_info) = relevant; if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant && STMT_VINFO_LIVE_P (stmt_info) == save_live_p) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "already marked relevant/live."); return; } VEC_safe_push (gimple, heap, *worklist, stmt); } /* Function vect_stmt_relevant_p. Return true if STMT in loop that is represented by LOOP_VINFO is "relevant for vectorization". A stmt is considered "relevant for vectorization" if: - it has uses outside the loop. - it has vdefs (it alters memory). - control stmts in the loop (except for the exit condition). CHECKME: what other side effects would the vectorizer allow? */ static bool vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo, enum vect_relevant *relevant, bool *live_p) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); ssa_op_iter op_iter; imm_use_iterator imm_iter; use_operand_p use_p; def_operand_p def_p; *relevant = vect_unused_in_scope; *live_p = false; /* cond stmt other than loop exit cond. */ if (is_ctrl_stmt (stmt) && STMT_VINFO_TYPE (vinfo_for_stmt (stmt)) != loop_exit_ctrl_vec_info_type) *relevant = vect_used_in_scope; /* changing memory. */ if (gimple_code (stmt) != GIMPLE_PHI) if (gimple_vdef (stmt)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs."); *relevant = vect_used_in_scope; } /* uses outside the loop. */ FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF) { FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p)) { basic_block bb = gimple_bb (USE_STMT (use_p)); if (!flow_bb_inside_loop_p (loop, bb)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop."); if (is_gimple_debug (USE_STMT (use_p))) continue; /* We expect all such uses to be in the loop exit phis (because of loop closed form) */ gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI); gcc_assert (bb == single_exit (loop)->dest); *live_p = true; } } } return (*live_p || *relevant); } /* Function exist_non_indexing_operands_for_use_p USE is one of the uses attached to STMT. Check if USE is used in STMT for anything other than indexing an array. */ static bool exist_non_indexing_operands_for_use_p (tree use, gimple stmt) { tree operand; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); /* USE corresponds to some operand in STMT. If there is no data reference in STMT, then any operand that corresponds to USE is not indexing an array. */ if (!STMT_VINFO_DATA_REF (stmt_info)) return true; /* STMT has a data_ref. FORNOW this means that its of one of the following forms: -1- ARRAY_REF = var -2- var = ARRAY_REF (This should have been verified in analyze_data_refs). 'var' in the second case corresponds to a def, not a use, so USE cannot correspond to any operands that are not used for array indexing. Therefore, all we need to check is if STMT falls into the first case, and whether var corresponds to USE. */ if (!gimple_assign_copy_p (stmt)) return false; if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME) return false; operand = gimple_assign_rhs1 (stmt); if (TREE_CODE (operand) != SSA_NAME) return false; if (operand == use) return true; return false; } /* Function process_use. Inputs: - a USE in STMT in a loop represented by LOOP_VINFO - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt that defined USE. This is done by calling mark_relevant and passing it the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant). Outputs: Generally, LIVE_P and RELEVANT are used to define the liveness and relevance info of the DEF_STMT of this USE: STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant Exceptions: - case 1: If USE is used only for address computations (e.g. array indexing), which does not need to be directly vectorized, then the liveness/relevance of the respective DEF_STMT is left unchanged. - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we skip DEF_STMT cause it had already been processed. - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will be modified accordingly. Return true if everything is as expected. Return false otherwise. */ static bool process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p, enum vect_relevant relevant, VEC(gimple,heap) **worklist) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); stmt_vec_info dstmt_vinfo; basic_block bb, def_bb; tree def; gimple def_stmt; enum vect_def_type dt; /* case 1: we are only interested in uses that need to be vectorized. Uses that are used for address computation are not considered relevant. */ if (!exist_non_indexing_operands_for_use_p (use, stmt)) return true; if (!vect_is_simple_use (use, loop_vinfo, NULL, &def_stmt, &def, &dt)) { if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS)) fprintf (vect_dump, "not vectorized: unsupported use in stmt."); return false; } if (!def_stmt || gimple_nop_p (def_stmt)) return true; def_bb = gimple_bb (def_stmt); if (!flow_bb_inside_loop_p (loop, def_bb)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "def_stmt is out of loop."); return true; } /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT). DEF_STMT must have already been processed, because this should be the only way that STMT, which is a reduction-phi, was put in the worklist, as there should be no other uses for DEF_STMT in the loop. So we just check that everything is as expected, and we are done. */ dstmt_vinfo = vinfo_for_stmt (def_stmt); bb = gimple_bb (stmt); if (gimple_code (stmt) == GIMPLE_PHI && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def && gimple_code (def_stmt) != GIMPLE_PHI && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def && bb->loop_father == def_bb->loop_father) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "reduc-stmt defining reduc-phi in the same nest."); if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo)) dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo)); gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction); gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo) || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope); return true; } /* case 3a: outer-loop stmt defining an inner-loop stmt: outer-loop-header-bb: d = def_stmt inner-loop: stmt # use (d) outer-loop-tail-bb: ... */ if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "outer-loop def-stmt defining inner-loop stmt."); switch (relevant) { case vect_unused_in_scope: relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ? vect_used_in_scope : vect_unused_in_scope; break; case vect_used_in_outer_by_reduction: gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def); relevant = vect_used_by_reduction; break; case vect_used_in_outer: gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def); relevant = vect_used_in_scope; break; case vect_used_in_scope: break; default: gcc_unreachable (); } } /* case 3b: inner-loop stmt defining an outer-loop stmt: outer-loop-header-bb: ... inner-loop: d = def_stmt outer-loop-tail-bb (or outer-loop-exit-bb in double reduction): stmt # use (d) */ else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "inner-loop def-stmt defining outer-loop stmt."); switch (relevant) { case vect_unused_in_scope: relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ? vect_used_in_outer_by_reduction : vect_unused_in_scope; break; case vect_used_by_reduction: relevant = vect_used_in_outer_by_reduction; break; case vect_used_in_scope: relevant = vect_used_in_outer; break; default: gcc_unreachable (); } } vect_mark_relevant (worklist, def_stmt, relevant, live_p); return true; } /* Function vect_mark_stmts_to_be_vectorized. Not all stmts in the loop need to be vectorized. For example: for i... for j... 1. T0 = i + j 2. T1 = a[T0] 3. j = j + 1 Stmt 1 and 3 do not need to be vectorized, because loop control and addressing of vectorized data-refs are handled differently. This pass detects such stmts. */ bool vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo) { VEC(gimple,heap) *worklist; struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); unsigned int nbbs = loop->num_nodes; gimple_stmt_iterator si; gimple stmt; unsigned int i; stmt_vec_info stmt_vinfo; basic_block bb; gimple phi; bool live_p; enum vect_relevant relevant, tmp_relevant; enum vect_def_type def_type; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ==="); worklist = VEC_alloc (gimple, heap, 64); /* 1. Init worklist. */ for (i = 0; i < nbbs; i++) { bb = bbs[i]; for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) { phi = gsi_stmt (si); if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "init: phi relevant? "); print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM); } if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p)) vect_mark_relevant (&worklist, phi, relevant, live_p); } for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { stmt = gsi_stmt (si); if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "init: stmt relevant? "); print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM); } if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p)) vect_mark_relevant (&worklist, stmt, relevant, live_p); } } /* 2. Process_worklist */ while (VEC_length (gimple, worklist) > 0) { use_operand_p use_p; ssa_op_iter iter; stmt = VEC_pop (gimple, worklist); if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "worklist: examine stmt: "); print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM); } /* Examine the USEs of STMT. For each USE, mark the stmt that defines it (DEF_STMT) as relevant/irrelevant and live/dead according to the liveness and relevance properties of STMT. */ stmt_vinfo = vinfo_for_stmt (stmt); relevant = STMT_VINFO_RELEVANT (stmt_vinfo); live_p = STMT_VINFO_LIVE_P (stmt_vinfo); /* Generally, the liveness and relevance properties of STMT are propagated as is to the DEF_STMTs of its USEs: live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO) relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO) One exception is when STMT has been identified as defining a reduction variable; in this case we set the liveness/relevance as follows: live_p = false relevant = vect_used_by_reduction This is because we distinguish between two kinds of relevant stmts - those that are used by a reduction computation, and those that are (also) used by a regular computation. This allows us later on to identify stmts that are used solely by a reduction, and therefore the order of the results that they produce does not have to be kept. */ def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo); tmp_relevant = relevant; switch (def_type) { case vect_reduction_def: switch (tmp_relevant) { case vect_unused_in_scope: relevant = vect_used_by_reduction; break; case vect_used_by_reduction: if (gimple_code (stmt) == GIMPLE_PHI) break; /* fall through */ default: if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "unsupported use of reduction."); VEC_free (gimple, heap, worklist); return false; } live_p = false; break; case vect_nested_cycle: if (tmp_relevant != vect_unused_in_scope && tmp_relevant != vect_used_in_outer_by_reduction && tmp_relevant != vect_used_in_outer) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "unsupported use of nested cycle."); VEC_free (gimple, heap, worklist); return false; } live_p = false; break; case vect_double_reduction_def: if (tmp_relevant != vect_unused_in_scope && tmp_relevant != vect_used_by_reduction) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "unsupported use of double reduction."); VEC_free (gimple, heap, worklist); return false; } live_p = false; break; default: break; } FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE) { tree op = USE_FROM_PTR (use_p); if (!process_use (stmt, op, loop_vinfo, live_p, relevant, &worklist)) { VEC_free (gimple, heap, worklist); return false; } } } /* while worklist */ VEC_free (gimple, heap, worklist); return true; } /* Get cost by calling cost target builtin. */ static inline int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost) { tree dummy_type = NULL; int dummy = 0; return targetm.vectorize.builtin_vectorization_cost (type_of_cost, dummy_type, dummy); } /* Get cost for STMT. */ int cost_for_stmt (gimple stmt) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); switch (STMT_VINFO_TYPE (stmt_info)) { case load_vec_info_type: return vect_get_stmt_cost (scalar_load); case store_vec_info_type: return vect_get_stmt_cost (scalar_store); case op_vec_info_type: case condition_vec_info_type: case assignment_vec_info_type: case reduc_vec_info_type: case induc_vec_info_type: case type_promotion_vec_info_type: case type_demotion_vec_info_type: case type_conversion_vec_info_type: case call_vec_info_type: return vect_get_stmt_cost (scalar_stmt); case undef_vec_info_type: default: gcc_unreachable (); } } /* Function vect_model_simple_cost. Models cost for simple operations, i.e. those that only emit ncopies of a single op. Right now, this does not account for multiple insns that could be generated for the single vector op. We will handle that shortly. */ void vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies, enum vect_def_type *dt, slp_tree slp_node) { int i; int inside_cost = 0, outside_cost = 0; /* The SLP costs were already calculated during SLP tree build. */ if (PURE_SLP_STMT (stmt_info)) return; inside_cost = ncopies * vect_get_stmt_cost (vector_stmt); /* FORNOW: Assuming maximum 2 args per stmts. */ for (i = 0; i < 2; i++) { if (dt[i] == vect_constant_def || dt[i] == vect_external_def) outside_cost += vect_get_stmt_cost (vector_stmt); } if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, " "outside_cost = %d .", inside_cost, outside_cost); /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */ stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost); stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost); } /* Function vect_cost_strided_group_size For strided load or store, return the group_size only if it is the first load or store of a group, else return 1. This ensures that group size is only returned once per group. */ static int vect_cost_strided_group_size (stmt_vec_info stmt_info) { gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info); if (first_stmt == STMT_VINFO_STMT (stmt_info)) return DR_GROUP_SIZE (stmt_info); return 1; } /* Function vect_model_store_cost Models cost for stores. In the case of strided accesses, one access has the overhead of the strided access attributed to it. */ void vect_model_store_cost (stmt_vec_info stmt_info, int ncopies, enum vect_def_type dt, slp_tree slp_node) { int group_size; unsigned int inside_cost = 0, outside_cost = 0; struct data_reference *first_dr; gimple first_stmt; /* The SLP costs were already calculated during SLP tree build. */ if (PURE_SLP_STMT (stmt_info)) return; if (dt == vect_constant_def || dt == vect_external_def) outside_cost = vect_get_stmt_cost (scalar_to_vec); /* Strided access? */ if (DR_GROUP_FIRST_DR (stmt_info)) { if (slp_node) { first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0); group_size = 1; } else { first_stmt = DR_GROUP_FIRST_DR (stmt_info); group_size = vect_cost_strided_group_size (stmt_info); } first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); } /* Not a strided access. */ else { group_size = 1; first_dr = STMT_VINFO_DATA_REF (stmt_info); } /* Is this an access in a group of stores, which provide strided access? If so, add in the cost of the permutes. */ if (group_size > 1) { /* Uses a high and low interleave operation for each needed permute. */ inside_cost = ncopies * exact_log2(group_size) * group_size * vect_get_stmt_cost (vector_stmt); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .", group_size); } /* Costs of the stores. */ vect_get_store_cost (first_dr, ncopies, &inside_cost); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, " "outside_cost = %d .", inside_cost, outside_cost); /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */ stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost); stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost); } /* Calculate cost of DR's memory access. */ void vect_get_store_cost (struct data_reference *dr, int ncopies, unsigned int *inside_cost) { int alignment_support_scheme = vect_supportable_dr_alignment (dr, false); switch (alignment_support_scheme) { case dr_aligned: { *inside_cost += ncopies * vect_get_stmt_cost (vector_store); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_store_cost: aligned."); break; } case dr_unaligned_supported: { gimple stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); /* Here, we assign an additional cost for the unaligned store. */ *inside_cost += ncopies * targetm.vectorize.builtin_vectorization_cost (unaligned_store, vectype, DR_MISALIGNMENT (dr)); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_store_cost: unaligned supported by " "hardware."); break; } default: gcc_unreachable (); } } /* Function vect_model_load_cost Models cost for loads. In the case of strided accesses, the last access has the overhead of the strided access attributed to it. Since unaligned accesses are supported for loads, we also account for the costs of the access scheme chosen. */ void vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, slp_tree slp_node) { int group_size; gimple first_stmt; struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr; unsigned int inside_cost = 0, outside_cost = 0; /* The SLP costs were already calculated during SLP tree build. */ if (PURE_SLP_STMT (stmt_info)) return; /* Strided accesses? */ first_stmt = DR_GROUP_FIRST_DR (stmt_info); if (first_stmt && !slp_node) { group_size = vect_cost_strided_group_size (stmt_info); first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); } /* Not a strided access. */ else { group_size = 1; first_dr = dr; } /* Is this an access in a group of loads providing strided access? If so, add in the cost of the permutes. */ if (group_size > 1) { /* Uses an even and odd extract operations for each needed permute. */ inside_cost = ncopies * exact_log2(group_size) * group_size * vect_get_stmt_cost (vector_stmt); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .", group_size); } /* The loads themselves. */ vect_get_load_cost (first_dr, ncopies, ((!DR_GROUP_FIRST_DR (stmt_info)) || group_size > 1 || slp_node), &inside_cost, &outside_cost); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, " "outside_cost = %d .", inside_cost, outside_cost); /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */ stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost); stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost); } /* Calculate cost of DR's memory access. */ void vect_get_load_cost (struct data_reference *dr, int ncopies, bool add_realign_cost, unsigned int *inside_cost, unsigned int *outside_cost) { int alignment_support_scheme = vect_supportable_dr_alignment (dr, false); switch (alignment_support_scheme) { case dr_aligned: { *inside_cost += ncopies * vect_get_stmt_cost (vector_load); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_load_cost: aligned."); break; } case dr_unaligned_supported: { gimple stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); /* Here, we assign an additional cost for the unaligned load. */ *inside_cost += ncopies * targetm.vectorize.builtin_vectorization_cost (unaligned_load, vectype, DR_MISALIGNMENT (dr)); if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_load_cost: unaligned supported by " "hardware."); break; } case dr_explicit_realign: { *inside_cost += ncopies * (2 * vect_get_stmt_cost (vector_load) + vect_get_stmt_cost (vector_stmt)); /* FIXME: If the misalignment remains fixed across the iterations of the containing loop, the following cost should be added to the outside costs. */ if (targetm.vectorize.builtin_mask_for_load) *inside_cost += vect_get_stmt_cost (vector_stmt); break; } case dr_explicit_realign_optimized: { if (vect_print_dump_info (REPORT_COST)) fprintf (vect_dump, "vect_model_load_cost: unaligned software " "pipelined."); /* Unaligned software pipeline has a load of an address, an initial load, and possibly a mask operation to "prime" the loop. However, if this is an access in a group of loads, which provide strided access, then the above cost should only be considered for one access in the group. Inside the loop, there is a load op and a realignment op. */ if (add_realign_cost) { *outside_cost = 2 * vect_get_stmt_cost (vector_stmt); if (targetm.vectorize.builtin_mask_for_load) *outside_cost += vect_get_stmt_cost (vector_stmt); } *inside_cost += ncopies * (vect_get_stmt_cost (vector_load) + vect_get_stmt_cost (vector_stmt)); break; } default: gcc_unreachable (); } } /* Function vect_init_vector. Insert a new stmt (INIT_STMT) that initializes a new vector variable with the vector elements of VECTOR_VAR. Place the initialization at BSI if it is not NULL. Otherwise, place the initialization at the loop preheader. Return the DEF of INIT_STMT. It will be used in the vectorization of STMT. */ tree vect_init_vector (gimple stmt, tree vector_var, tree vector_type, gimple_stmt_iterator *gsi) { stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); tree new_var; gimple init_stmt; tree vec_oprnd; edge pe; tree new_temp; basic_block new_bb; new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_"); add_referenced_var (new_var); init_stmt = gimple_build_assign (new_var, vector_var); new_temp = make_ssa_name (new_var, init_stmt); gimple_assign_set_lhs (init_stmt, new_temp); if (gsi) vect_finish_stmt_generation (stmt, init_stmt, gsi); else { loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo); if (loop_vinfo) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); if (nested_in_vect_loop_p (loop, stmt)) loop = loop->inner; pe = loop_preheader_edge (loop); new_bb = gsi_insert_on_edge_immediate (pe, init_stmt); gcc_assert (!new_bb); } else { bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo); basic_block bb; gimple_stmt_iterator gsi_bb_start; gcc_assert (bb_vinfo); bb = BB_VINFO_BB (bb_vinfo); gsi_bb_start = gsi_after_labels (bb); gsi_insert_before (&gsi_bb_start, init_stmt, GSI_SAME_STMT); } } if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "created new init_stmt: "); print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM); } vec_oprnd = gimple_assign_lhs (init_stmt); return vec_oprnd; } /* Function vect_get_vec_def_for_operand. OP is an operand in STMT. This function returns a (vector) def that will be used in the vectorized stmt for STMT. In the case that OP is an SSA_NAME which is defined in the loop, then STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def. In case OP is an invariant or constant, a new stmt that creates a vector def needs to be introduced. */ tree vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def) { tree vec_oprnd; gimple vec_stmt; gimple def_stmt; stmt_vec_info def_stmt_info = NULL; stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo); tree vec_inv; tree vec_cst; tree t = NULL_TREE; tree def; int i; enum vect_def_type dt; bool is_simple_use; tree vector_type; if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "vect_get_vec_def_for_operand: "); print_generic_expr (vect_dump, op, TDF_SLIM); } is_simple_use = vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt); gcc_assert (is_simple_use); if (vect_print_dump_info (REPORT_DETAILS)) { if (def) { fprintf (vect_dump, "def = "); print_generic_expr (vect_dump, def, TDF_SLIM); } if (def_stmt) { fprintf (vect_dump, " def_stmt = "); print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM); } } switch (dt) { /* Case 1: operand is a constant. */ case vect_constant_def: { vector_type = get_vectype_for_scalar_type (TREE_TYPE (op)); gcc_assert (vector_type); if (scalar_def) *scalar_def = op; /* Create 'vect_cst_ = {cst,cst,...,cst}' */ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits); for (i = nunits - 1; i >= 0; --i) { t = tree_cons (NULL_TREE, op, t); } vec_cst = build_vector (vector_type, t); return vect_init_vector (stmt, vec_cst, vector_type, NULL); } /* Case 2: operand is defined outside the loop - loop invariant. */ case vect_external_def: { vector_type = get_vectype_for_scalar_type (TREE_TYPE (def)); gcc_assert (vector_type); nunits = TYPE_VECTOR_SUBPARTS (vector_type); if (scalar_def) *scalar_def = def; /* Create 'vec_inv = {inv,inv,..,inv}' */ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "Create vector_inv."); for (i = nunits - 1; i >= 0; --i) { t = tree_cons (NULL_TREE, def, t); } /* FIXME: use build_constructor directly. */ vec_inv = build_constructor_from_list (vector_type, t); return vect_init_vector (stmt, vec_inv, vector_type, NULL); } /* Case 3: operand is defined inside the loop. */ case vect_internal_def: { if (scalar_def) *scalar_def = NULL/* FIXME tuples: def_stmt*/; /* Get the def from the vectorized stmt. */ def_stmt_info = vinfo_for_stmt (def_stmt); vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info); gcc_assert (vec_stmt); if (gimple_code (vec_stmt) == GIMPLE_PHI) vec_oprnd = PHI_RESULT (vec_stmt); else if (is_gimple_call (vec_stmt)) vec_oprnd = gimple_call_lhs (vec_stmt); else vec_oprnd = gimple_assign_lhs (vec_stmt); return vec_oprnd; } /* Case 4: operand is defined by a loop header phi - reduction */ case vect_reduction_def: case vect_double_reduction_def: case vect_nested_cycle: { struct loop *loop; gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI); loop = (gimple_bb (def_stmt))->loop_father; /* Get the def before the loop */ op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop)); return get_initial_def_for_reduction (stmt, op, scalar_def); } /* Case 5: operand is defined by loop-header phi - induction. */ case vect_induction_def: { gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI); /* Get the def from the vectorized stmt. */ def_stmt_info = vinfo_for_stmt (def_stmt); vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info); gcc_assert (vec_stmt && gimple_code (vec_stmt) == GIMPLE_PHI); vec_oprnd = PHI_RESULT (vec_stmt); return vec_oprnd; } default: gcc_unreachable (); } } /* Function vect_get_vec_def_for_stmt_copy Return a vector-def for an operand. This function is used when the vectorized stmt to be created (by the caller to this function) is a "copy" created in case the vectorized result cannot fit in one vector, and several copies of the vector-stmt are required. In this case the vector-def is retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND. DT is the type of the vector def VEC_OPRND. Context: In case the vectorization factor (VF) is bigger than the number of elements that can fit in a vectype (nunits), we have to generate more than one vector stmt to vectorize the scalar stmt. This situation arises when there are multiple data-types operated upon in the loop; the smallest data-type determines the VF, and as a result, when vectorizing stmts operating on wider types we need to create 'VF/nunits' "copies" of the vector stmt (each computing a vector of 'nunits' results, and together computing 'VF' results in each iteration). This function is called when vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in which VF=16 and nunits=4, so the number of copies required is 4): scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT S1: x = load VS1.0: vx.0 = memref0 VS1.1 VS1.1: vx.1 = memref1 VS1.2 VS1.2: vx.2 = memref2 VS1.3 VS1.3: vx.3 = memref3 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1 VSnew.1: vz1 = vx.1 + ... VSnew.2 VSnew.2: vz2 = vx.2 + ... VSnew.3 VSnew.3: vz3 = vx.3 + ... The vectorization of S1 is explained in vectorizable_load. The vectorization of S2: To create the first vector-stmt out of the 4 copies - VSnew.0 - the function 'vect_get_vec_def_for_operand' is called to get the relevant vector-def for each operand of S2. For operand x it returns the vector-def 'vx.0'. To create the remaining copies of the vector-stmt (VSnew.j), this function is called to get the relevant vector-def for each operand. It is obtained from the respective VS1.j stmt, which is recorded in the STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND. For example, to obtain the vector-def 'vx.1' in order to create the vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'. Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1', and return its def ('vx.1'). Overall, to create the above sequence this function will be called 3 times: vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0); vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1); vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */ tree vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd) { gimple vec_stmt_for_operand; stmt_vec_info def_stmt_info; /* Do nothing; can reuse same def. */ if (dt == vect_external_def || dt == vect_constant_def ) return vec_oprnd; vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd); def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand); gcc_assert (def_stmt_info); vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info); gcc_assert (vec_stmt_for_operand); vec_oprnd = gimple_get_lhs (vec_stmt_for_operand); if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI) vec_oprnd = PHI_RESULT (vec_stmt_for_operand); else vec_oprnd = gimple_get_lhs (vec_stmt_for_operand); return vec_oprnd; } /* Get vectorized definitions for the operands to create a copy of an original stmt. See vect_get_vec_def_for_stmt_copy () for details. */ static void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt, VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1) { tree vec_oprnd = VEC_pop (tree, *vec_oprnds0); vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd); VEC_quick_push (tree, *vec_oprnds0, vec_oprnd); if (vec_oprnds1 && *vec_oprnds1) { vec_oprnd = VEC_pop (tree, *vec_oprnds1); vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd); VEC_quick_push (tree, *vec_oprnds1, vec_oprnd); } } /* Get vectorized definitions for OP0 and OP1, or SLP_NODE if it is not NULL. */ static void vect_get_vec_defs (tree op0, tree op1, gimple stmt, VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1, slp_tree slp_node) { if (slp_node) vect_get_slp_defs (slp_node, vec_oprnds0, vec_oprnds1, -1); else { tree vec_oprnd; *vec_oprnds0 = VEC_alloc (tree, heap, 1); vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL); VEC_quick_push (tree, *vec_oprnds0, vec_oprnd); if (op1) { *vec_oprnds1 = VEC_alloc (tree, heap, 1); vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL); VEC_quick_push (tree, *vec_oprnds1, vec_oprnd); } } } /* Function vect_finish_stmt_generation. Insert a new stmt. */ void vect_finish_stmt_generation (gimple stmt, gimple vec_stmt, gimple_stmt_iterator *gsi) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); gcc_assert (gimple_code (stmt) != GIMPLE_LABEL); gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT); set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo, bb_vinfo)); if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "add new stmt: "); print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM); } gimple_set_location (vec_stmt, gimple_location (gsi_stmt (*gsi))); } /* Checks if CALL can be vectorized in type VECTYPE. Returns a function declaration if the target has a vectorized version of the function, or NULL_TREE if the function cannot be vectorized. */ tree vectorizable_function (gimple call, tree vectype_out, tree vectype_in) { tree fndecl = gimple_call_fndecl (call); /* We only handle functions that do not read or clobber memory -- i.e. const or novops ones. */ if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS))) return NULL_TREE; if (!fndecl || TREE_CODE (fndecl) != FUNCTION_DECL || !DECL_BUILT_IN (fndecl)) return NULL_TREE; return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out, vectype_in); } /* Function vectorizable_call. Check if STMT performs a function call that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt) { tree vec_dest; tree scalar_dest; tree op, type; tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE; stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info; tree vectype_out, vectype_in; int nunits_in; int nunits_out; loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); tree fndecl, new_temp, def, rhs_type; gimple def_stmt; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; gimple new_stmt = NULL; int ncopies, j; VEC(tree, heap) *vargs = NULL; enum { NARROW, NONE, WIDEN } modifier; size_t i, nargs; /* FORNOW: unsupported in basic block SLP. */ gcc_assert (loop_vinfo); if (!STMT_VINFO_RELEVANT_P (stmt_info)) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; /* FORNOW: SLP not supported. */ if (STMT_SLP_TYPE (stmt_info)) return false; /* Is STMT a vectorizable call? */ if (!is_gimple_call (stmt)) return false; if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME) return false; if (stmt_could_throw_p (stmt)) return false; vectype_out = STMT_VINFO_VECTYPE (stmt_info); /* Process function arguments. */ rhs_type = NULL_TREE; vectype_in = NULL_TREE; nargs = gimple_call_num_args (stmt); /* Bail out if the function has more than two arguments, we do not have interesting builtin functions to vectorize with more than two arguments. No arguments is also not good. */ if (nargs == 0 || nargs > 2) return false; for (i = 0; i < nargs; i++) { tree opvectype; op = gimple_call_arg (stmt, i); /* We can only handle calls with arguments of the same type. */ if (rhs_type && !types_compatible_p (rhs_type, TREE_TYPE (op))) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "argument types differ."); return false; } if (!rhs_type) rhs_type = TREE_TYPE (op); if (!vect_is_simple_use_1 (op, loop_vinfo, NULL, &def_stmt, &def, &dt[i], &opvectype)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } if (!vectype_in) vectype_in = opvectype; else if (opvectype && opvectype != vectype_in) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "argument vector types differ."); return false; } } /* If all arguments are external or constant defs use a vector type with the same size as the output vector type. */ if (!vectype_in) vectype_in = get_same_sized_vectype (rhs_type, vectype_out); if (vec_stmt) gcc_assert (vectype_in); if (!vectype_in) { if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "no vectype for scalar type "); print_generic_expr (vect_dump, rhs_type, TDF_SLIM); } return false; } /* FORNOW */ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); if (nunits_in == nunits_out / 2) modifier = NARROW; else if (nunits_out == nunits_in) modifier = NONE; else if (nunits_out == nunits_in / 2) modifier = WIDEN; else return false; /* For now, we only vectorize functions if a target specific builtin is available. TODO -- in some cases, it might be profitable to insert the calls for pieces of the vector, in order to be able to vectorize other operations in the loop. */ fndecl = vectorizable_function (stmt, vectype_out, vectype_in); if (fndecl == NULL_TREE) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "function is not vectorizable."); return false; } gcc_assert (!gimple_vuse (stmt)); if (modifier == NARROW) ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in; /* Sanity check: make sure that at least one copy of the vectorized stmt needs to be generated. */ gcc_assert (ncopies >= 1); if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = call_vec_info_type; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "=== vectorizable_call ==="); vect_model_simple_cost (stmt_info, ncopies, dt, NULL); return true; } /** Transform. **/ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform operation."); /* Handle def. */ scalar_dest = gimple_call_lhs (stmt); vec_dest = vect_create_destination_var (scalar_dest, vectype_out); prev_stmt_info = NULL; switch (modifier) { case NONE: for (j = 0; j < ncopies; ++j) { /* Build argument list for the vectorized call. */ if (j == 0) vargs = VEC_alloc (tree, heap, nargs); else VEC_truncate (tree, vargs, 0); for (i = 0; i < nargs; i++) { op = gimple_call_arg (stmt, i); if (j == 0) vec_oprnd0 = vect_get_vec_def_for_operand (op, stmt, NULL); else { vec_oprnd0 = gimple_call_arg (new_stmt, i); vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0); } VEC_quick_push (tree, vargs, vec_oprnd0); } new_stmt = gimple_build_call_vec (fndecl, vargs); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_call_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); mark_symbols_for_renaming (new_stmt); if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } break; case NARROW: for (j = 0; j < ncopies; ++j) { /* Build argument list for the vectorized call. */ if (j == 0) vargs = VEC_alloc (tree, heap, nargs * 2); else VEC_truncate (tree, vargs, 0); for (i = 0; i < nargs; i++) { op = gimple_call_arg (stmt, i); if (j == 0) { vec_oprnd0 = vect_get_vec_def_for_operand (op, stmt, NULL); vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0); } else { vec_oprnd1 = gimple_call_arg (new_stmt, 2*i); vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1); vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0); } VEC_quick_push (tree, vargs, vec_oprnd0); VEC_quick_push (tree, vargs, vec_oprnd1); } new_stmt = gimple_build_call_vec (fndecl, vargs); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_call_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); mark_symbols_for_renaming (new_stmt); if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); break; case WIDEN: /* No current target implements this case. */ return false; } VEC_free (tree, heap, vargs); /* Update the exception handling table with the vector stmt if necessary. */ if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt)) gimple_purge_dead_eh_edges (gimple_bb (stmt)); /* The call in STMT might prevent it from being removed in dce. We however cannot remove it here, due to the way the ssa name it defines is mapped to the new definition. So just replace rhs of the statement with something harmless. */ type = TREE_TYPE (scalar_dest); new_stmt = gimple_build_assign (gimple_call_lhs (stmt), fold_convert (type, integer_zero_node)); set_vinfo_for_stmt (new_stmt, stmt_info); set_vinfo_for_stmt (stmt, NULL); STMT_VINFO_STMT (stmt_info) = new_stmt; gsi_replace (gsi, new_stmt, false); SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt; return true; } /* Function vect_gen_widened_results_half Create a vector stmt whose code, type, number of arguments, and result variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI. In the case that CODE is a CALL_EXPR, this means that a call to DECL needs to be created (DECL is a function-decl of a target-builtin). STMT is the original scalar stmt that we are vectorizing. */ static gimple vect_gen_widened_results_half (enum tree_code code, tree decl, tree vec_oprnd0, tree vec_oprnd1, int op_type, tree vec_dest, gimple_stmt_iterator *gsi, gimple stmt) { gimple new_stmt; tree new_temp; /* Generate half of the widened result: */ if (code == CALL_EXPR) { /* Target specific support */ if (op_type == binary_op) new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1); else new_stmt = gimple_build_call (decl, 1, vec_oprnd0); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_call_set_lhs (new_stmt, new_temp); } else { /* Generic support */ gcc_assert (op_type == TREE_CODE_LENGTH (code)); if (op_type != binary_op) vec_oprnd1 = NULL; new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0, vec_oprnd1); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); } vect_finish_stmt_generation (stmt, new_stmt, gsi); return new_stmt; } /* Check if STMT performs a conversion operation, that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, slp_tree slp_node) { tree vec_dest; tree scalar_dest; tree op0; tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK; tree decl1 = NULL_TREE, decl2 = NULL_TREE; tree new_temp; tree def; gimple def_stmt; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; gimple new_stmt = NULL; stmt_vec_info prev_stmt_info; int nunits_in; int nunits_out; tree vectype_out, vectype_in; int ncopies, j; tree rhs_type; tree builtin_decl; enum { NARROW, NONE, WIDEN } modifier; int i; VEC(tree,heap) *vec_oprnds0 = NULL; tree vop0; VEC(tree,heap) *dummy = NULL; int dummy_int; /* Is STMT a vectorizable conversion? */ /* FORNOW: unsupported in basic block SLP. */ gcc_assert (loop_vinfo); if (!STMT_VINFO_RELEVANT_P (stmt_info)) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; if (!is_gimple_assign (stmt)) return false; if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR) return false; /* Check types of lhs and rhs. */ scalar_dest = gimple_assign_lhs (stmt); vectype_out = STMT_VINFO_VECTYPE (stmt_info); op0 = gimple_assign_rhs1 (stmt); rhs_type = TREE_TYPE (op0); /* Check the operands of the operation. */ if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0], &vectype_in)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } /* If op0 is an external or constant defs use a vector type of the same size as the output vector type. */ if (!vectype_in) vectype_in = get_same_sized_vectype (rhs_type, vectype_out); if (vec_stmt) gcc_assert (vectype_in); if (!vectype_in) { if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "no vectype for scalar type "); print_generic_expr (vect_dump, rhs_type, TDF_SLIM); } return false; } /* FORNOW */ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); if (nunits_in == nunits_out / 2) modifier = NARROW; else if (nunits_out == nunits_in) modifier = NONE; else if (nunits_out == nunits_in / 2) modifier = WIDEN; else return false; if (modifier == NARROW) ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; /* Sanity check: make sure that at least one copy of the vectorized stmt needs to be generated. */ gcc_assert (ncopies >= 1); /* Supportable by target? */ if ((modifier == NONE && !targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in)) || (modifier == WIDEN && !supportable_widening_operation (code, stmt, vectype_out, vectype_in, &decl1, &decl2, &code1, &code2, &dummy_int, &dummy)) || (modifier == NARROW && !supportable_narrowing_operation (code, vectype_out, vectype_in, &code1, &dummy_int, &dummy))) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "conversion not supported by target."); return false; } if (modifier != NONE) { /* FORNOW: SLP not supported. */ if (STMT_SLP_TYPE (stmt_info)) return false; } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type; return true; } /** Transform. **/ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform conversion."); /* Handle def. */ vec_dest = vect_create_destination_var (scalar_dest, vectype_out); if (modifier == NONE && !slp_node) vec_oprnds0 = VEC_alloc (tree, heap, 1); prev_stmt_info = NULL; switch (modifier) { case NONE: for (j = 0; j < ncopies; j++) { if (j == 0) vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node); else vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL); builtin_decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in); FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0) { /* Arguments are ready. create the new vector stmt. */ new_stmt = gimple_build_call (builtin_decl, 1, vop0); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_call_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); if (slp_node) VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt); } if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } break; case WIDEN: /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. */ for (j = 0; j < ncopies; j++) { if (j == 0) vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL); else vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0); /* Generate first half of the widened result: */ new_stmt = vect_gen_widened_results_half (code1, decl1, vec_oprnd0, vec_oprnd1, unary_op, vec_dest, gsi, stmt); if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); /* Generate second half of the widened result: */ new_stmt = vect_gen_widened_results_half (code2, decl2, vec_oprnd0, vec_oprnd1, unary_op, vec_dest, gsi, stmt); STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } break; case NARROW: /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. */ for (j = 0; j < ncopies; j++) { /* Handle uses. */ if (j == 0) { vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL); vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0); } else { vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1); vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0); } /* Arguments are ready. Create the new vector stmt. */ new_stmt = gimple_build_assign_with_ops (code1, vec_dest, vec_oprnd0, vec_oprnd1); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); } if (vec_oprnds0) VEC_free (tree, heap, vec_oprnds0); return true; } /* Function vectorizable_assignment. Check if STMT performs an assignment (copy) that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, slp_tree slp_node) { tree vec_dest; tree scalar_dest; tree op; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); tree new_temp; tree def; gimple def_stmt; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype); int ncopies; int i, j; VEC(tree,heap) *vec_oprnds = NULL; tree vop; bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); gimple new_stmt = NULL; stmt_vec_info prev_stmt_info = NULL; enum tree_code code; tree vectype_in; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits; gcc_assert (ncopies >= 1); if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; /* Is vectorizable assignment? */ if (!is_gimple_assign (stmt)) return false; scalar_dest = gimple_assign_lhs (stmt); if (TREE_CODE (scalar_dest) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); if (gimple_assign_single_p (stmt) || code == PAREN_EXPR || CONVERT_EXPR_CODE_P (code)) op = gimple_assign_rhs1 (stmt); else return false; if (!vect_is_simple_use_1 (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[0], &vectype_in)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } /* We can handle NOP_EXPR conversions that do not change the number of elements or the vector size. */ if (CONVERT_EXPR_CODE_P (code) && (!vectype_in || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits || (GET_MODE_SIZE (TYPE_MODE (vectype)) != GET_MODE_SIZE (TYPE_MODE (vectype_in))))) return false; if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "=== vectorizable_assignment ==="); vect_model_simple_cost (stmt_info, ncopies, dt, NULL); return true; } /** Transform. **/ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform assignment."); /* Handle def. */ vec_dest = vect_create_destination_var (scalar_dest, vectype); /* Handle use. */ for (j = 0; j < ncopies; j++) { /* Handle uses. */ if (j == 0) vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node); else vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL); /* Arguments are ready. create the new vector stmt. */ FOR_EACH_VEC_ELT (tree, vec_oprnds, i, vop) { if (CONVERT_EXPR_CODE_P (code)) vop = build1 (VIEW_CONVERT_EXPR, vectype, vop); new_stmt = gimple_build_assign (vec_dest, vop); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); if (slp_node) VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt); } if (slp_node) continue; if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } VEC_free (tree, heap, vec_oprnds); return true; } /* Function vectorizable_operation. Check if STMT performs a binary or unary operation that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, slp_tree slp_node) { tree vec_dest; tree scalar_dest; tree op0, op1 = NULL; tree vec_oprnd1 = NULL_TREE; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype; loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); enum tree_code code; enum machine_mode vec_mode; tree new_temp; int op_type; optab optab; int icode; enum machine_mode optab_op2_mode; tree def; gimple def_stmt; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; gimple new_stmt = NULL; stmt_vec_info prev_stmt_info; int nunits_in; int nunits_out; tree vectype_out; int ncopies; int j, i; VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL; tree vop0, vop1; unsigned int k; bool scalar_shift_arg = false; bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); int vf; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; /* Is STMT a vectorizable binary/unary operation? */ if (!is_gimple_assign (stmt)) return false; if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); /* For pointer addition, we should use the normal plus for the vector addition. */ if (code == POINTER_PLUS_EXPR) code = PLUS_EXPR; /* Support only unary or binary operations. */ op_type = TREE_CODE_LENGTH (code); if (op_type != unary_op && op_type != binary_op) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type); return false; } scalar_dest = gimple_assign_lhs (stmt); vectype_out = STMT_VINFO_VECTYPE (stmt_info); op0 = gimple_assign_rhs1 (stmt); if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[0], &vectype)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } /* If op0 is an external or constant def use a vector type with the same size as the output vector type. */ if (!vectype) vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out); if (vec_stmt) gcc_assert (vectype); if (!vectype) { if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "no vectype for scalar type "); print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM); } return false; } nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); nunits_in = TYPE_VECTOR_SUBPARTS (vectype); if (nunits_out != nunits_in) return false; if (op_type == binary_op) { op1 = gimple_assign_rhs2 (stmt); if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[1])) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } } if (loop_vinfo) vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); else vf = 1; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in; gcc_assert (ncopies >= 1); /* If this is a shift/rotate, determine whether the shift amount is a vector, or scalar. If the shift/rotate amount is a vector, use the vector/vector shift optabs. */ if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR || code == RROTATE_EXPR) { /* vector shifted by vector */ if (dt[1] == vect_internal_def) { optab = optab_for_tree_code (code, vectype, optab_vector); if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "vector/vector shift/rotate found."); } /* See if the machine has a vector shifted by scalar insn and if not then see if it has a vector shifted by vector insn */ else if (dt[1] == vect_constant_def || dt[1] == vect_external_def) { optab = optab_for_tree_code (code, vectype, optab_scalar); if (optab && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing) { scalar_shift_arg = true; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "vector/scalar shift/rotate found."); } else { optab = optab_for_tree_code (code, vectype, optab_vector); if (optab && (optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "vector/vector shift/rotate found."); /* Unlike the other binary operators, shifts/rotates have the rhs being int, instead of the same type as the lhs, so make sure the scalar is the right type if we are dealing with vectors of short/char. */ if (dt[1] == vect_constant_def) op1 = fold_convert (TREE_TYPE (vectype), op1); } } } else { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "operand mode requires invariant argument."); return false; } } else optab = optab_for_tree_code (code, vectype, optab_default); /* Supportable by target? */ if (!optab) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "no optab."); return false; } vec_mode = TYPE_MODE (vectype); icode = (int) optab_handler (optab, vec_mode); if (icode == CODE_FOR_nothing) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "op not supported by target."); /* Check only during analysis. */ if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD || (vf < vect_min_worthwhile_factor (code) && !vec_stmt)) return false; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "proceeding using word mode."); } /* Worthwhile without SIMD support? Check only during analysis. */ if (!VECTOR_MODE_P (TYPE_MODE (vectype)) && vf < vect_min_worthwhile_factor (code) && !vec_stmt) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "not worthwhile without SIMD support."); return false; } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = op_vec_info_type; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "=== vectorizable_operation ==="); vect_model_simple_cost (stmt_info, ncopies, dt, NULL); return true; } /** Transform. **/ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform binary/unary operation."); /* Handle def. */ vec_dest = vect_create_destination_var (scalar_dest, vectype); /* Allocate VECs for vector operands. In case of SLP, vector operands are created in the previous stages of the recursion, so no allocation is needed, except for the case of shift with scalar shift argument. In that case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE. In case of loop-based vectorization we allocate VECs of size 1. We allocate VEC_OPRNDS1 only in case of binary operation. */ if (!slp_node) { vec_oprnds0 = VEC_alloc (tree, heap, 1); if (op_type == binary_op) vec_oprnds1 = VEC_alloc (tree, heap, 1); } else if (scalar_shift_arg) vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size); /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. In doing so, we record a pointer from one copy of the vector stmt to the next, in the field STMT_VINFO_RELATED_STMT. This is necessary in order to allow following stages to find the correct vector defs to be used when vectorizing stmts that use the defs of the current stmt. The example below illustrates the vectorization process when VF=16 and nunits=4 (i.e., we need to create 4 vectorized stmts): before vectorization: RELATED_STMT VEC_STMT S1: x = memref - - S2: z = x + 1 - - step 1: vectorize stmt S1 (done in vectorizable_load. See more details there): RELATED_STMT VEC_STMT VS1_0: vx0 = memref0 VS1_1 - VS1_1: vx1 = memref1 VS1_2 - VS1_2: vx2 = memref2 VS1_3 - VS1_3: vx3 = memref3 - - S1: x = load - VS1_0 S2: z = x + 1 - - step2: vectorize stmt S2 (done here): To vectorize stmt S2 we first need to find the relevant vector def for the first operand 'x'. This is, as usual, obtained from the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt that defines 'x' (S1). This way we find the stmt VS1_0, and the relevant vector def 'vx0'. Having found 'vx0' we can generate the vector stmt VS2_0, and as usual, record it in the STMT_VINFO_VEC_STMT of stmt S2. When creating the second copy (VS2_1), we obtain the relevant vector def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of stmt VS1_0. This way we find the stmt VS1_1 and the relevant vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0. Similarly when creating stmts VS2_2 and VS2_3. This is the resulting chain of stmts and pointers: RELATED_STMT VEC_STMT VS1_0: vx0 = memref0 VS1_1 - VS1_1: vx1 = memref1 VS1_2 - VS1_2: vx2 = memref2 VS1_3 - VS1_3: vx3 = memref3 - - S1: x = load - VS1_0 VS2_0: vz0 = vx0 + v1 VS2_1 - VS2_1: vz1 = vx1 + v1 VS2_2 - VS2_2: vz2 = vx2 + v1 VS2_3 - VS2_3: vz3 = vx3 + v1 - - S2: z = x + 1 - VS2_0 */ prev_stmt_info = NULL; for (j = 0; j < ncopies; j++) { /* Handle uses. */ if (j == 0) { if (op_type == binary_op && scalar_shift_arg) { /* Vector shl and shr insn patterns can be defined with scalar operand 2 (shift operand). In this case, use constant or loop invariant op1 directly, without extending it to vector mode first. */ optab_op2_mode = insn_data[icode].operand[2].mode; if (!VECTOR_MODE_P (optab_op2_mode)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "operand 1 using scalar mode."); vec_oprnd1 = op1; VEC_quick_push (tree, vec_oprnds1, vec_oprnd1); if (slp_node) { /* Store vec_oprnd1 for every vector stmt to be created for SLP_NODE. We check during the analysis that all the shift arguments are the same. TODO: Allow different constants for different vector stmts generated for an SLP instance. */ for (k = 0; k < slp_node->vec_stmts_size - 1; k++) VEC_quick_push (tree, vec_oprnds1, vec_oprnd1); } } } /* vec_oprnd1 is available if operand 1 should be of a scalar-type (a special case for certain kind of vector shifts); otherwise, operand 1 should be of a vector type (the usual case). */ if (op_type == binary_op && !vec_oprnd1) vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1, slp_node); else vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL, slp_node); } else vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1); /* Arguments are ready. Create the new vector stmt. */ FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0) { vop1 = ((op_type == binary_op) ? VEC_index (tree, vec_oprnds1, i) : NULL); new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); if (slp_node) VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt); } if (slp_node) continue; if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } VEC_free (tree, heap, vec_oprnds0); if (vec_oprnds1) VEC_free (tree, heap, vec_oprnds1); return true; } /* Get vectorized definitions for loop-based vectorization. For the first operand we call vect_get_vec_def_for_operand() (with OPRND containing scalar operand), and for the rest we get a copy with vect_get_vec_def_for_stmt_copy() using the previous vector definition (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details. The vectors are collected into VEC_OPRNDS. */ static void vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt, VEC (tree, heap) **vec_oprnds, int multi_step_cvt) { tree vec_oprnd; /* Get first vector operand. */ /* All the vector operands except the very first one (that is scalar oprnd) are stmt copies. */ if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE) vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL); else vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd); VEC_quick_push (tree, *vec_oprnds, vec_oprnd); /* Get second vector operand. */ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd); VEC_quick_push (tree, *vec_oprnds, vec_oprnd); *oprnd = vec_oprnd; /* For conversion in multiple steps, continue to get operands recursively. */ if (multi_step_cvt) vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1); } /* Create vectorized demotion statements for vector operands from VEC_OPRNDS. For multi-step conversions store the resulting vectors and call the function recursively. */ static void vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds, int multi_step_cvt, gimple stmt, VEC (tree, heap) *vec_dsts, gimple_stmt_iterator *gsi, slp_tree slp_node, enum tree_code code, stmt_vec_info *prev_stmt_info) { unsigned int i; tree vop0, vop1, new_tmp, vec_dest; gimple new_stmt; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); vec_dest = VEC_pop (tree, vec_dsts); for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2) { /* Create demotion operation. */ vop0 = VEC_index (tree, *vec_oprnds, i); vop1 = VEC_index (tree, *vec_oprnds, i + 1); new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1); new_tmp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_tmp); vect_finish_stmt_generation (stmt, new_stmt, gsi); if (multi_step_cvt) /* Store the resulting vector for next recursive call. */ VEC_replace (tree, *vec_oprnds, i/2, new_tmp); else { /* This is the last step of the conversion sequence. Store the vectors in SLP_NODE or in vector info of the scalar statement (or in STMT_VINFO_RELATED_STMT chain). */ if (slp_node) VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt); else { if (!*prev_stmt_info) STMT_VINFO_VEC_STMT (stmt_info) = new_stmt; else STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt; *prev_stmt_info = vinfo_for_stmt (new_stmt); } } } /* For multi-step demotion operations we first generate demotion operations from the source type to the intermediate types, and then combine the results (stored in VEC_OPRNDS) in demotion operation to the destination type. */ if (multi_step_cvt) { /* At each level of recursion we have have of the operands we had at the previous level. */ VEC_truncate (tree, *vec_oprnds, (i+1)/2); vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1, stmt, vec_dsts, gsi, slp_node, code, prev_stmt_info); } } /* Function vectorizable_type_demotion Check if STMT performs a binary or unary operation that involves type demotion, and if it can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, slp_tree slp_node) { tree vec_dest; tree scalar_dest; tree op0; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); enum tree_code code, code1 = ERROR_MARK; tree def; gimple def_stmt; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; stmt_vec_info prev_stmt_info; int nunits_in; int nunits_out; tree vectype_out; int ncopies; int j, i; tree vectype_in; int multi_step_cvt = 0; VEC (tree, heap) *vec_oprnds0 = NULL; VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL; tree last_oprnd, intermediate_type; /* FORNOW: not supported by basic block SLP vectorization. */ gcc_assert (loop_vinfo); if (!STMT_VINFO_RELEVANT_P (stmt_info)) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; /* Is STMT a vectorizable type-demotion operation? */ if (!is_gimple_assign (stmt)) return false; if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); if (!CONVERT_EXPR_CODE_P (code)) return false; scalar_dest = gimple_assign_lhs (stmt); vectype_out = STMT_VINFO_VECTYPE (stmt_info); /* Check the operands of the operation. */ op0 = gimple_assign_rhs1 (stmt); if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest)) && INTEGRAL_TYPE_P (TREE_TYPE (op0))) || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest)) && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0)) && CONVERT_EXPR_CODE_P (code)))) return false; if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0], &vectype_in)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } /* If op0 is an external def use a vector type with the same size as the output vector type if possible. */ if (!vectype_in) vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out); if (vec_stmt) gcc_assert (vectype_in); if (!vectype_in) { if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "no vectype for scalar type "); print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM); } return false; } nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); if (nunits_in >= nunits_out) return false; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out; gcc_assert (ncopies >= 1); /* Supportable by target? */ if (!supportable_narrowing_operation (code, vectype_out, vectype_in, &code1, &multi_step_cvt, &interm_types)) return false; if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "=== vectorizable_demotion ==="); vect_model_simple_cost (stmt_info, ncopies, dt, NULL); return true; } /** Transform. **/ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform type demotion operation. ncopies = %d.", ncopies); /* In case of multi-step demotion, we first generate demotion operations to the intermediate types, and then from that types to the final one. We create vector destinations for the intermediate type (TYPES) received from supportable_narrowing_operation, and store them in the correct order for future use in vect_create_vectorized_demotion_stmts(). */ if (multi_step_cvt) vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1); else vec_dsts = VEC_alloc (tree, heap, 1); vec_dest = vect_create_destination_var (scalar_dest, vectype_out); VEC_quick_push (tree, vec_dsts, vec_dest); if (multi_step_cvt) { for (i = VEC_length (tree, interm_types) - 1; VEC_iterate (tree, interm_types, i, intermediate_type); i--) { vec_dest = vect_create_destination_var (scalar_dest, intermediate_type); VEC_quick_push (tree, vec_dsts, vec_dest); } } /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. */ last_oprnd = op0; prev_stmt_info = NULL; for (j = 0; j < ncopies; j++) { /* Handle uses. */ if (slp_node) vect_get_slp_defs (slp_node, &vec_oprnds0, NULL, -1); else { VEC_free (tree, heap, vec_oprnds0); vec_oprnds0 = VEC_alloc (tree, heap, (multi_step_cvt ? vect_pow2 (multi_step_cvt) * 2 : 2)); vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0, vect_pow2 (multi_step_cvt) - 1); } /* Arguments are ready. Create the new vector stmts. */ tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts); vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt, stmt, tmp_vec_dsts, gsi, slp_node, code1, &prev_stmt_info); } VEC_free (tree, heap, vec_oprnds0); VEC_free (tree, heap, vec_dsts); VEC_free (tree, heap, tmp_vec_dsts); VEC_free (tree, heap, interm_types); *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); return true; } /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store the resulting vectors and call the function recursively. */ static void vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0, VEC (tree, heap) **vec_oprnds1, int multi_step_cvt, gimple stmt, VEC (tree, heap) *vec_dsts, gimple_stmt_iterator *gsi, slp_tree slp_node, enum tree_code code1, enum tree_code code2, tree decl1, tree decl2, int op_type, stmt_vec_info *prev_stmt_info) { int i; tree vop0, vop1, new_tmp1, new_tmp2, vec_dest; gimple new_stmt1, new_stmt2; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); VEC (tree, heap) *vec_tmp; vec_dest = VEC_pop (tree, vec_dsts); vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2); FOR_EACH_VEC_ELT (tree, *vec_oprnds0, i, vop0) { if (op_type == binary_op) vop1 = VEC_index (tree, *vec_oprnds1, i); else vop1 = NULL_TREE; /* Generate the two halves of promotion operation. */ new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1, op_type, vec_dest, gsi, stmt); new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1, op_type, vec_dest, gsi, stmt); if (is_gimple_call (new_stmt1)) { new_tmp1 = gimple_call_lhs (new_stmt1); new_tmp2 = gimple_call_lhs (new_stmt2); } else { new_tmp1 = gimple_assign_lhs (new_stmt1); new_tmp2 = gimple_assign_lhs (new_stmt2); } if (multi_step_cvt) { /* Store the results for the recursive call. */ VEC_quick_push (tree, vec_tmp, new_tmp1); VEC_quick_push (tree, vec_tmp, new_tmp2); } else { /* Last step of promotion sequience - store the results. */ if (slp_node) { VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt1); VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt2); } else { if (!*prev_stmt_info) STMT_VINFO_VEC_STMT (stmt_info) = new_stmt1; else STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt1; *prev_stmt_info = vinfo_for_stmt (new_stmt1); STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt2; *prev_stmt_info = vinfo_for_stmt (new_stmt2); } } } if (multi_step_cvt) { /* For multi-step promotion operation we first generate we call the function recurcively for every stage. We start from the input type, create promotion operations to the intermediate types, and then create promotions to the output type. */ *vec_oprnds0 = VEC_copy (tree, heap, vec_tmp); vect_create_vectorized_promotion_stmts (vec_oprnds0, vec_oprnds1, multi_step_cvt - 1, stmt, vec_dsts, gsi, slp_node, code1, code2, decl2, decl2, op_type, prev_stmt_info); } VEC_free (tree, heap, vec_tmp); } /* Function vectorizable_type_promotion Check if STMT performs a binary or unary operation that involves type promotion, and if it can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, slp_tree slp_node) { tree vec_dest; tree scalar_dest; tree op0, op1 = NULL; tree vec_oprnd0=NULL, vec_oprnd1=NULL; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK; tree decl1 = NULL_TREE, decl2 = NULL_TREE; int op_type; tree def; gimple def_stmt; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; stmt_vec_info prev_stmt_info; int nunits_in; int nunits_out; tree vectype_out; int ncopies; int j, i; tree vectype_in; tree intermediate_type = NULL_TREE; int multi_step_cvt = 0; VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL; VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL; /* FORNOW: not supported by basic block SLP vectorization. */ gcc_assert (loop_vinfo); if (!STMT_VINFO_RELEVANT_P (stmt_info)) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; /* Is STMT a vectorizable type-promotion operation? */ if (!is_gimple_assign (stmt)) return false; if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); if (!CONVERT_EXPR_CODE_P (code) && code != WIDEN_MULT_EXPR) return false; scalar_dest = gimple_assign_lhs (stmt); vectype_out = STMT_VINFO_VECTYPE (stmt_info); /* Check the operands of the operation. */ op0 = gimple_assign_rhs1 (stmt); if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest)) && INTEGRAL_TYPE_P (TREE_TYPE (op0))) || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest)) && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0)) && CONVERT_EXPR_CODE_P (code)))) return false; if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0], &vectype_in)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } /* If op0 is an external or constant def use a vector type with the same size as the output vector type. */ if (!vectype_in) vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out); if (vec_stmt) gcc_assert (vectype_in); if (!vectype_in) { if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "no vectype for scalar type "); print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM); } return false; } nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); if (nunits_in <= nunits_out) return false; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in; gcc_assert (ncopies >= 1); op_type = TREE_CODE_LENGTH (code); if (op_type == binary_op) { op1 = gimple_assign_rhs2 (stmt); if (!vect_is_simple_use (op1, loop_vinfo, NULL, &def_stmt, &def, &dt[1])) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } } /* Supportable by target? */ if (!supportable_widening_operation (code, stmt, vectype_out, vectype_in, &decl1, &decl2, &code1, &code2, &multi_step_cvt, &interm_types)) return false; /* Binary widening operation can only be supported directly by the architecture. */ gcc_assert (!(multi_step_cvt && op_type == binary_op)); if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "=== vectorizable_promotion ==="); vect_model_simple_cost (stmt_info, 2*ncopies, dt, NULL); return true; } /** Transform. **/ if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform type promotion operation. ncopies = %d.", ncopies); /* Handle def. */ /* In case of multi-step promotion, we first generate promotion operations to the intermediate types, and then from that types to the final one. We store vector destination in VEC_DSTS in the correct order for recursive creation of promotion operations in vect_create_vectorized_promotion_stmts(). Vector destinations are created according to TYPES recieved from supportable_widening_operation(). */ if (multi_step_cvt) vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1); else vec_dsts = VEC_alloc (tree, heap, 1); vec_dest = vect_create_destination_var (scalar_dest, vectype_out); VEC_quick_push (tree, vec_dsts, vec_dest); if (multi_step_cvt) { for (i = VEC_length (tree, interm_types) - 1; VEC_iterate (tree, interm_types, i, intermediate_type); i--) { vec_dest = vect_create_destination_var (scalar_dest, intermediate_type); VEC_quick_push (tree, vec_dsts, vec_dest); } } if (!slp_node) { vec_oprnds0 = VEC_alloc (tree, heap, (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1)); if (op_type == binary_op) vec_oprnds1 = VEC_alloc (tree, heap, 1); } /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. */ prev_stmt_info = NULL; for (j = 0; j < ncopies; j++) { /* Handle uses. */ if (j == 0) { if (slp_node) vect_get_slp_defs (slp_node, &vec_oprnds0, &vec_oprnds1, -1); else { vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL); VEC_quick_push (tree, vec_oprnds0, vec_oprnd0); if (op_type == binary_op) { vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL); VEC_quick_push (tree, vec_oprnds1, vec_oprnd1); } } } else { vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0); VEC_replace (tree, vec_oprnds0, 0, vec_oprnd0); if (op_type == binary_op) { vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1); VEC_replace (tree, vec_oprnds1, 0, vec_oprnd1); } } /* Arguments are ready. Create the new vector stmts. */ tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts); vect_create_vectorized_promotion_stmts (&vec_oprnds0, &vec_oprnds1, multi_step_cvt, stmt, tmp_vec_dsts, gsi, slp_node, code1, code2, decl1, decl2, op_type, &prev_stmt_info); } VEC_free (tree, heap, vec_dsts); VEC_free (tree, heap, tmp_vec_dsts); VEC_free (tree, heap, interm_types); VEC_free (tree, heap, vec_oprnds0); VEC_free (tree, heap, vec_oprnds1); *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); return true; } /* Function vectorizable_store. Check if STMT defines a non scalar data-ref (array/pointer/structure) that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, slp_tree slp_node) { tree scalar_dest; tree data_ref; tree op; tree vec_oprnd = NULL_TREE; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL; tree vectype = STMT_VINFO_VECTYPE (stmt_info); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); struct loop *loop = NULL; enum machine_mode vec_mode; tree dummy; enum dr_alignment_support alignment_support_scheme; tree def; gimple def_stmt; enum vect_def_type dt; stmt_vec_info prev_stmt_info = NULL; tree dataref_ptr = NULL_TREE; int nunits = TYPE_VECTOR_SUBPARTS (vectype); int ncopies; int j; gimple next_stmt, first_stmt = NULL; bool strided_store = false; unsigned int group_size, i; VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL; bool inv_p; VEC(tree,heap) *vec_oprnds = NULL; bool slp = (slp_node != NULL); unsigned int vec_num; bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); if (loop_vinfo) loop = LOOP_VINFO_LOOP (loop_vinfo); /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp) ncopies = 1; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits; gcc_assert (ncopies >= 1); /* FORNOW. This restriction should be relaxed. */ if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "multiple types in nested loop."); return false; } if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; /* Is vectorizable store? */ if (!is_gimple_assign (stmt)) return false; scalar_dest = gimple_assign_lhs (stmt); if (TREE_CODE (scalar_dest) != ARRAY_REF && TREE_CODE (scalar_dest) != INDIRECT_REF && TREE_CODE (scalar_dest) != COMPONENT_REF && TREE_CODE (scalar_dest) != IMAGPART_EXPR && TREE_CODE (scalar_dest) != REALPART_EXPR && TREE_CODE (scalar_dest) != MEM_REF) return false; gcc_assert (gimple_assign_single_p (stmt)); op = gimple_assign_rhs1 (stmt); if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } /* The scalar rhs type needs to be trivially convertible to the vector component type. This should always be the case. */ if (!useless_type_conversion_p (TREE_TYPE (vectype), TREE_TYPE (op))) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "??? operands of different types"); return false; } vec_mode = TYPE_MODE (vectype); /* FORNOW. In some cases can vectorize even if data-type not supported (e.g. - array initialization with 0). */ if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing) return false; if (!STMT_VINFO_DATA_REF (stmt_info)) return false; if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "negative step for store."); return false; } if (STMT_VINFO_STRIDED_ACCESS (stmt_info)) { strided_store = true; first_stmt = DR_GROUP_FIRST_DR (stmt_info); if (!vect_strided_store_supported (vectype) && !PURE_SLP_STMT (stmt_info) && !slp) return false; if (first_stmt == stmt) { /* STMT is the leader of the group. Check the operands of all the stmts of the group. */ next_stmt = DR_GROUP_NEXT_DR (stmt_info); while (next_stmt) { gcc_assert (gimple_assign_single_p (next_stmt)); op = gimple_assign_rhs1 (next_stmt); if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "use not simple."); return false; } next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt)); } } } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = store_vec_info_type; vect_model_store_cost (stmt_info, ncopies, dt, NULL); return true; } /** Transform. **/ if (strided_store) { first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt)); DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++; /* FORNOW */ gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt)); /* We vectorize all the stmts of the interleaving group when we reach the last stmt in the group. */ if (DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt)) < DR_GROUP_SIZE (vinfo_for_stmt (first_stmt)) && !slp) { *vec_stmt = NULL; return true; } if (slp) { strided_store = false; /* VEC_NUM is the number of vect stmts to be created for this group. */ vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0); first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); } else /* VEC_NUM is the number of vect stmts to be created for this group. */ vec_num = group_size; } else { first_stmt = stmt; first_dr = dr; group_size = vec_num = 1; } if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform store. ncopies = %d",ncopies); dr_chain = VEC_alloc (tree, heap, group_size); oprnds = VEC_alloc (tree, heap, group_size); alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false); gcc_assert (alignment_support_scheme); /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. For more details see documentation in vect_get_vec_def_for_copy_stmt. */ /* In case of interleaving (non-unit strided access): S1: &base + 2 = x2 S2: &base = x0 S3: &base + 1 = x1 S4: &base + 3 = x3 We create vectorized stores starting from base address (the access of the first stmt in the chain (S2 in the above example), when the last store stmt of the chain (S4) is reached: VS1: &base = vx2 VS2: &base + vec_size*1 = vx0 VS3: &base + vec_size*2 = vx1 VS4: &base + vec_size*3 = vx3 Then permutation statements are generated: VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 > VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 > ... And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts (the order of the data-refs in the output of vect_permute_store_chain corresponds to the order of scalar stmts in the interleaving chain - see the documentation of vect_permute_store_chain()). In case of both multiple types and interleaving, above vector stores and permutation stmts are created for every copy. The result vector stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding STMT_VINFO_RELATED_STMT for the next copies. */ prev_stmt_info = NULL; for (j = 0; j < ncopies; j++) { gimple new_stmt; gimple ptr_incr; if (j == 0) { if (slp) { /* Get vectorized arguments for SLP_NODE. */ vect_get_slp_defs (slp_node, &vec_oprnds, NULL, -1); vec_oprnd = VEC_index (tree, vec_oprnds, 0); } else { /* For interleaved stores we collect vectorized defs for all the stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then used as an input to vect_permute_store_chain(), and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the next copy. If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and OPRNDS are of size 1. */ next_stmt = first_stmt; for (i = 0; i < group_size; i++) { /* Since gaps are not supported for interleaved stores, GROUP_SIZE is the exact number of stmts in the chain. Therefore, NEXT_STMT can't be NULL_TREE. In case that there is no interleaving, GROUP_SIZE is 1, and only one iteration of the loop will be executed. */ gcc_assert (next_stmt && gimple_assign_single_p (next_stmt)); op = gimple_assign_rhs1 (next_stmt); vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt, NULL); VEC_quick_push(tree, dr_chain, vec_oprnd); VEC_quick_push(tree, oprnds, vec_oprnd); next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt)); } } /* We should have catched mismatched types earlier. */ gcc_assert (useless_type_conversion_p (vectype, TREE_TYPE (vec_oprnd))); dataref_ptr = vect_create_data_ref_ptr (first_stmt, NULL, NULL_TREE, &dummy, &ptr_incr, false, &inv_p); gcc_assert (bb_vinfo || !inv_p); } else { /* For interleaved stores we created vectorized defs for all the defs stored in OPRNDS in the previous iteration (previous copy). DR_CHAIN is then used as an input to vect_permute_store_chain(), and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the next copy. If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and OPRNDS are of size 1. */ for (i = 0; i < group_size; i++) { op = VEC_index (tree, oprnds, i); vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt); vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op); VEC_replace(tree, dr_chain, i, vec_oprnd); VEC_replace(tree, oprnds, i, vec_oprnd); } dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE); } if (strided_store) { result_chain = VEC_alloc (tree, heap, group_size); /* Permute. */ if (!vect_permute_store_chain (dr_chain, group_size, stmt, gsi, &result_chain)) return false; } next_stmt = first_stmt; for (i = 0; i < vec_num; i++) { struct ptr_info_def *pi; if (i > 0) /* Bump the vector pointer. */ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE); if (slp) vec_oprnd = VEC_index (tree, vec_oprnds, i); else if (strided_store) /* For strided stores vectorized defs are interleaved in vect_permute_store_chain(). */ vec_oprnd = VEC_index (tree, result_chain, i); data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr, build_int_cst (reference_alias_ptr_type (DR_REF (first_dr)), 0)); pi = get_ptr_info (dataref_ptr); pi->align = TYPE_ALIGN_UNIT (vectype); if (aligned_access_p (first_dr)) pi->misalign = 0; else if (DR_MISALIGNMENT (first_dr) == -1) { TREE_TYPE (data_ref) = build_aligned_type (TREE_TYPE (data_ref), TYPE_ALIGN (TREE_TYPE (vectype))); pi->align = TYPE_ALIGN_UNIT (TREE_TYPE (vectype)); pi->misalign = 0; } else { TREE_TYPE (data_ref) = build_aligned_type (TREE_TYPE (data_ref), TYPE_ALIGN (TREE_TYPE (vectype))); pi->misalign = DR_MISALIGNMENT (first_dr); } /* Arguments are ready. Create the new vector stmt. */ new_stmt = gimple_build_assign (data_ref, vec_oprnd); vect_finish_stmt_generation (stmt, new_stmt, gsi); mark_symbols_for_renaming (new_stmt); if (slp) continue; if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt)); if (!next_stmt) break; } } VEC_free (tree, heap, dr_chain); VEC_free (tree, heap, oprnds); if (result_chain) VEC_free (tree, heap, result_chain); if (vec_oprnds) VEC_free (tree, heap, vec_oprnds); return true; } /* Given a vector type VECTYPE returns a builtin DECL to be used for vector permutation and stores a mask into *MASK that implements reversal of the vector elements. If that is impossible to do returns NULL (and *MASK is unchanged). */ static tree perm_mask_for_reverse (tree vectype, tree *mask) { tree builtin_decl; tree mask_element_type, mask_type; tree mask_vec = NULL; int i; int nunits; if (!targetm.vectorize.builtin_vec_perm) return NULL; builtin_decl = targetm.vectorize.builtin_vec_perm (vectype, &mask_element_type); if (!builtin_decl || !mask_element_type) return NULL; mask_type = get_vectype_for_scalar_type (mask_element_type); nunits = TYPE_VECTOR_SUBPARTS (vectype); if (TYPE_VECTOR_SUBPARTS (vectype) != TYPE_VECTOR_SUBPARTS (mask_type)) return NULL; for (i = 0; i < nunits; i++) mask_vec = tree_cons (NULL, build_int_cst (mask_element_type, i), mask_vec); mask_vec = build_vector (mask_type, mask_vec); if (!targetm.vectorize.builtin_vec_perm_ok (vectype, mask_vec)) return NULL; if (mask) *mask = mask_vec; return builtin_decl; } /* Given a vector variable X, that was generated for the scalar LHS of STMT, generate instructions to reverse the vector elements of X, insert them a *GSI and return the permuted vector variable. */ static tree reverse_vec_elements (tree x, gimple stmt, gimple_stmt_iterator *gsi) { tree vectype = TREE_TYPE (x); tree mask_vec, builtin_decl; tree perm_dest, data_ref; gimple perm_stmt; builtin_decl = perm_mask_for_reverse (vectype, &mask_vec); perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype); /* Generate the permute statement. */ perm_stmt = gimple_build_call (builtin_decl, 3, x, x, mask_vec); data_ref = make_ssa_name (perm_dest, perm_stmt); gimple_call_set_lhs (perm_stmt, data_ref); vect_finish_stmt_generation (stmt, perm_stmt, gsi); return data_ref; } /* vectorizable_load. Check if STMT reads a non scalar data-ref (array/pointer/structure) that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, slp_tree slp_node, slp_instance slp_node_instance) { tree scalar_dest; tree vec_dest = NULL; tree data_ref = NULL; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); stmt_vec_info prev_stmt_info; loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); struct loop *loop = NULL; struct loop *containing_loop = (gimple_bb (stmt))->loop_father; bool nested_in_vect_loop = false; struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr; tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree new_temp; enum machine_mode mode; gimple new_stmt = NULL; tree dummy; enum dr_alignment_support alignment_support_scheme; tree dataref_ptr = NULL_TREE; gimple ptr_incr; int nunits = TYPE_VECTOR_SUBPARTS (vectype); int ncopies; int i, j, group_size; tree msq = NULL_TREE, lsq; tree offset = NULL_TREE; tree realignment_token = NULL_TREE; gimple phi = NULL; VEC(tree,heap) *dr_chain = NULL; bool strided_load = false; gimple first_stmt; tree scalar_type; bool inv_p; bool negative; bool compute_in_loop = false; struct loop *at_loop; int vec_num; bool slp = (slp_node != NULL); bool slp_perm = false; enum tree_code code; bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); int vf; if (loop_vinfo) { loop = LOOP_VINFO_LOOP (loop_vinfo); nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt); vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); } else vf = 1; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp) ncopies = 1; else ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits; gcc_assert (ncopies >= 1); /* FORNOW. This restriction should be relaxed. */ if (nested_in_vect_loop && ncopies > 1) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "multiple types in nested loop."); return false; } if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; /* Is vectorizable load? */ if (!is_gimple_assign (stmt)) return false; scalar_dest = gimple_assign_lhs (stmt); if (TREE_CODE (scalar_dest) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); if (code != ARRAY_REF && code != INDIRECT_REF && code != COMPONENT_REF && code != IMAGPART_EXPR && code != REALPART_EXPR && code != MEM_REF) return false; if (!STMT_VINFO_DATA_REF (stmt_info)) return false; negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0; if (negative && ncopies > 1) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "multiple types with negative step."); return false; } scalar_type = TREE_TYPE (DR_REF (dr)); mode = TYPE_MODE (vectype); /* FORNOW. In some cases can vectorize even if data-type not supported (e.g. - data copies). */ if (optab_handler (mov_optab, mode) == CODE_FOR_nothing) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "Aligned load, but unsupported type."); return false; } /* The vector component type needs to be trivially convertible to the scalar lhs. This should always be the case. */ if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), TREE_TYPE (vectype))) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "??? operands of different types"); return false; } /* Check if the load is a part of an interleaving chain. */ if (STMT_VINFO_STRIDED_ACCESS (stmt_info)) { strided_load = true; /* FORNOW */ gcc_assert (! nested_in_vect_loop); /* Check if interleaving is supported. */ if (!vect_strided_load_supported (vectype) && !PURE_SLP_STMT (stmt_info) && !slp) return false; } if (negative) { gcc_assert (!strided_load); alignment_support_scheme = vect_supportable_dr_alignment (dr, false); if (alignment_support_scheme != dr_aligned && alignment_support_scheme != dr_unaligned_supported) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "negative step but alignment required."); return false; } if (!perm_mask_for_reverse (vectype, NULL)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "negative step and reversing not supported."); return false; } } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = load_vec_info_type; vect_model_load_cost (stmt_info, ncopies, NULL); return true; } if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "transform load."); /** Transform. **/ if (strided_load) { first_stmt = DR_GROUP_FIRST_DR (stmt_info); /* Check if the chain of loads is already vectorized. */ if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt))) { *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); return true; } first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt)); /* VEC_NUM is the number of vect stmts to be created for this group. */ if (slp) { strided_load = false; vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance)) slp_perm = true; } else vec_num = group_size; dr_chain = VEC_alloc (tree, heap, vec_num); } else { first_stmt = stmt; first_dr = dr; group_size = vec_num = 1; } alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false); gcc_assert (alignment_support_scheme); /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. In doing so, we record a pointer from one copy of the vector stmt to the next, in the field STMT_VINFO_RELATED_STMT. This is necessary in order to allow following stages to find the correct vector defs to be used when vectorizing stmts that use the defs of the current stmt. The example below illustrates the vectorization process when VF=16 and nunits=4 (i.e., we need to create 4 vectorized stmts): before vectorization: RELATED_STMT VEC_STMT S1: x = memref - - S2: z = x + 1 - - step 1: vectorize stmt S1: We first create the vector stmt VS1_0, and, as usual, record a pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1. Next, we create the vector stmt VS1_1, and record a pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0. Similarly, for VS1_2 and VS1_3. This is the resulting chain of stmts and pointers: RELATED_STMT VEC_STMT VS1_0: vx0 = memref0 VS1_1 - VS1_1: vx1 = memref1 VS1_2 - VS1_2: vx2 = memref2 VS1_3 - VS1_3: vx3 = memref3 - - S1: x = load - VS1_0 S2: z = x + 1 - - See in documentation in vect_get_vec_def_for_stmt_copy for how the information we recorded in RELATED_STMT field is used to vectorize stmt S2. */ /* In case of interleaving (non-unit strided access): S1: x2 = &base + 2 S2: x0 = &base S3: x1 = &base + 1 S4: x3 = &base + 3 Vectorized loads are created in the order of memory accesses starting from the access of the first stmt of the chain: VS1: vx0 = &base VS2: vx1 = &base + vec_size*1 VS3: vx3 = &base + vec_size*2 VS4: vx4 = &base + vec_size*3 Then permutation statements are generated: VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 > VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 > ... And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts (the order of the data-refs in the output of vect_permute_load_chain corresponds to the order of scalar stmts in the interleaving chain - see the documentation of vect_permute_load_chain()). The generation of permutation stmts and recording them in STMT_VINFO_VEC_STMT is done in vect_transform_strided_load(). In case of both multiple types and interleaving, the vector loads and permutation stmts above are created for every copy. The result vector stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding STMT_VINFO_RELATED_STMT for the next copies. */ /* If the data reference is aligned (dr_aligned) or potentially unaligned on a target that supports unaligned accesses (dr_unaligned_supported) we generate the following code: p = initial_addr; indx = 0; loop { p = p + indx * vectype_size; vec_dest = *(p); indx = indx + 1; } Otherwise, the data reference is potentially unaligned on a target that does not support unaligned accesses (dr_explicit_realign_optimized) - then generate the following code, in which the data in each iteration is obtained by two vector loads, one from the previous iteration, and one from the current iteration: p1 = initial_addr; msq_init = *(floor(p1)) p2 = initial_addr + VS - 1; realignment_token = call target_builtin; indx = 0; loop { p2 = p2 + indx * vectype_size lsq = *(floor(p2)) vec_dest = realign_load (msq, lsq, realignment_token) indx = indx + 1; msq = lsq; } */ /* If the misalignment remains the same throughout the execution of the loop, we can create the init_addr and permutation mask at the loop preheader. Otherwise, it needs to be created inside the loop. This can only occur when vectorizing memory accesses in the inner-loop nested within an outer-loop that is being vectorized. */ if (loop && nested_in_vect_loop_p (loop, stmt) && (TREE_INT_CST_LOW (DR_STEP (dr)) % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)) { gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized); compute_in_loop = true; } if ((alignment_support_scheme == dr_explicit_realign_optimized || alignment_support_scheme == dr_explicit_realign) && !compute_in_loop) { msq = vect_setup_realignment (first_stmt, gsi, &realignment_token, alignment_support_scheme, NULL_TREE, &at_loop); if (alignment_support_scheme == dr_explicit_realign_optimized) { phi = SSA_NAME_DEF_STMT (msq); offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1); } } else at_loop = loop; if (negative) offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1); prev_stmt_info = NULL; for (j = 0; j < ncopies; j++) { /* 1. Create the vector pointer update chain. */ if (j == 0) dataref_ptr = vect_create_data_ref_ptr (first_stmt, at_loop, offset, &dummy, &ptr_incr, false, &inv_p); else dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE); for (i = 0; i < vec_num; i++) { if (i > 0) dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE); /* 2. Create the vector-load in the loop. */ switch (alignment_support_scheme) { case dr_aligned: case dr_unaligned_supported: { struct ptr_info_def *pi; data_ref = build2 (MEM_REF, vectype, dataref_ptr, build_int_cst (reference_alias_ptr_type (DR_REF (first_dr)), 0)); pi = get_ptr_info (dataref_ptr); pi->align = TYPE_ALIGN_UNIT (vectype); if (alignment_support_scheme == dr_aligned) { gcc_assert (aligned_access_p (first_dr)); pi->misalign = 0; } else if (DR_MISALIGNMENT (first_dr) == -1) { TREE_TYPE (data_ref) = build_aligned_type (TREE_TYPE (data_ref), TYPE_ALIGN (TREE_TYPE (vectype))); pi->align = TYPE_ALIGN_UNIT (TREE_TYPE (vectype)); pi->misalign = 0; } else { TREE_TYPE (data_ref) = build_aligned_type (TREE_TYPE (data_ref), TYPE_ALIGN (TREE_TYPE (vectype))); pi->misalign = DR_MISALIGNMENT (first_dr); } break; } case dr_explicit_realign: { tree ptr, bump; tree vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1); if (compute_in_loop) msq = vect_setup_realignment (first_stmt, gsi, &realignment_token, dr_explicit_realign, dataref_ptr, NULL); new_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, NULL_TREE, dataref_ptr, build_int_cst (TREE_TYPE (dataref_ptr), -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype))); ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt); gimple_assign_set_lhs (new_stmt, ptr); vect_finish_stmt_generation (stmt, new_stmt, gsi); data_ref = build2 (MEM_REF, vectype, ptr, build_int_cst (reference_alias_ptr_type (DR_REF (first_dr)), 0)); vec_dest = vect_create_destination_var (scalar_dest, vectype); new_stmt = gimple_build_assign (vec_dest, data_ref); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); vect_finish_stmt_generation (stmt, new_stmt, gsi); msq = new_temp; bump = size_binop (MULT_EXPR, vs_minus_1, TYPE_SIZE_UNIT (scalar_type)); ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump); new_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, NULL_TREE, ptr, build_int_cst (TREE_TYPE (ptr), -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype))); ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt); gimple_assign_set_lhs (new_stmt, ptr); vect_finish_stmt_generation (stmt, new_stmt, gsi); data_ref = build2 (MEM_REF, vectype, ptr, build_int_cst (reference_alias_ptr_type (DR_REF (first_dr)), 0)); break; } case dr_explicit_realign_optimized: new_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, NULL_TREE, dataref_ptr, build_int_cst (TREE_TYPE (dataref_ptr), -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype))); new_temp = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); data_ref = build2 (MEM_REF, vectype, new_temp, build_int_cst (reference_alias_ptr_type (DR_REF (first_dr)), 0)); break; default: gcc_unreachable (); } vec_dest = vect_create_destination_var (scalar_dest, vectype); new_stmt = gimple_build_assign (vec_dest, data_ref); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); mark_symbols_for_renaming (new_stmt); /* 3. Handle explicit realignment if necessary/supported. Create in loop: vec_dest = realign_load (msq, lsq, realignment_token) */ if (alignment_support_scheme == dr_explicit_realign_optimized || alignment_support_scheme == dr_explicit_realign) { tree tmp; lsq = gimple_assign_lhs (new_stmt); if (!realignment_token) realignment_token = dataref_ptr; vec_dest = vect_create_destination_var (scalar_dest, vectype); tmp = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, realignment_token); new_stmt = gimple_build_assign (vec_dest, tmp); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); if (alignment_support_scheme == dr_explicit_realign_optimized) { gcc_assert (phi); if (i == vec_num - 1 && j == ncopies - 1) add_phi_arg (phi, lsq, loop_latch_edge (containing_loop), UNKNOWN_LOCATION); msq = lsq; } } /* 4. Handle invariant-load. */ if (inv_p && !bb_vinfo) { gcc_assert (!strided_load); gcc_assert (nested_in_vect_loop_p (loop, stmt)); if (j == 0) { int k; tree t = NULL_TREE; tree vec_inv, bitpos, bitsize = TYPE_SIZE (scalar_type); /* CHECKME: bitpos depends on endianess? */ bitpos = bitsize_zero_node; vec_inv = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos); vec_dest = vect_create_destination_var (scalar_dest, NULL_TREE); new_stmt = gimple_build_assign (vec_dest, vec_inv); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); for (k = nunits - 1; k >= 0; --k) t = tree_cons (NULL_TREE, new_temp, t); /* FIXME: use build_constructor directly. */ vec_inv = build_constructor_from_list (vectype, t); new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi); new_stmt = SSA_NAME_DEF_STMT (new_temp); } else gcc_unreachable (); /* FORNOW. */ } if (negative) { new_temp = reverse_vec_elements (new_temp, stmt, gsi); new_stmt = SSA_NAME_DEF_STMT (new_temp); } /* Collect vector loads and later create their permutation in vect_transform_strided_load (). */ if (strided_load || slp_perm) VEC_quick_push (tree, dr_chain, new_temp); /* Store vector loads in the corresponding SLP_NODE. */ if (slp && !slp_perm) VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt); } if (slp && !slp_perm) continue; if (slp_perm) { if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf, slp_node_instance, false)) { VEC_free (tree, heap, dr_chain); return false; } } else { if (strided_load) { if (!vect_transform_strided_load (stmt, dr_chain, group_size, gsi)) return false; *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); VEC_free (tree, heap, dr_chain); dr_chain = VEC_alloc (tree, heap, group_size); } else { if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } } } if (dr_chain) VEC_free (tree, heap, dr_chain); return true; } /* Function vect_is_simple_cond. Input: LOOP - the loop that is being vectorized. COND - Condition that is checked for simple use. Returns whether a COND can be vectorized. Checks whether condition operands are supportable using vec_is_simple_use. */ static bool vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo) { tree lhs, rhs; tree def; enum vect_def_type dt; if (!COMPARISON_CLASS_P (cond)) return false; lhs = TREE_OPERAND (cond, 0); rhs = TREE_OPERAND (cond, 1); if (TREE_CODE (lhs) == SSA_NAME) { gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs); if (!vect_is_simple_use (lhs, loop_vinfo, NULL, &lhs_def_stmt, &def, &dt)) return false; } else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST && TREE_CODE (lhs) != FIXED_CST) return false; if (TREE_CODE (rhs) == SSA_NAME) { gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs); if (!vect_is_simple_use (rhs, loop_vinfo, NULL, &rhs_def_stmt, &def, &dt)) return false; } else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST && TREE_CODE (rhs) != FIXED_CST) return false; return true; } /* vectorizable_condition. Check if STMT is conditional modify expression that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it at GSI. When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in else caluse if it is 2). Return FALSE if not a vectorizable STMT, TRUE otherwise. */ bool vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, tree reduc_def, int reduc_index) { tree scalar_dest = NULL_TREE; tree vec_dest = NULL_TREE; tree op = NULL_TREE; tree cond_expr, then_clause, else_clause; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE; tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE; tree vec_compare, vec_cond_expr; tree new_temp; loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); enum machine_mode vec_mode; tree def; enum vect_def_type dt, dts[4]; int nunits = TYPE_VECTOR_SUBPARTS (vectype); int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits; enum tree_code code; stmt_vec_info prev_stmt_info = NULL; int j; /* FORNOW: unsupported in basic block SLP. */ gcc_assert (loop_vinfo); gcc_assert (ncopies >= 1); if (reduc_index && ncopies > 1) return false; /* FORNOW */ if (!STMT_VINFO_RELEVANT_P (stmt_info)) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle && reduc_def)) return false; /* FORNOW: SLP not supported. */ if (STMT_SLP_TYPE (stmt_info)) return false; /* FORNOW: not yet supported. */ if (STMT_VINFO_LIVE_P (stmt_info)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "value used after loop."); return false; } /* Is vectorizable conditional operation? */ if (!is_gimple_assign (stmt)) return false; code = gimple_assign_rhs_code (stmt); if (code != COND_EXPR) return false; gcc_assert (gimple_assign_single_p (stmt)); op = gimple_assign_rhs1 (stmt); cond_expr = TREE_OPERAND (op, 0); then_clause = TREE_OPERAND (op, 1); else_clause = TREE_OPERAND (op, 2); if (!vect_is_simple_cond (cond_expr, loop_vinfo)) return false; /* We do not handle two different vector types for the condition and the values. */ if (!types_compatible_p (TREE_TYPE (TREE_OPERAND (cond_expr, 0)), TREE_TYPE (vectype))) return false; if (TREE_CODE (then_clause) == SSA_NAME) { gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause); if (!vect_is_simple_use (then_clause, loop_vinfo, NULL, &then_def_stmt, &def, &dt)) return false; } else if (TREE_CODE (then_clause) != INTEGER_CST && TREE_CODE (then_clause) != REAL_CST && TREE_CODE (then_clause) != FIXED_CST) return false; if (TREE_CODE (else_clause) == SSA_NAME) { gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause); if (!vect_is_simple_use (else_clause, loop_vinfo, NULL, &else_def_stmt, &def, &dt)) return false; } else if (TREE_CODE (else_clause) != INTEGER_CST && TREE_CODE (else_clause) != REAL_CST && TREE_CODE (else_clause) != FIXED_CST) return false; vec_mode = TYPE_MODE (vectype); if (!vec_stmt) { STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type; return expand_vec_cond_expr_p (TREE_TYPE (op), vec_mode); } /* Transform */ /* Handle def. */ scalar_dest = gimple_assign_lhs (stmt); vec_dest = vect_create_destination_var (scalar_dest, vectype); /* Handle cond expr. */ for (j = 0; j < ncopies; j++) { gimple new_stmt; if (j == 0) { gimple gtemp; vec_cond_lhs = vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL); vect_is_simple_use (TREE_OPERAND (cond_expr, 0), loop_vinfo, NULL, >emp, &def, &dts[0]); vec_cond_rhs = vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL); vect_is_simple_use (TREE_OPERAND (cond_expr, 1), loop_vinfo, NULL, >emp, &def, &dts[1]); if (reduc_index == 1) vec_then_clause = reduc_def; else { vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL); vect_is_simple_use (then_clause, loop_vinfo, NULL, >emp, &def, &dts[2]); } if (reduc_index == 2) vec_else_clause = reduc_def; else { vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL); vect_is_simple_use (else_clause, loop_vinfo, NULL, >emp, &def, &dts[3]); } } else { vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0], vec_cond_lhs); vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1], vec_cond_rhs); vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2], vec_then_clause); vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3], vec_else_clause); } /* Arguments are ready. Create the new vector stmt. */ vec_compare = build2 (TREE_CODE (cond_expr), vectype, vec_cond_lhs, vec_cond_rhs); vec_cond_expr = build3 (VEC_COND_EXPR, vectype, vec_compare, vec_then_clause, vec_else_clause); new_stmt = gimple_build_assign (vec_dest, vec_cond_expr); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (stmt, new_stmt, gsi); if (j == 0) STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; else STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; prev_stmt_info = vinfo_for_stmt (new_stmt); } return true; } /* Make sure the statement is vectorizable. */ bool vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info); bool ok; tree scalar_type, vectype; if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "==> examining statement: "); print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM); } if (gimple_has_volatile_ops (stmt)) { if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS)) fprintf (vect_dump, "not vectorized: stmt has volatile operands"); return false; } /* Skip stmts that do not need to be vectorized. In loops this is expected to include: - the COND_EXPR which is the loop exit condition - any LABEL_EXPRs in the loop - computations that are used only for array indexing or loop control. In basic blocks we only analyze statements that are a part of some SLP instance, therefore, all the statements are relevant. */ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !STMT_VINFO_LIVE_P (stmt_info)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "irrelevant."); return true; } switch (STMT_VINFO_DEF_TYPE (stmt_info)) { case vect_internal_def: break; case vect_reduction_def: case vect_nested_cycle: gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer || relevance == vect_used_in_outer_by_reduction || relevance == vect_unused_in_scope)); break; case vect_induction_def: case vect_constant_def: case vect_external_def: case vect_unknown_def_type: default: gcc_unreachable (); } if (bb_vinfo) { gcc_assert (PURE_SLP_STMT (stmt_info)); scalar_type = TREE_TYPE (gimple_get_lhs (stmt)); if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "get vectype for scalar type: "); print_generic_expr (vect_dump, scalar_type, TDF_SLIM); } vectype = get_vectype_for_scalar_type (scalar_type); if (!vectype) { if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "not SLPed: unsupported data-type "); print_generic_expr (vect_dump, scalar_type, TDF_SLIM); } return false; } if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "vectype: "); print_generic_expr (vect_dump, vectype, TDF_SLIM); } STMT_VINFO_VECTYPE (stmt_info) = vectype; } if (STMT_VINFO_RELEVANT_P (stmt_info)) { gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt)))); gcc_assert (STMT_VINFO_VECTYPE (stmt_info)); *need_to_vectorize = true; } ok = true; if (!bb_vinfo && (STMT_VINFO_RELEVANT_P (stmt_info) || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)) ok = (vectorizable_type_promotion (stmt, NULL, NULL, NULL) || vectorizable_type_demotion (stmt, NULL, NULL, NULL) || vectorizable_conversion (stmt, NULL, NULL, NULL) || vectorizable_operation (stmt, NULL, NULL, NULL) || vectorizable_assignment (stmt, NULL, NULL, NULL) || vectorizable_load (stmt, NULL, NULL, NULL, NULL) || vectorizable_call (stmt, NULL, NULL) || vectorizable_store (stmt, NULL, NULL, NULL) || vectorizable_reduction (stmt, NULL, NULL, NULL) || vectorizable_condition (stmt, NULL, NULL, NULL, 0)); else { if (bb_vinfo) ok = (vectorizable_operation (stmt, NULL, NULL, node) || vectorizable_assignment (stmt, NULL, NULL, node) || vectorizable_load (stmt, NULL, NULL, node, NULL) || vectorizable_store (stmt, NULL, NULL, node)); } if (!ok) { if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS)) { fprintf (vect_dump, "not vectorized: relevant stmt not "); fprintf (vect_dump, "supported: "); print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM); } return false; } if (bb_vinfo) return true; /* Stmts that are (also) "live" (i.e. - that are used out of the loop) need extra handling, except for vectorizable reductions. */ if (STMT_VINFO_LIVE_P (stmt_info) && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type) ok = vectorizable_live_operation (stmt, NULL, NULL); if (!ok) { if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS)) { fprintf (vect_dump, "not vectorized: live stmt not "); fprintf (vect_dump, "supported: "); print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM); } return false; } if (!PURE_SLP_STMT (stmt_info)) { /* Groups of strided accesses whose size is not a power of 2 are not vectorizable yet using loop-vectorization. Therefore, if this stmt feeds non-SLP-able stmts (i.e., this stmt has to be both SLPed and loop-based vectorized), the loop cannot be vectorized. */ if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && exact_log2 (DR_GROUP_SIZE (vinfo_for_stmt ( DR_GROUP_FIRST_DR (stmt_info)))) == -1) { if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "not vectorized: the size of group " "of strided accesses is not a power of 2"); print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM); } return false; } } return true; } /* Function vect_transform_stmt. Create a vectorized stmt to replace STMT, and insert it at BSI. */ bool vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi, bool *strided_store, slp_tree slp_node, slp_instance slp_node_instance) { bool is_store = false; gimple vec_stmt = NULL; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); gimple orig_stmt_in_pattern, orig_scalar_stmt = stmt; bool done; switch (STMT_VINFO_TYPE (stmt_info)) { case type_demotion_vec_info_type: done = vectorizable_type_demotion (stmt, gsi, &vec_stmt, slp_node); gcc_assert (done); break; case type_promotion_vec_info_type: done = vectorizable_type_promotion (stmt, gsi, &vec_stmt, slp_node); gcc_assert (done); break; case type_conversion_vec_info_type: done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node); gcc_assert (done); break; case induc_vec_info_type: gcc_assert (!slp_node); done = vectorizable_induction (stmt, gsi, &vec_stmt); gcc_assert (done); break; case op_vec_info_type: done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node); gcc_assert (done); break; case assignment_vec_info_type: done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node); gcc_assert (done); break; case load_vec_info_type: done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node, slp_node_instance); gcc_assert (done); break; case store_vec_info_type: done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node); gcc_assert (done); if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node) { /* In case of interleaving, the whole chain is vectorized when the last store in the chain is reached. Store stmts before the last one are skipped, and there vec_stmt_info shouldn't be freed meanwhile. */ *strided_store = true; if (STMT_VINFO_VEC_STMT (stmt_info)) is_store = true; } else is_store = true; break; case condition_vec_info_type: gcc_assert (!slp_node); done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0); gcc_assert (done); break; case call_vec_info_type: gcc_assert (!slp_node); done = vectorizable_call (stmt, gsi, &vec_stmt); stmt = gsi_stmt (*gsi); break; case reduc_vec_info_type: done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node); gcc_assert (done); break; default: if (!STMT_VINFO_LIVE_P (stmt_info)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "stmt not supported."); gcc_unreachable (); } } /* Handle inner-loop stmts whose DEF is used in the loop-nest that is being vectorized, but outside the immediately enclosing loop. */ if (vec_stmt && STMT_VINFO_LOOP_VINFO (stmt_info) && nested_in_vect_loop_p (LOOP_VINFO_LOOP ( STMT_VINFO_LOOP_VINFO (stmt_info)), stmt) && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer || STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer_by_reduction)) { struct loop *innerloop = LOOP_VINFO_LOOP ( STMT_VINFO_LOOP_VINFO (stmt_info))->inner; imm_use_iterator imm_iter; use_operand_p use_p; tree scalar_dest; gimple exit_phi; if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "Record the vdef for outer-loop vectorization."); /* Find the relevant loop-exit phi-node, and reord the vec_stmt there (to be used when vectorizing outer-loop stmts that use the DEF of STMT). */ if (gimple_code (stmt) == GIMPLE_PHI) scalar_dest = PHI_RESULT (stmt); else scalar_dest = gimple_assign_lhs (stmt); FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest) { if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p)))) { exit_phi = USE_STMT (use_p); STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt; } } } /* Handle stmts whose DEF is used outside the loop-nest that is being vectorized. */ if (STMT_VINFO_LIVE_P (stmt_info) && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type) { done = vectorizable_live_operation (stmt, gsi, &vec_stmt); gcc_assert (done); } if (vec_stmt) { STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt; orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info); if (orig_stmt_in_pattern) { stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern); /* STMT was inserted by the vectorizer to replace a computation idiom. ORIG_STMT_IN_PATTERN is a stmt in the original sequence that computed this idiom. We need to record a pointer to VEC_STMT in the stmt_info of ORIG_STMT_IN_PATTERN. See more details in the documentation of vect_pattern_recog. */ if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo)) { gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == orig_scalar_stmt); STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt; } } } return is_store; } /* Remove a group of stores (for SLP or interleaving), free their stmt_vec_info. */ void vect_remove_stores (gimple first_stmt) { gimple next = first_stmt; gimple tmp; gimple_stmt_iterator next_si; while (next) { /* Free the attached stmt_vec_info and remove the stmt. */ next_si = gsi_for_stmt (next); gsi_remove (&next_si, true); tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (next)); free_stmt_vec_info (next); next = tmp; } } /* Function new_stmt_vec_info. Create and initialize a new stmt_vec_info struct for STMT. */ stmt_vec_info new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo, bb_vec_info bb_vinfo) { stmt_vec_info res; res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info)); STMT_VINFO_TYPE (res) = undef_vec_info_type; STMT_VINFO_STMT (res) = stmt; STMT_VINFO_LOOP_VINFO (res) = loop_vinfo; STMT_VINFO_BB_VINFO (res) = bb_vinfo; STMT_VINFO_RELEVANT (res) = vect_unused_in_scope; STMT_VINFO_LIVE_P (res) = false; STMT_VINFO_VECTYPE (res) = NULL; STMT_VINFO_VEC_STMT (res) = NULL; STMT_VINFO_VECTORIZABLE (res) = true; STMT_VINFO_IN_PATTERN_P (res) = false; STMT_VINFO_RELATED_STMT (res) = NULL; STMT_VINFO_DATA_REF (res) = NULL; STMT_VINFO_DR_BASE_ADDRESS (res) = NULL; STMT_VINFO_DR_OFFSET (res) = NULL; STMT_VINFO_DR_INIT (res) = NULL; STMT_VINFO_DR_STEP (res) = NULL; STMT_VINFO_DR_ALIGNED_TO (res) = NULL; if (gimple_code (stmt) == GIMPLE_PHI && is_loop_header_bb_p (gimple_bb (stmt))) STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type; else STMT_VINFO_DEF_TYPE (res) = vect_internal_def; STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5); STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0; STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0; STMT_SLP_TYPE (res) = loop_vect; DR_GROUP_FIRST_DR (res) = NULL; DR_GROUP_NEXT_DR (res) = NULL; DR_GROUP_SIZE (res) = 0; DR_GROUP_STORE_COUNT (res) = 0; DR_GROUP_GAP (res) = 0; DR_GROUP_SAME_DR_STMT (res) = NULL; DR_GROUP_READ_WRITE_DEPENDENCE (res) = false; return res; } /* Create a hash table for stmt_vec_info. */ void init_stmt_vec_info_vec (void) { gcc_assert (!stmt_vec_info_vec); stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50); } /* Free hash table for stmt_vec_info. */ void free_stmt_vec_info_vec (void) { gcc_assert (stmt_vec_info_vec); VEC_free (vec_void_p, heap, stmt_vec_info_vec); } /* Free stmt vectorization related info. */ void free_stmt_vec_info (gimple stmt) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); if (!stmt_info) return; VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info)); set_vinfo_for_stmt (stmt, NULL); free (stmt_info); } /* Function get_vectype_for_scalar_type. Returns the vector type corresponding to SCALAR_TYPE as supported by the target. */ tree get_vectype_for_scalar_type (tree scalar_type) { enum machine_mode inner_mode = TYPE_MODE (scalar_type); unsigned int nbytes = GET_MODE_SIZE (inner_mode); int nunits; tree vectype; if (nbytes == 0 || (nbytes >= targetm.vectorize.units_per_simd_word (inner_mode))) return NULL_TREE; /* We can't build a vector type of elements with alignment bigger than their size. */ if (nbytes < TYPE_ALIGN_UNIT (scalar_type)) return NULL_TREE; /* If we'd build a vector type of elements whose mode precision doesn't match their types precision we'll get mismatched types on vector extracts via BIT_FIELD_REFs. This effectively means we disable vectorization of bool and/or enum types in some languages. */ if (INTEGRAL_TYPE_P (scalar_type) && GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)) return NULL_TREE; /* FORNOW: Only a single vector size per mode (TARGET_VECTORIZE_UNITS_PER_SIMD_WORD) is expected. */ nunits = targetm.vectorize.units_per_simd_word (inner_mode) / nbytes; vectype = build_vector_type (scalar_type, nunits); if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "get vectype with %d units of type ", nunits); print_generic_expr (vect_dump, scalar_type, TDF_SLIM); } if (!vectype) return NULL_TREE; if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "vectype: "); print_generic_expr (vect_dump, vectype, TDF_SLIM); } if (!VECTOR_MODE_P (TYPE_MODE (vectype)) && !INTEGRAL_MODE_P (TYPE_MODE (vectype))) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "mode not supported by target."); return NULL_TREE; } return vectype; } /* Function get_same_sized_vectype Returns a vector type corresponding to SCALAR_TYPE of size VECTOR_TYPE if supported by the target. */ tree get_same_sized_vectype (tree scalar_type, tree vector_type ATTRIBUTE_UNUSED) { return get_vectype_for_scalar_type (scalar_type); } /* Function vect_is_simple_use. Input: LOOP_VINFO - the vect info of the loop that is being vectorized. BB_VINFO - the vect info of the basic block that is being vectorized. OPERAND - operand of a stmt in the loop or bb. DEF - the defining stmt in case OPERAND is an SSA_NAME. Returns whether a stmt with OPERAND can be vectorized. For loops, supportable operands are constants, loop invariants, and operands that are defined by the current iteration of the loop. Unsupportable operands are those that are defined by a previous iteration of the loop (as is the case in reduction/induction computations). For basic blocks, supportable operands are constants and bb invariants. For now, operands defined outside the basic block are not supported. */ bool vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, bb_vec_info bb_vinfo, gimple *def_stmt, tree *def, enum vect_def_type *dt) { basic_block bb; stmt_vec_info stmt_vinfo; struct loop *loop = NULL; if (loop_vinfo) loop = LOOP_VINFO_LOOP (loop_vinfo); *def_stmt = NULL; *def = NULL_TREE; if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "vect_is_simple_use: operand "); print_generic_expr (vect_dump, operand, TDF_SLIM); } if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST) { *dt = vect_constant_def; return true; } if (is_gimple_min_invariant (operand)) { *def = operand; *dt = vect_external_def; return true; } if (TREE_CODE (operand) == PAREN_EXPR) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "non-associatable copy."); operand = TREE_OPERAND (operand, 0); } if (TREE_CODE (operand) != SSA_NAME) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "not ssa-name."); return false; } *def_stmt = SSA_NAME_DEF_STMT (operand); if (*def_stmt == NULL) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "no def_stmt."); return false; } if (vect_print_dump_info (REPORT_DETAILS)) { fprintf (vect_dump, "def_stmt: "); print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM); } /* Empty stmt is expected only in case of a function argument. (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */ if (gimple_nop_p (*def_stmt)) { *def = operand; *dt = vect_external_def; return true; } bb = gimple_bb (*def_stmt); if ((loop && !flow_bb_inside_loop_p (loop, bb)) || (!loop && bb != BB_VINFO_BB (bb_vinfo)) || (!loop && gimple_code (*def_stmt) == GIMPLE_PHI)) *dt = vect_external_def; else { stmt_vinfo = vinfo_for_stmt (*def_stmt); *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo); } if (*dt == vect_unknown_def_type) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "Unsupported pattern."); return false; } if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "type of def: %d.",*dt); switch (gimple_code (*def_stmt)) { case GIMPLE_PHI: *def = gimple_phi_result (*def_stmt); break; case GIMPLE_ASSIGN: *def = gimple_assign_lhs (*def_stmt); break; case GIMPLE_CALL: *def = gimple_call_lhs (*def_stmt); if (*def != NULL) break; /* FALLTHRU */ default: if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "unsupported defining stmt: "); return false; } return true; } /* Function vect_is_simple_use_1. Same as vect_is_simple_use_1 but also determines the vector operand type of OPERAND and stores it to *VECTYPE. If the definition of OPERAND is vect_uninitialized_def, vect_constant_def or vect_external_def *VECTYPE will be set to NULL_TREE and the caller is responsible to compute the best suited vector type for the scalar operand. */ bool vect_is_simple_use_1 (tree operand, loop_vec_info loop_vinfo, bb_vec_info bb_vinfo, gimple *def_stmt, tree *def, enum vect_def_type *dt, tree *vectype) { if (!vect_is_simple_use (operand, loop_vinfo, bb_vinfo, def_stmt, def, dt)) return false; /* Now get a vector type if the def is internal, otherwise supply NULL_TREE and leave it up to the caller to figure out a proper type for the use stmt. */ if (*dt == vect_internal_def || *dt == vect_induction_def || *dt == vect_reduction_def || *dt == vect_double_reduction_def || *dt == vect_nested_cycle) { stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt); if (STMT_VINFO_IN_PATTERN_P (stmt_info)) stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info)); *vectype = STMT_VINFO_VECTYPE (stmt_info); gcc_assert (*vectype != NULL_TREE); } else if (*dt == vect_uninitialized_def || *dt == vect_constant_def || *dt == vect_external_def) *vectype = NULL_TREE; else gcc_unreachable (); return true; } /* Function supportable_widening_operation Check whether an operation represented by the code CODE is a widening operation that is supported by the target platform in vector form (i.e., when operating on arguments of type VECTYPE_IN producing a result of type VECTYPE_OUT). Widening operations we currently support are NOP (CONVERT), FLOAT and WIDEN_MULT. This function checks if these operations are supported by the target platform either directly (via vector tree-codes), or via target builtins. Output: - CODE1 and CODE2 are codes of vector operations to be used when vectorizing the operation, if available. - DECL1 and DECL2 are decls of target builtin functions to be used when vectorizing the operation, if available. In this case, CODE1 and CODE2 are CALL_EXPR. - MULTI_STEP_CVT determines the number of required intermediate steps in case of multi-step conversion (like char->short->int - in that case MULTI_STEP_CVT will be 1). - INTERM_TYPES contains the intermediate type required to perform the widening operation (short in the above example). */ bool supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype_out, tree vectype_in, tree *decl1, tree *decl2, enum tree_code *code1, enum tree_code *code2, int *multi_step_cvt, VEC (tree, heap) **interm_types) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info); struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info); bool ordered_p; enum machine_mode vec_mode; enum insn_code icode1, icode2; optab optab1, optab2; tree vectype = vectype_in; tree wide_vectype = vectype_out; enum tree_code c1, c2; /* The result of a vectorized widening operation usually requires two vectors (because the widened results do not fit int one vector). The generated vector results would normally be expected to be generated in the same order as in the original scalar computation, i.e. if 8 results are generated in each vector iteration, they are to be organized as follows: vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8]. However, in the special case that the result of the widening operation is used in a reduction computation only, the order doesn't matter (because when vectorizing a reduction we change the order of the computation). Some targets can take advantage of this and generate more efficient code. For example, targets like Altivec, that support widen_mult using a sequence of {mult_even,mult_odd} generate the following vectors: vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8]. When vectorizing outer-loops, we execute the inner-loop sequentially (each vectorized inner-loop iteration contributes to VF outer-loop iterations in parallel). We therefore don't allow to change the order of the computation in the inner-loop during outer-loop vectorization. */ if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction && !nested_in_vect_loop_p (vect_loop, stmt)) ordered_p = false; else ordered_p = true; if (!ordered_p && code == WIDEN_MULT_EXPR && targetm.vectorize.builtin_mul_widen_even && targetm.vectorize.builtin_mul_widen_even (vectype) && targetm.vectorize.builtin_mul_widen_odd && targetm.vectorize.builtin_mul_widen_odd (vectype)) { if (vect_print_dump_info (REPORT_DETAILS)) fprintf (vect_dump, "Unordered widening operation detected."); *code1 = *code2 = CALL_EXPR; *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype); *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype); return true; } switch (code) { case WIDEN_MULT_EXPR: if (BYTES_BIG_ENDIAN) { c1 = VEC_WIDEN_MULT_HI_EXPR; c2 = VEC_WIDEN_MULT_LO_EXPR; } else { c2 = VEC_WIDEN_MULT_HI_EXPR; c1 = VEC_WIDEN_MULT_LO_EXPR; } break; CASE_CONVERT: if (BYTES_BIG_ENDIAN) { c1 = VEC_UNPACK_HI_EXPR; c2 = VEC_UNPACK_LO_EXPR; } else { c2 = VEC_UNPACK_HI_EXPR; c1 = VEC_UNPACK_LO_EXPR; } break; case FLOAT_EXPR: if (BYTES_BIG_ENDIAN) { c1 = VEC_UNPACK_FLOAT_HI_EXPR; c2 = VEC_UNPACK_FLOAT_LO_EXPR; } else { c2 = VEC_UNPACK_FLOAT_HI_EXPR; c1 = VEC_UNPACK_FLOAT_LO_EXPR; } break; case FIX_TRUNC_EXPR: /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/ VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for computing the operation. */ return false; default: gcc_unreachable (); } if (code == FIX_TRUNC_EXPR) { /* The signedness is determined from output operand. */ optab1 = optab_for_tree_code (c1, vectype_out, optab_default); optab2 = optab_for_tree_code (c2, vectype_out, optab_default); } else { optab1 = optab_for_tree_code (c1, vectype, optab_default); optab2 = optab_for_tree_code (c2, vectype, optab_default); } if (!optab1 || !optab2) return false; vec_mode = TYPE_MODE (vectype); if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing) return false; /* Check if it's a multi-step conversion that can be done using intermediate types. */ if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype) || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype)) { int i; tree prev_type = vectype, intermediate_type; enum machine_mode intermediate_mode, prev_mode = vec_mode; optab optab3, optab4; if (!CONVERT_EXPR_CODE_P (code)) return false; *code1 = c1; *code2 = c2; /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */ *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS); for (i = 0; i < 3; i++) { intermediate_mode = insn_data[icode1].operand[0].mode; intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode, TYPE_UNSIGNED (prev_type)); optab3 = optab_for_tree_code (c1, intermediate_type, optab_default); optab4 = optab_for_tree_code (c2, intermediate_type, optab_default); if (!optab3 || !optab4 || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing) || insn_data[icode1].operand[0].mode != intermediate_mode || ((icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing) || insn_data[icode2].operand[0].mode != intermediate_mode || ((icode1 = optab_handler (optab3, intermediate_mode)) == CODE_FOR_nothing) || ((icode2 = optab_handler (optab4, intermediate_mode)) == CODE_FOR_nothing)) return false; VEC_quick_push (tree, *interm_types, intermediate_type); (*multi_step_cvt)++; if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype) && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype)) return true; prev_type = intermediate_type; prev_mode = intermediate_mode; } return false; } *code1 = c1; *code2 = c2; return true; } /* Function supportable_narrowing_operation Check whether an operation represented by the code CODE is a narrowing operation that is supported by the target platform in vector form (i.e., when operating on arguments of type VECTYPE_IN and producing a result of type VECTYPE_OUT). Narrowing operations we currently support are NOP (CONVERT) and FIX_TRUNC. This function checks if these operations are supported by the target platform directly via vector tree-codes. Output: - CODE1 is the code of a vector operation to be used when vectorizing the operation, if available. - MULTI_STEP_CVT determines the number of required intermediate steps in case of multi-step conversion (like int->short->char - in that case MULTI_STEP_CVT will be 1). - INTERM_TYPES contains the intermediate type required to perform the narrowing operation (short in the above example). */ bool supportable_narrowing_operation (enum tree_code code, tree vectype_out, tree vectype_in, enum tree_code *code1, int *multi_step_cvt, VEC (tree, heap) **interm_types) { enum machine_mode vec_mode; enum insn_code icode1; optab optab1, interm_optab; tree vectype = vectype_in; tree narrow_vectype = vectype_out; enum tree_code c1; tree intermediate_type, prev_type; int i; switch (code) { CASE_CONVERT: c1 = VEC_PACK_TRUNC_EXPR; break; case FIX_TRUNC_EXPR: c1 = VEC_PACK_FIX_TRUNC_EXPR; break; case FLOAT_EXPR: /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR tree code and optabs used for computing the operation. */ return false; default: gcc_unreachable (); } if (code == FIX_TRUNC_EXPR) /* The signedness is determined from output operand. */ optab1 = optab_for_tree_code (c1, vectype_out, optab_default); else optab1 = optab_for_tree_code (c1, vectype, optab_default); if (!optab1) return false; vec_mode = TYPE_MODE (vectype); if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing) return false; /* Check if it's a multi-step conversion that can be done using intermediate types. */ if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype)) { enum machine_mode intermediate_mode, prev_mode = vec_mode; *code1 = c1; prev_type = vectype; /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */ *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS); for (i = 0; i < 3; i++) { intermediate_mode = insn_data[icode1].operand[0].mode; intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode, TYPE_UNSIGNED (prev_type)); interm_optab = optab_for_tree_code (c1, intermediate_type, optab_default); if (!interm_optab || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing) || insn_data[icode1].operand[0].mode != intermediate_mode || ((icode1 = optab_handler (interm_optab, intermediate_mode)) == CODE_FOR_nothing)) return false; VEC_quick_push (tree, *interm_types, intermediate_type); (*multi_step_cvt)++; if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype)) return true; prev_type = intermediate_type; prev_mode = intermediate_mode; } return false; } *code1 = c1; return true; }