/* Loop Vectorization Copyright (C) 2003, 2004 Free Software Foundation, Inc. Contributed by Dorit Naishlos This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Loop Vectorization Pass. This pass tries to vectorize loops. This first implementation focuses on simple inner-most loops, with no conditional control flow, and a set of simple operations which vector form can be expressed using existing tree codes (PLUS, MULT etc). For example, the vectorizer transforms the following simple loop: short a[N]; short b[N]; short c[N]; int i; for (i=0; ihandlers[(int) V8HImode].insn_code). If the value found is CODE_FOR_nothing, then there's no target support, and we can't vectorize the stmt. For additional information on this project see: http://gcc.gnu.org/projects/tree-ssa/vectorization.html */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "errors.h" #include "ggc.h" #include "tree.h" #include "target.h" #include "rtl.h" #include "basic-block.h" #include "diagnostic.h" #include "tree-flow.h" #include "tree-dump.h" #include "timevar.h" #include "cfgloop.h" #include "cfglayout.h" #include "expr.h" #include "optabs.h" #include "toplev.h" #include "tree-chrec.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "tree-vectorizer.h" #include "tree-pass.h" /* Main analysis functions. */ static loop_vec_info vect_analyze_loop (struct loop *); static loop_vec_info vect_analyze_loop_form (struct loop *); static bool vect_analyze_data_refs (loop_vec_info); static bool vect_mark_stmts_to_be_vectorized (loop_vec_info); static bool vect_analyze_scalar_cycles (loop_vec_info); static bool vect_analyze_data_ref_accesses (loop_vec_info); static bool vect_analyze_data_refs_alignment (loop_vec_info); static void vect_compute_data_refs_alignment (loop_vec_info); static bool vect_analyze_operations (loop_vec_info); /* Main code transformation functions. */ static void vect_transform_loop (loop_vec_info, struct loops *); static void vect_transform_loop_bound (loop_vec_info, tree niters); static bool vect_transform_stmt (tree, block_stmt_iterator *); static bool vectorizable_load (tree, block_stmt_iterator *, tree *); static bool vectorizable_store (tree, block_stmt_iterator *, tree *); static bool vectorizable_operation (tree, block_stmt_iterator *, tree *); static bool vectorizable_assignment (tree, block_stmt_iterator *, tree *); static void vect_align_data_ref (tree); static void vect_enhance_data_refs_alignment (loop_vec_info); /* Utility functions for the analyses. */ static bool vect_is_simple_use (tree , struct loop *, tree *); static bool exist_non_indexing_operands_for_use_p (tree, tree); static bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *, bool); static void vect_mark_relevant (varray_type, tree); static bool vect_stmt_relevant_p (tree, loop_vec_info); static tree vect_get_loop_niters (struct loop *, tree *); static bool vect_compute_data_ref_alignment (struct data_reference *, loop_vec_info); static bool vect_analyze_data_ref_access (struct data_reference *); static bool vect_get_first_index (tree, tree *); static bool vect_can_force_dr_alignment_p (tree, unsigned int); static struct data_reference * vect_analyze_pointer_ref_access (tree, tree, bool); static bool vect_analyze_loop_with_symbolic_num_of_iters (tree niters, struct loop *loop); static tree vect_get_base_and_bit_offset (struct data_reference *, tree, tree, loop_vec_info, tree *, bool*); static struct data_reference * vect_analyze_pointer_ref_access (tree, tree, bool); static tree vect_compute_array_base_alignment (tree, tree, tree *, tree *); static tree vect_compute_array_ref_alignment (struct data_reference *, loop_vec_info, tree, tree *); static tree vect_get_ptr_offset (tree, tree, tree *); static tree vect_get_symbl_and_dr (tree, tree, bool, loop_vec_info, struct data_reference **); /* Utility functions for the code transformation. */ static tree vect_create_destination_var (tree, tree); static tree vect_create_data_ref_ptr (tree, block_stmt_iterator *, tree, tree *, bool); static tree vect_create_index_for_vector_ref (struct loop *, block_stmt_iterator *); static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree); static tree get_vectype_for_scalar_type (tree); static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *); static tree vect_get_vec_def_for_operand (tree, tree); static tree vect_init_vector (tree, tree); static tree vect_build_symbol_bound (tree, int, struct loop *); static void vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi); static void vect_generate_tmps_on_preheader (loop_vec_info, tree *, tree *, tree *); static tree vect_build_loop_niters (loop_vec_info); static void vect_update_ivs_after_vectorizer (struct loop *, tree); /* Loop transformations prior to vectorization. */ /* Loop transformations entry point function. It can be used outside of the vectorizer in case the loop to be manipulated answers conditions specified in function documentation. */ struct loop *tree_duplicate_loop_to_edge (struct loop *, struct loops *, edge, tree, tree, bool); static void allocate_new_names (bitmap); static void rename_use_op (use_operand_p); static void rename_def_op (def_operand_p, tree); static void rename_variables_in_bb (basic_block); static void free_new_names (bitmap); static void rename_variables_in_loop (struct loop *); static void copy_phi_nodes (struct loop *, struct loop *, bool); static void update_phis_for_duplicate_loop (struct loop *, struct loop *, bool after); static void update_phi_nodes_for_guard (edge, struct loop *); static void make_loop_iterate_ntimes (struct loop *, tree, tree, tree); static struct loop *tree_duplicate_loop_to_edge_cfg (struct loop *, struct loops *, edge); static edge add_loop_guard (basic_block, tree, basic_block); static bool verify_loop_for_duplication (struct loop *, bool, edge); /* Utilities dealing with loop peeling (not peeling itself). */ static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree); static void vect_update_niters_after_peeling (loop_vec_info, tree); static void vect_update_inits_of_dr (struct data_reference *, struct loop *, tree niters); static void vect_update_inits_of_drs (loop_vec_info, tree); static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *); /* Utilities for creation and deletion of vec_info structs. */ loop_vec_info new_loop_vec_info (struct loop *loop); void destroy_loop_vec_info (loop_vec_info); stmt_vec_info new_stmt_vec_info (tree stmt, struct loop *loop); static bool vect_debug_stats (struct loop *loop); static bool vect_debug_details (struct loop *loop); /* Utilities to support loop peeling for vectorization purposes. */ /* For each definition in DEFINITIONS this function allocates new ssa name. */ static void allocate_new_names (bitmap definitions) { unsigned ver; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi) { tree def = ssa_name (ver); tree *new_name_ptr = xmalloc (sizeof (tree)); bool abnormal = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def); *new_name_ptr = duplicate_ssa_name (def, SSA_NAME_DEF_STMT (def)); SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*new_name_ptr) = abnormal; SSA_NAME_AUX (def) = new_name_ptr; } } /* Renames the use *OP_P. */ static void rename_use_op (use_operand_p op_p) { tree *new_name_ptr; if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME) return; new_name_ptr = SSA_NAME_AUX (USE_FROM_PTR (op_p)); /* Something defined outside of the loop. */ if (!new_name_ptr) return; /* An ordinary ssa name defined in the loop. */ SET_USE (op_p, *new_name_ptr); } /* Renames the def *OP_P in statement STMT. */ static void rename_def_op (def_operand_p op_p, tree stmt) { tree *new_name_ptr; if (TREE_CODE (DEF_FROM_PTR (op_p)) != SSA_NAME) return; new_name_ptr = SSA_NAME_AUX (DEF_FROM_PTR (op_p)); /* Something defined outside of the loop. */ if (!new_name_ptr) return; /* An ordinary ssa name defined in the loop. */ SET_DEF (op_p, *new_name_ptr); SSA_NAME_DEF_STMT (DEF_FROM_PTR (op_p)) = stmt; } /* Renames the variables in basic block BB. */ static void rename_variables_in_bb (basic_block bb) { tree phi; block_stmt_iterator bsi; tree stmt; stmt_ann_t ann; use_optype uses; vuse_optype vuses; def_optype defs; v_may_def_optype v_may_defs; v_must_def_optype v_must_defs; unsigned i; edge e; edge_iterator ei; for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi)) rename_def_op (PHI_RESULT_PTR (phi), phi); for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) { stmt = bsi_stmt (bsi); get_stmt_operands (stmt); ann = stmt_ann (stmt); uses = USE_OPS (ann); for (i = 0; i < NUM_USES (uses); i++) rename_use_op (USE_OP_PTR (uses, i)); defs = DEF_OPS (ann); for (i = 0; i < NUM_DEFS (defs); i++) rename_def_op (DEF_OP_PTR (defs, i), stmt); vuses = VUSE_OPS (ann); for (i = 0; i < NUM_VUSES (vuses); i++) rename_use_op (VUSE_OP_PTR (vuses, i)); v_may_defs = V_MAY_DEF_OPS (ann); for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++) { rename_use_op (V_MAY_DEF_OP_PTR (v_may_defs, i)); rename_def_op (V_MAY_DEF_RESULT_PTR (v_may_defs, i), stmt); } v_must_defs = V_MUST_DEF_OPS (ann); for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++) { rename_use_op (V_MUST_DEF_KILL_PTR (v_must_defs, i)); rename_def_op (V_MUST_DEF_RESULT_PTR (v_must_defs, i), stmt); } } FOR_EACH_EDGE (e, ei, bb->succs) for (phi = phi_nodes (e->dest); phi; phi = TREE_CHAIN (phi)) rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e)); } /* Releases the structures holding the new ssa names. */ static void free_new_names (bitmap definitions) { unsigned ver; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi) { tree def = ssa_name (ver); if (SSA_NAME_AUX (def)) { free (SSA_NAME_AUX (def)); SSA_NAME_AUX (def) = NULL; } } } /* Renames variables in new generated LOOP. */ static void rename_variables_in_loop (struct loop *loop) { unsigned i; basic_block *bbs; bbs = get_loop_body (loop); for (i = 0; i < loop->num_nodes; i++) rename_variables_in_bb (bbs[i]); free (bbs); } /* This function copies phis from LOOP header to NEW_LOOP header. AFTER is as in update_phis_for_duplicate_loop function. */ static void copy_phi_nodes (struct loop *loop, struct loop *new_loop, bool after) { tree phi, new_phi, def; edge new_e; edge e = (after ? loop_latch_edge (loop) : loop_preheader_edge (loop)); /* Second add arguments to newly created phi nodes. */ for (phi = phi_nodes (loop->header), new_phi = phi_nodes (new_loop->header); phi; phi = TREE_CHAIN (phi), new_phi = TREE_CHAIN (new_phi)) { new_e = loop_preheader_edge (new_loop); def = PHI_ARG_DEF_FROM_EDGE (phi, e); add_phi_arg (&new_phi, def, new_e); } } /* Update the PHI nodes of the NEW_LOOP. AFTER is true if the NEW_LOOP executes after LOOP, and false if it executes before it. */ static void update_phis_for_duplicate_loop (struct loop *loop, struct loop *new_loop, bool after) { edge old_latch; tree *new_name_ptr, new_ssa_name; tree phi_new, phi_old, def; edge orig_entry_e = loop_preheader_edge (loop); /* Copy phis from loop->header to new_loop->header. */ copy_phi_nodes (loop, new_loop, after); old_latch = loop_latch_edge (loop); /* Update PHI args for the new loop latch edge, and the old loop preheader edge, we know that the PHI nodes are ordered appropriately in copy_phi_nodes. */ for (phi_new = phi_nodes (new_loop->header), phi_old = phi_nodes (loop->header); phi_new && phi_old; phi_new = TREE_CHAIN (phi_new), phi_old = TREE_CHAIN (phi_old)) { def = PHI_ARG_DEF_FROM_EDGE (phi_old, old_latch); if (TREE_CODE (def) != SSA_NAME) continue; new_name_ptr = SSA_NAME_AUX (def); /* Something defined outside of the loop. */ if (!new_name_ptr) continue; /* An ordinary ssa name defined in the loop. */ new_ssa_name = *new_name_ptr; add_phi_arg (&phi_new, new_ssa_name, loop_latch_edge(new_loop)); /* Update PHI args for the original loop pre-header edge. */ if (! after) SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi_old, orig_entry_e), new_ssa_name); } } /* Update PHI nodes for a guard of the LOOP. LOOP is supposed to have a preheader bb at which a guard condition is located. The true edge of this condition skips the LOOP and ends at the destination of the (unique) LOOP exit. The loop exit bb is supposed to be an empty bb (created by this transformation) with one successor. This function creates phi nodes at the LOOP exit bb. These phis need to be created as a result of adding true edge coming from guard. FORNOW: Only phis which have corresponding phi nodes at the header of the LOOP are created. Here we use the assumption that after the LOOP there are no uses of defs generated in LOOP. After the phis creation, the function updates the values of phi nodes at the LOOP exit successor bb: Original loop: bb0: loop preheader goto bb1 bb1: loop header if (exit_cond) goto bb3 else goto bb2 bb2: loop latch goto bb1 bb3: After guard creation (the loop before this function): bb0: loop preheader if (guard_condition) goto bb4 else goto bb1 bb1: loop header if (exit_cond) goto bb4 else goto bb2 bb2: loop latch goto bb1 bb4: loop exit (new empty bb) goto bb3 bb3: This function updates the phi nodes in bb4 and in bb3, to account for the new edge from bb0 to bb4. */ static void update_phi_nodes_for_guard (edge guard_true_edge, struct loop * loop) { tree phi, phi1; for (phi = phi_nodes (loop->header); phi; phi = TREE_CHAIN (phi)) { tree new_phi; tree phi_arg; /* Generate new phi node. */ new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)), loop->exit_edges[0]->dest); /* Add argument coming from guard true edge. */ phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->entry_edges[0]); add_phi_arg (&new_phi, phi_arg, guard_true_edge); /* Add argument coming from loop exit edge. */ phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0)); add_phi_arg (&new_phi, phi_arg, loop->exit_edges[0]); /* Update all phi nodes at the loop exit successor. */ for (phi1 = phi_nodes (EDGE_SUCC (loop->exit_edges[0]->dest, 0)->dest); phi1; phi1 = TREE_CHAIN (phi1)) { tree old_arg = PHI_ARG_DEF_FROM_EDGE (phi1, EDGE_SUCC (loop->exit_edges[0]->dest, 0)); if (old_arg == phi_arg) { edge e = EDGE_SUCC (loop->exit_edges[0]->dest, 0); SET_PHI_ARG_DEF (phi1, phi_arg_from_edge (phi1, e), PHI_RESULT (new_phi)); } } } } /* Make the LOOP iterate NITERS times. This is done by adding a new IV that starts at zero, increases by one and its limit is NITERS. */ static void make_loop_iterate_ntimes (struct loop *loop, tree niters, tree begin_label, tree exit_label) { tree indx_before_incr, indx_after_incr, cond_stmt, cond; tree orig_cond; edge exit_edge = loop->exit_edges[0]; block_stmt_iterator loop_exit_bsi = bsi_last (exit_edge->src); /* Flow loop scan does not update loop->single_exit field. */ loop->single_exit = loop->exit_edges[0]; orig_cond = get_loop_exit_condition (loop); gcc_assert (orig_cond); create_iv (integer_zero_node, integer_one_node, NULL_TREE, loop, &loop_exit_bsi, false, &indx_before_incr, &indx_after_incr); /* CREATE_IV uses BSI_INSERT with TSI_NEW_STMT, so we want to get back to the exit condition statement. */ bsi_next (&loop_exit_bsi); gcc_assert (bsi_stmt (loop_exit_bsi) == orig_cond); if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */ cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters); else /* 'then' edge loops back. */ cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters); begin_label = build1 (GOTO_EXPR, void_type_node, begin_label); exit_label = build1 (GOTO_EXPR, void_type_node, exit_label); cond_stmt = build (COND_EXPR, TREE_TYPE (orig_cond), cond, begin_label, exit_label); bsi_insert_before (&loop_exit_bsi, cond_stmt, BSI_SAME_STMT); /* Remove old loop exit test: */ bsi_remove (&loop_exit_bsi); if (vect_debug_stats (loop) || vect_debug_details (loop)) print_generic_expr (dump_file, cond_stmt, TDF_SLIM); } /* Given LOOP this function generates a new copy of it and puts it on E which is either the entry or exit of LOOP. */ static struct loop * tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops, edge e) { struct loop *new_loop; basic_block *new_bbs, *bbs; bool at_exit; bool was_imm_dom; basic_block exit_dest; tree phi, phi_arg; at_exit = (e == loop->exit_edges[0]); if (!at_exit && e != loop_preheader_edge (loop)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Edge is not an entry nor an exit edge.\n"); return NULL; } bbs = get_loop_body (loop); /* Check whether duplication is possible. */ if (!can_copy_bbs_p (bbs, loop->num_nodes)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "Cannot copy basic blocks.\n"); free (bbs); return NULL; } /* Generate new loop structure. */ new_loop = duplicate_loop (loops, loop, loop->outer); if (!new_loop) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "The duplicate_loop returns NULL.\n"); free (bbs); return NULL; } exit_dest = loop->exit_edges[0]->dest; was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS, exit_dest) == loop->header ? true : false); new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes); copy_bbs (bbs, loop->num_nodes, new_bbs, NULL, 0, NULL, NULL); /* Duplicating phi args at exit bbs as coming also from exit of duplicated loop. */ for (phi = phi_nodes (exit_dest); phi; phi = TREE_CHAIN (phi)) { phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->exit_edges[0]); if (phi_arg) { edge new_loop_exit_edge; if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch) new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1); else new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0); add_phi_arg (&phi, phi_arg, new_loop_exit_edge); } } if (at_exit) /* Add the loop copy at exit. */ { redirect_edge_and_branch_force (e, new_loop->header); set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src); if (was_imm_dom) set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header); } else /* Add the copy at entry. */ { edge new_exit_e; edge entry_e = loop_preheader_edge (loop); basic_block preheader = entry_e->src; if (!flow_bb_inside_loop_p (new_loop, EDGE_SUCC (new_loop->header, 0)->dest)) new_exit_e = EDGE_SUCC (new_loop->header, 0); else new_exit_e = EDGE_SUCC (new_loop->header, 1); redirect_edge_and_branch_force (new_exit_e, loop->header); set_immediate_dominator (CDI_DOMINATORS, loop->header, new_exit_e->src); /* We have to add phi args to the loop->header here as coming from new_exit_e edge. */ for (phi = phi_nodes (loop->header); phi; phi = TREE_CHAIN (phi)) { phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e); if (phi_arg) add_phi_arg (&phi, phi_arg, new_exit_e); } redirect_edge_and_branch_force (entry_e, new_loop->header); set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader); } flow_loop_scan (new_loop, LOOP_ALL); flow_loop_scan (loop, LOOP_ALL); free (new_bbs); free (bbs); return new_loop; } /* Given the condition statement COND, put it as the last statement of GUARD_BB; EXIT_BB is the basic block to skip the loop; Assumes that this is the single exit of the guarded loop. Returns the skip edge. */ static edge add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb) { block_stmt_iterator bsi; edge new_e, enter_e; tree cond_stmt, then_label, else_label; enter_e = EDGE_SUCC (guard_bb, 0); enter_e->flags &= ~EDGE_FALLTHRU; enter_e->flags |= EDGE_FALSE_VALUE; bsi = bsi_last (guard_bb); then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (exit_bb)); else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (enter_e->dest)); cond_stmt = build (COND_EXPR, void_type_node, cond, then_label, else_label); bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT); /* Add new edge to connect entry block to the second loop. */ new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE); set_immediate_dominator (CDI_DOMINATORS, exit_bb, guard_bb); return new_e; } /* This function verifies that certain restrictions apply to LOOP. */ static bool verify_loop_for_duplication (struct loop *loop, bool update_first_loop_count, edge e) { edge exit_e = loop->exit_edges [0]; edge entry_e = loop_preheader_edge (loop); /* We duplicate only innermost loops. */ if (loop->inner) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "Loop duplication failed. Loop is not innermost.\n"); return false; } /* Only loops with 1 exit. */ if (loop->num_exits != 1) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "More than one exit from loop.\n"); return false; } /* Only loops with 1 entry. */ if (loop->num_entries != 1) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "More than one exit from loop.\n"); return false; } /* All loops has outers, the only case loop->outer is NULL is for the function itself. */ if (!loop->outer) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "Loop is outer-most loop.\n"); return false; } /* Verify that new IV can be created and loop condition can be changed to make first loop iterate first_niters times. */ if (!update_first_loop_count) { tree orig_cond = get_loop_exit_condition (loop); block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src); if (!orig_cond) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "Loop has no exit condition.\n"); return false; } if (orig_cond != bsi_stmt (loop_exit_bsi)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "Loop exit condition is not loop header last stmt.\n"); return false; } } /* Make sure E is either an entry or an exit edge. */ if (e != exit_e && e != entry_e) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "E is not loop entry or exit edge.\n"); return false; } return true; } /* Given LOOP this function duplicates it to the edge E. This transformation takes place before the loop is vectorized. For now, there are two main cases when it's used by the vectorizer: to support loops with unknown loop bounds (or loop bounds indivisible by vectorization factor) and to force the alignment of data references in the loop. In the first case, LOOP is duplicated to the exit edge, producing epilog loop. In the second case, LOOP is duplicated to the preheader edge thus generating prolog loop. In both cases, the original loop will be vectorized after the transformation. The edge E is supposed to be either preheader edge of the LOOP or its exit edge. If preheader edge is specified, the LOOP copy will precede the original one. Otherwise the copy will be located at the exit of the LOOP. FIRST_NITERS (SSA_NAME) parameter specifies how many times to iterate the first loop. If UPDATE_FIRST_LOOP_COUNT parameter is false, the first loop will be iterated FIRST_NITERS times by introducing additional induction variable and replacing loop exit condition. If UPDATE_FIRST_LOOP_COUNT is true no change to the first loop is made and the caller to tree_duplicate_loop_to_edge is responsible for updating the first loop count. NITERS (also SSA_NAME) parameter defines the number of iteration the original loop iterated. The function generates two if-then guards: one prior to the first loop and the other prior to the second loop. The first guard will be: if (FIRST_NITERS == 0) then skip the first loop The second guard will be: if (FIRST_NITERS == NITERS) then skip the second loop Thus the equivalence to the original code is guaranteed by correct values of NITERS and FIRST_NITERS and generation of if-then loop guards. For now this function supports only loop forms that are candidate for vectorization. Such types are the following: (1) only innermost loops (2) loops built from 2 basic blocks (3) loops with one entry and one exit (4) loops without function calls (5) loops without defs that are used after the loop (1), (3) are checked in this function; (2) - in function vect_analyze_loop_form; (4) - in function vect_analyze_data_refs; (5) is checked as part of the function vect_mark_stmts_to_be_vectorized, when excluding induction/reduction support. The function returns NULL in case one of these checks or transformations failed. */ struct loop* tree_duplicate_loop_to_edge (struct loop *loop, struct loops *loops, edge e, tree first_niters, tree niters, bool update_first_loop_count) { struct loop *new_loop = NULL, *first_loop, *second_loop; edge skip_e; tree pre_condition; bitmap definitions; basic_block first_exit_bb, second_exit_bb; basic_block pre_header_bb; edge exit_e = loop->exit_edges [0]; gcc_assert (!any_marked_for_rewrite_p ()); if (!verify_loop_for_duplication (loop, update_first_loop_count, e)) return NULL; /* We have to initialize cfg_hooks. Then, when calling cfg_hooks->split_edge, the function tree_split_edge is actually called and, when calling cfg_hooks->duplicate_block, the function tree_duplicate_bb is called. */ tree_register_cfg_hooks (); /* 1. Generate a copy of LOOP and put it on E (entry or exit). */ if (!(new_loop = tree_duplicate_loop_to_edge_cfg (loop, loops, e))) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "The tree_duplicate_loop_to_edge_cfg failed.\n"); return NULL; } definitions = marked_ssa_names (); allocate_new_names (definitions); update_phis_for_duplicate_loop (loop, new_loop, e == exit_e); /* Here, using assumption (5), we do not propagate new names further than on phis of the exit from the second loop. */ rename_variables_in_loop (new_loop); free_new_names (definitions); if (e == exit_e) { first_loop = loop; second_loop = new_loop; } else { first_loop = new_loop; second_loop = loop; } /* 2. Generate bb between the loops. */ first_exit_bb = split_edge (first_loop->exit_edges[0]); add_bb_to_loop (first_exit_bb, first_loop->outer); /* We need to update here first loop exit edge and second loop preheader edge. */ flow_loop_scan (first_loop, LOOP_ALL); flow_loop_scan (second_loop, LOOP_ALL); /* 3. Make first loop iterate FIRST_NITERS times, if needed. */ if (!update_first_loop_count) { tree first_loop_latch_lbl = tree_block_label (first_loop->latch); tree first_loop_exit_lbl = tree_block_label (first_exit_bb); make_loop_iterate_ntimes (first_loop, first_niters, first_loop_latch_lbl, first_loop_exit_lbl); } /* 4. Add the guard before first loop: if FIRST_NITERS == 0 skip first loop else enter first loop */ /* 4a. Generate bb before first loop. */ pre_header_bb = split_edge (loop_preheader_edge (first_loop)); add_bb_to_loop (pre_header_bb, first_loop->outer); /* First loop preheader edge is changed. */ flow_loop_scan (first_loop, LOOP_ALL); /* 4b. Generate guard condition. */ pre_condition = build (LE_EXPR, boolean_type_node, first_niters, integer_zero_node); /* 4c. Add condition at the end of preheader bb. */ skip_e = add_loop_guard (pre_header_bb, pre_condition, first_exit_bb); /* 4d. Update phis at first loop exit and propagate changes to the phis of second loop. */ update_phi_nodes_for_guard (skip_e, first_loop); /* 5. Add the guard before second loop: if FIRST_NITERS == NITERS SKIP skip second loop else enter second loop */ /* 5a. Generate empty bb at the exit from the second loop. */ second_exit_bb = split_edge (second_loop->exit_edges[0]); add_bb_to_loop (second_exit_bb, second_loop->outer); /* Second loop preheader edge is changed. */ flow_loop_scan (second_loop, LOOP_ALL); /* 5b. Generate guard condition. */ pre_condition = build (EQ_EXPR, boolean_type_node, first_niters, niters); /* 5c. Add condition at the end of preheader bb. */ skip_e = add_loop_guard (first_exit_bb, pre_condition, second_exit_bb); update_phi_nodes_for_guard (skip_e, second_loop); BITMAP_XFREE (definitions); unmark_all_for_rewrite (); return new_loop; } /* Here the proper Vectorizer starts. */ /* Function new_stmt_vec_info. Create and initialize a new stmt_vec_info struct for STMT. */ stmt_vec_info new_stmt_vec_info (tree stmt, struct loop *loop) { stmt_vec_info res; res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info)); STMT_VINFO_TYPE (res) = undef_vec_info_type; STMT_VINFO_STMT (res) = stmt; STMT_VINFO_LOOP (res) = loop; STMT_VINFO_RELEVANT_P (res) = 0; STMT_VINFO_VECTYPE (res) = NULL; STMT_VINFO_VEC_STMT (res) = NULL; STMT_VINFO_DATA_REF (res) = NULL; STMT_VINFO_MEMTAG (res) = NULL; STMT_VINFO_VECT_DR_BASE (res) = NULL; return res; } /* Function new_loop_vec_info. Create and initialize a new loop_vec_info struct for LOOP, as well as stmt_vec_info structs for all the stmts in LOOP. */ loop_vec_info new_loop_vec_info (struct loop *loop) { loop_vec_info res; basic_block *bbs; block_stmt_iterator si; unsigned int i; res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info)); bbs = get_loop_body (loop); /* Create stmt_info for all stmts in the loop. */ for (i = 0; i < loop->num_nodes; i++) { basic_block bb = bbs[i]; for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) { tree stmt = bsi_stmt (si); stmt_ann_t ann; get_stmt_operands (stmt); ann = stmt_ann (stmt); set_stmt_info (ann, new_stmt_vec_info (stmt, loop)); } } LOOP_VINFO_LOOP (res) = loop; LOOP_VINFO_BBS (res) = bbs; LOOP_VINFO_EXIT_COND (res) = NULL; LOOP_VINFO_NITERS (res) = NULL; LOOP_VINFO_VECTORIZABLE_P (res) = 0; LOOP_DO_PEELING_FOR_ALIGNMENT (res) = false; LOOP_VINFO_VECT_FACTOR (res) = 0; VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20, "loop_write_datarefs"); VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20, "loop_read_datarefs"); for (i=0; inum_nodes; for (j = 0; j < nbbs; j++) { basic_block bb = bbs[j]; for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) { tree stmt = bsi_stmt (si); stmt_ann_t ann = stmt_ann (stmt); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); free (stmt_info); set_stmt_info (ann, NULL); } } free (LOOP_VINFO_BBS (loop_vinfo)); varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo)); varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo)); free (loop_vinfo); } /* Function debug_loop_stats. For vectorization statistics dumps. */ static bool vect_debug_stats (struct loop *loop) { basic_block bb; block_stmt_iterator si; tree node = NULL_TREE; if (!dump_file || !(dump_flags & TDF_STATS)) return false; if (!loop) { fprintf (dump_file, "\n"); return true; } if (!loop->header) return false; bb = loop->header; for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) { node = bsi_stmt (si); if (node && EXPR_P (node) && EXPR_LOCUS (node)) break; } if (node && EXPR_P (node) && EXPR_LOCUS (node) && EXPR_FILENAME (node) && EXPR_LINENO (node)) { fprintf (dump_file, "\nloop at %s:%d: ", EXPR_FILENAME (node), EXPR_LINENO (node)); return true; } return false; } /* Function debug_loop_details. For vectorization debug dumps. */ static bool vect_debug_details (struct loop *loop) { basic_block bb; block_stmt_iterator si; tree node = NULL_TREE; if (!dump_file || !(dump_flags & TDF_DETAILS)) return false; if (!loop) { fprintf (dump_file, "\n"); return true; } if (!loop->header) return false; bb = loop->header; for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) { node = bsi_stmt (si); if (node && EXPR_P (node) && EXPR_LOCUS (node)) break; } if (node && EXPR_P (node) && EXPR_LOCUS (node) && EXPR_FILENAME (node) && EXPR_LINENO (node)) { fprintf (dump_file, "\nloop at %s:%d: ", EXPR_FILENAME (node), EXPR_LINENO (node)); return true; } return false; } /* Function vect_get_ptr_offset Compute the OFFSET modulo vector-type alignment of pointer REF in bits. */ static tree vect_get_ptr_offset (tree ref ATTRIBUTE_UNUSED, tree vectype ATTRIBUTE_UNUSED, tree *offset ATTRIBUTE_UNUSED) { /* TODO: Use alignment information. */ return NULL_TREE; } /* Function vect_get_base_and_bit_offset Return the BASE of the data reference EXPR. If VECTYPE is given, also compute the OFFSET from BASE in bits. E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset in bits of 'a.b[i] + 4B' from a. Input: EXPR - the memory reference that is being analyzed DR - the data_reference struct of the _original_ memory reference (Note: DR_REF (DR) is not necessarily EXPR) VECTYPE - the type that defines the alignment (i.e, we compute alignment relative to TYPE_ALIGN(VECTYPE)) Output: BASE (returned value) - the base of the data reference EXPR. E.g, if EXPR is a.b[k].c[i][j] the returned base is a. OFFSET - offset of EXPR from BASE in bits BASE_ALIGNED_P - indicates if BASE is aligned If something unexpected is encountered (an unsupported form of data-ref), or if VECTYPE is given but OFFSET cannot be determined: then NULL_TREE is returned. */ static tree vect_get_base_and_bit_offset (struct data_reference *dr, tree expr, tree vectype, loop_vec_info loop_vinfo, tree *offset, bool *base_aligned_p) { tree this_offset = size_zero_node; tree base = NULL_TREE; tree next_ref; tree oprnd0, oprnd1; struct data_reference *array_dr; enum tree_code code = TREE_CODE (expr); *base_aligned_p = false; switch (code) { /* These cases end the recursion: */ case VAR_DECL: *offset = size_zero_node; if (vectype && DECL_ALIGN (expr) >= TYPE_ALIGN (vectype)) *base_aligned_p = true; return expr; case SSA_NAME: if (!vectype) return expr; if (TREE_CODE (TREE_TYPE (expr)) != POINTER_TYPE) return NULL_TREE; if (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (expr))) < TYPE_ALIGN (vectype)) { base = vect_get_ptr_offset (expr, vectype, offset); if (base) *base_aligned_p = true; } else { *base_aligned_p = true; *offset = size_zero_node; base = expr; } return base; case INTEGER_CST: *offset = int_const_binop (MULT_EXPR, expr, build_int_cst (NULL_TREE, BITS_PER_UNIT), 1); return expr; /* These cases continue the recursion: */ case COMPONENT_REF: oprnd0 = TREE_OPERAND (expr, 0); oprnd1 = TREE_OPERAND (expr, 1); this_offset = bit_position (oprnd1); if (vectype && !host_integerp (this_offset, 1)) return NULL_TREE; next_ref = oprnd0; break; case ADDR_EXPR: oprnd0 = TREE_OPERAND (expr, 0); next_ref = oprnd0; break; case INDIRECT_REF: oprnd0 = TREE_OPERAND (expr, 0); next_ref = oprnd0; break; case ARRAY_REF: if (DR_REF (dr) != expr) /* Build array data_reference struct if the existing DR_REF doesn't match EXPR. This happens, for example, when the EXPR is *T and T is initialized to &arr[indx]. The DR struct contains information on the access of T, not of arr. In order to continue the analysis, we create a new DR struct that describes the access of arr. */ array_dr = analyze_array (DR_STMT (dr), expr, DR_IS_READ (dr)); else array_dr = dr; next_ref = vect_compute_array_ref_alignment (array_dr, loop_vinfo, vectype, &this_offset); if (!next_ref) return NULL_TREE; if (vectype && TYPE_ALIGN (TREE_TYPE (TREE_TYPE (next_ref))) >= TYPE_ALIGN (vectype)) { *offset = this_offset; *base_aligned_p = true; return next_ref; } break; case PLUS_EXPR: case MINUS_EXPR: /* In case we have a PLUS_EXPR of the form (oprnd0 + oprnd1), we assume that only oprnd0 determines the base. This is verified in vect_get_symbl_and_dr. */ oprnd0 = TREE_OPERAND (expr, 0); oprnd1 = TREE_OPERAND (expr, 1); base = vect_get_base_and_bit_offset (dr, oprnd1, vectype, loop_vinfo, &this_offset, base_aligned_p); if (vectype && !base) return NULL_TREE; next_ref = oprnd0; break; default: return NULL_TREE; } base = vect_get_base_and_bit_offset (dr, next_ref, vectype, loop_vinfo, offset, base_aligned_p); if (vectype && base) { *offset = int_const_binop (PLUS_EXPR, *offset, this_offset, 1); if (!host_integerp (*offset, 1) || TREE_OVERFLOW (*offset)) return NULL_TREE; if (vect_debug_details (NULL)) { print_generic_expr (dump_file, expr, TDF_SLIM); fprintf (dump_file, " --> total offset for ref: "); print_generic_expr (dump_file, *offset, TDF_SLIM); } } return base; } /* Function vect_force_dr_alignment_p. Returns whether the alignment of a DECL can be forced to be aligned on ALIGNMENT bit boundary. */ static bool vect_can_force_dr_alignment_p (tree decl, unsigned int alignment) { if (TREE_CODE (decl) != VAR_DECL) return false; if (DECL_EXTERNAL (decl)) return false; if (TREE_STATIC (decl)) return (alignment <= MAX_OFILE_ALIGNMENT); else /* This is not 100% correct. The absolute correct stack alignment is STACK_BOUNDARY. We're supposed to hope, but not assume, that PREFERRED_STACK_BOUNDARY is honored by all translation units. However, until someone implements forced stack alignment, SSE isn't really usable without this. */ return (alignment <= PREFERRED_STACK_BOUNDARY); } /* Function vect_get_new_vect_var. Returns a name for a new variable. The current naming scheme appends the prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to the name of vectorizer generated variables, and appends that to NAME if provided. */ static tree vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name) { const char *prefix; int prefix_len; tree new_vect_var; if (var_kind == vect_simple_var) prefix = "vect_"; else prefix = "vect_p"; prefix_len = strlen (prefix); if (name) new_vect_var = create_tmp_var (type, concat (prefix, name, NULL)); else new_vect_var = create_tmp_var (type, prefix); return new_vect_var; } /* Function vect_create_index_for_vector_ref. Create (and return) an index variable, along with it's update chain in the loop. This variable will be used to access a memory location in a vector operation. Input: LOOP: The loop being vectorized. BSI: The block_stmt_iterator where STMT is. Any new stmts created by this function can be added here, or in the loop pre-header. Output: Return an index that will be used to index a vector array. It is expected that a pointer to the first vector will be used as the base address for the indexed reference. FORNOW: we are not trying to be efficient, just creating a new index each time from scratch. At this time all vector references could use the same index. TODO: create only one index to be used by all vector references. Record the index in the LOOP_VINFO the first time this procedure is called and return it on subsequent calls. The increment of this index must be placed just before the conditional expression that ends the single block loop. */ static tree vect_create_index_for_vector_ref (struct loop *loop, block_stmt_iterator *bsi) { tree init, step; tree indx_before_incr, indx_after_incr; /* It is assumed that the base pointer used for vectorized access contains the address of the first vector. Therefore the index used for vectorized access must be initialized to zero and incremented by 1. */ init = integer_zero_node; step = integer_one_node; /* Assuming that bsi_insert is used with BSI_NEW_STMT */ create_iv (init, step, NULL_TREE, loop, bsi, false, &indx_before_incr, &indx_after_incr); return indx_before_incr; } /* Function vect_create_addr_base_for_vector_ref. Create an expression that computes the address of the first memory location that will be accessed for a data reference. Input: STMT: The statement containing the data reference. NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list. OFFSET: Optional. If supplied, it is be added to the initial address. Output: 1. Return an SSA_NAME whose value is the address of the memory location of the first vector of the data reference. 2. If new_stmt_list is not NULL_TREE after return then the caller must insert these statement(s) which define the returned SSA_NAME. FORNOW: We are only handling array accesses with step 1. */ static tree vect_create_addr_base_for_vector_ref (tree stmt, tree *new_stmt_list, tree offset) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct loop *loop = STMT_VINFO_LOOP (stmt_info); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); tree data_ref_base = unshare_expr (STMT_VINFO_VECT_DR_BASE (stmt_info)); tree base_name = unshare_expr (DR_BASE_NAME (dr)); tree ref = DR_REF (dr); tree data_ref_base_type = TREE_TYPE (data_ref_base); tree scalar_type = TREE_TYPE (ref); tree scalar_ptr_type = build_pointer_type (scalar_type); tree access_fn; tree init_val, step, init_oval; bool ok; bool is_ptr_ref, is_array_ref, is_addr_expr; tree array_base; tree vec_stmt; tree new_temp; tree array_ref; tree addr_base, addr_expr; tree dest, new_stmt; /* Only the access function of the last index is relevant (i_n in a[i_1][i_2]...[i_n]), the others correspond to loop invariants. */ access_fn = DR_ACCESS_FN (dr, 0); ok = vect_is_simple_iv_evolution (loop->num, access_fn, &init_oval, &step, true); if (!ok) init_oval = integer_zero_node; is_ptr_ref = TREE_CODE (data_ref_base_type) == POINTER_TYPE && TREE_CODE (data_ref_base) == SSA_NAME; is_array_ref = TREE_CODE (data_ref_base_type) == ARRAY_TYPE; is_addr_expr = TREE_CODE (data_ref_base) == ADDR_EXPR || TREE_CODE (data_ref_base) == PLUS_EXPR || TREE_CODE (data_ref_base) == MINUS_EXPR; gcc_assert (is_ptr_ref || is_array_ref || is_addr_expr); /** Create: &(base[init_val]) if data_ref_base is an ARRAY_TYPE: base = data_ref_base if data_ref_base is the SSA_NAME of a POINTER_TYPE: base = *((scalar_array *) data_ref_base) **/ if (is_array_ref) array_base = data_ref_base; else /* is_ptr_ref or is_addr_expr */ { /* array_ptr = (scalar_array_ptr_type *) data_ref_base; */ tree scalar_array_type = build_array_type (scalar_type, 0); tree scalar_array_ptr_type = build_pointer_type (scalar_array_type); tree array_ptr = create_tmp_var (scalar_array_ptr_type, "array_ptr"); add_referenced_tmp_var (array_ptr); dest = create_tmp_var (TREE_TYPE (data_ref_base), "dataref"); add_referenced_tmp_var (dest); data_ref_base = force_gimple_operand (data_ref_base, &new_stmt, false, dest); append_to_statement_list_force (new_stmt, new_stmt_list); vec_stmt = fold_convert (scalar_array_ptr_type, data_ref_base); vec_stmt = build2 (MODIFY_EXPR, void_type_node, array_ptr, vec_stmt); new_temp = make_ssa_name (array_ptr, vec_stmt); TREE_OPERAND (vec_stmt, 0) = new_temp; append_to_statement_list_force (vec_stmt, new_stmt_list); /* (*array_ptr) */ array_base = build_fold_indirect_ref (new_temp); } dest = create_tmp_var (TREE_TYPE (init_oval), "newinit"); add_referenced_tmp_var (dest); init_val = force_gimple_operand (init_oval, &new_stmt, false, dest); append_to_statement_list_force (new_stmt, new_stmt_list); if (offset) { tree tmp = create_tmp_var (TREE_TYPE (init_val), "offset"); add_referenced_tmp_var (tmp); vec_stmt = build2 (PLUS_EXPR, TREE_TYPE (init_val), init_val, offset); vec_stmt = build2 (MODIFY_EXPR, TREE_TYPE (init_val), tmp, vec_stmt); init_val = make_ssa_name (tmp, vec_stmt); TREE_OPERAND (vec_stmt, 0) = init_val; append_to_statement_list_force (vec_stmt, new_stmt_list); } array_ref = build4 (ARRAY_REF, scalar_type, array_base, init_val, NULL_TREE, NULL_TREE); addr_base = build_fold_addr_expr (array_ref); /* addr_expr = addr_base */ addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var, get_name (base_name)); add_referenced_tmp_var (addr_expr); vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base); new_temp = make_ssa_name (addr_expr, vec_stmt); TREE_OPERAND (vec_stmt, 0) = new_temp; append_to_statement_list_force (vec_stmt, new_stmt_list); return new_temp; } /* Function get_vectype_for_scalar_type. Returns the vector type corresponding to SCALAR_TYPE as supported by the target. */ static tree get_vectype_for_scalar_type (tree scalar_type) { enum machine_mode inner_mode = TYPE_MODE (scalar_type); int nbytes = GET_MODE_SIZE (inner_mode); int nunits; tree vectype; if (nbytes == 0) return NULL_TREE; /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD) is expected. */ nunits = UNITS_PER_SIMD_WORD / nbytes; vectype = build_vector_type (scalar_type, nunits); if (vect_debug_details (NULL)) { fprintf (dump_file, "get vectype with %d units of type ", nunits); print_generic_expr (dump_file, scalar_type, TDF_SLIM); } if (!vectype) return NULL_TREE; if (vect_debug_details (NULL)) { fprintf (dump_file, "vectype: "); print_generic_expr (dump_file, vectype, TDF_SLIM); } if (!VECTOR_MODE_P (TYPE_MODE (vectype))) { /* TODO: tree-complex.c sometimes can parallelize operations on generic vectors. We can vectorize the loop in that case, but then we should re-run the lowering pass. */ if (vect_debug_details (NULL)) fprintf (dump_file, "mode not supported by target."); return NULL_TREE; } return vectype; } /* Function vect_align_data_ref. Handle mislignment of a memory accesses. FORNOW: Can't handle misaligned accesses. Make sure that the dataref is aligned. */ static void vect_align_data_ref (tree stmt) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); /* FORNOW: can't handle misaligned accesses; all accesses expected to be aligned. */ gcc_assert (aligned_access_p (dr)); } /* Function vect_create_data_ref_ptr. Create a memory reference expression for vector access, to be used in a vector load/store stmt. The reference is based on a new pointer to vector type (vp). Input: 1. STMT: a stmt that references memory. Expected to be of the form MODIFY_EXPR or MODIFY_EXPR . 2. BSI: block_stmt_iterator where new stmts can be added. 3. OFFSET (optional): an offset to be added to the initial address accessed by the data-ref in STMT. 4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain pointing to the initial address. Output: 1. Declare a new ptr to vector_type, and have it point to the base of the data reference (initial addressed accessed by the data reference). For example, for vector of type V8HI, the following code is generated: v8hi *vp; vp = (v8hi *)initial_address; if OFFSET is not supplied: initial_address = &a[init]; if OFFSET is supplied: initial_address = &a[init + OFFSET]; Return the initial_address in INITIAL_ADDRESS. 2. Create a data-reference in the loop based on the new vector pointer vp, and using a new index variable 'idx' as follows: vp' = vp + update where if ONLY_INIT is true: update = zero and otherwise update = idx + vector_type_size Return the pointer vp'. FORNOW: handle only aligned and consecutive accesses. */ static tree vect_create_data_ref_ptr (tree stmt, block_stmt_iterator *bsi, tree offset, tree *initial_address, bool only_init) { tree base_name; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); struct loop *loop = STMT_VINFO_LOOP (stmt_info); tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree vect_ptr_type; tree vect_ptr; tree tag; v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt); v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt); vuse_optype vuses = STMT_VUSE_OPS (stmt); int nvuses, nv_may_defs, nv_must_defs; int i; tree new_temp; tree vec_stmt; tree new_stmt_list = NULL_TREE; tree idx; edge pe = loop_preheader_edge (loop); basic_block new_bb; tree vect_ptr_init; tree vectype_size; tree ptr_update; tree data_ref_ptr; base_name = unshare_expr (DR_BASE_NAME (dr)); if (vect_debug_details (NULL)) { tree data_ref_base = base_name; fprintf (dump_file, "create array_ref of type: "); print_generic_expr (dump_file, vectype, TDF_SLIM); if (TREE_CODE (data_ref_base) == VAR_DECL) fprintf (dump_file, "vectorizing a one dimensional array ref: "); else if (TREE_CODE (data_ref_base) == ARRAY_REF) fprintf (dump_file, "vectorizing a multidimensional array ref: "); else if (TREE_CODE (data_ref_base) == COMPONENT_REF) fprintf (dump_file, "vectorizing a record based array ref: "); else if (TREE_CODE (data_ref_base) == SSA_NAME) fprintf (dump_file, "vectorizing a pointer ref: "); print_generic_expr (dump_file, base_name, TDF_SLIM); } /** (1) Create the new vector-pointer variable: **/ vect_ptr_type = build_pointer_type (vectype); vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, get_name (base_name)); add_referenced_tmp_var (vect_ptr); /** (2) Handle aliasing information of the new vector-pointer: **/ tag = STMT_VINFO_MEMTAG (stmt_info); gcc_assert (tag); get_var_ann (vect_ptr)->type_mem_tag = tag; /* Mark for renaming all aliased variables (i.e, the may-aliases of the type-mem-tag). */ nvuses = NUM_VUSES (vuses); nv_may_defs = NUM_V_MAY_DEFS (v_may_defs); nv_must_defs = NUM_V_MUST_DEFS (v_must_defs); for (i = 0; i < nvuses; i++) { tree use = VUSE_OP (vuses, i); if (TREE_CODE (use) == SSA_NAME) bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (use))->uid); } for (i = 0; i < nv_may_defs; i++) { tree def = V_MAY_DEF_RESULT (v_may_defs, i); if (TREE_CODE (def) == SSA_NAME) bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid); } for (i = 0; i < nv_must_defs; i++) { tree def = V_MUST_DEF_RESULT (v_must_defs, i); if (TREE_CODE (def) == SSA_NAME) bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid); } /** (3) Calculate the initial address the vector-pointer, and set the vector-pointer to point to it before the loop: **/ /* Create: (&(base[init_val+offset]) in the loop preheader. */ new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list, offset); pe = loop_preheader_edge (loop); new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list); gcc_assert (!new_bb); *initial_address = new_temp; /* Create: p = (vectype *) initial_base */ vec_stmt = fold_convert (vect_ptr_type, new_temp); vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt); new_temp = make_ssa_name (vect_ptr, vec_stmt); TREE_OPERAND (vec_stmt, 0) = new_temp; new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt); gcc_assert (!new_bb); vect_ptr_init = TREE_OPERAND (vec_stmt, 0); /** (4) Handle the updating of the vector-pointer inside the loop: **/ if (only_init) /* No update in loop is required. */ return vect_ptr_init; idx = vect_create_index_for_vector_ref (loop, bsi); /* Create: update = idx * vectype_size */ ptr_update = create_tmp_var (integer_type_node, "update"); add_referenced_tmp_var (ptr_update); vectype_size = build_int_cst (integer_type_node, GET_MODE_SIZE (TYPE_MODE (vectype))); vec_stmt = build2 (MULT_EXPR, integer_type_node, idx, vectype_size); vec_stmt = build2 (MODIFY_EXPR, void_type_node, ptr_update, vec_stmt); new_temp = make_ssa_name (ptr_update, vec_stmt); TREE_OPERAND (vec_stmt, 0) = new_temp; bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT); /* Create: data_ref_ptr = vect_ptr_init + update */ vec_stmt = build2 (PLUS_EXPR, vect_ptr_type, vect_ptr_init, new_temp); vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt); new_temp = make_ssa_name (vect_ptr, vec_stmt); TREE_OPERAND (vec_stmt, 0) = new_temp; bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT); data_ref_ptr = TREE_OPERAND (vec_stmt, 0); return data_ref_ptr; } /* Function vect_create_destination_var. Create a new temporary of type VECTYPE. */ static tree vect_create_destination_var (tree scalar_dest, tree vectype) { tree vec_dest; const char *new_name; gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME); new_name = get_name (scalar_dest); if (!new_name) new_name = "var_"; vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, new_name); add_referenced_tmp_var (vec_dest); return vec_dest; } /* Function vect_init_vector. Insert a new stmt (INIT_STMT) that initializes a new vector variable with the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be used in the vectorization of STMT. */ static tree vect_init_vector (tree stmt, tree vector_var) { stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo); tree new_var; tree init_stmt; tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); tree vec_oprnd; edge pe; tree new_temp; basic_block new_bb; new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_"); add_referenced_tmp_var (new_var); init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var); new_temp = make_ssa_name (new_var, init_stmt); TREE_OPERAND (init_stmt, 0) = new_temp; pe = loop_preheader_edge (loop); new_bb = bsi_insert_on_edge_immediate (pe, init_stmt); gcc_assert (!new_bb); if (vect_debug_details (NULL)) { fprintf (dump_file, "created new init_stmt: "); print_generic_expr (dump_file, init_stmt, TDF_SLIM); } vec_oprnd = TREE_OPERAND (init_stmt, 0); return vec_oprnd; } /* Function vect_get_vec_def_for_operand. OP is an operand in STMT. This function returns a (vector) def that will be used in the vectorized stmt for STMT. In the case that OP is an SSA_NAME which is defined in the loop, then STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def. In case OP is an invariant or constant, a new stmt that creates a vector def needs to be introduced. */ static tree vect_get_vec_def_for_operand (tree op, tree stmt) { tree vec_oprnd; tree vec_stmt; tree def_stmt; stmt_vec_info def_stmt_info = NULL; stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype)); struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo); basic_block bb; tree vec_inv; tree t = NULL_TREE; tree def; int i; if (vect_debug_details (NULL)) { fprintf (dump_file, "vect_get_vec_def_for_operand: "); print_generic_expr (dump_file, op, TDF_SLIM); } /** ===> Case 1: operand is a constant. **/ if (TREE_CODE (op) == INTEGER_CST || TREE_CODE (op) == REAL_CST) { /* Create 'vect_cst_ = {cst,cst,...,cst}' */ tree vec_cst; /* Build a tree with vector elements. */ if (vect_debug_details (NULL)) fprintf (dump_file, "Create vector_cst. nunits = %d", nunits); for (i = nunits - 1; i >= 0; --i) { t = tree_cons (NULL_TREE, op, t); } vec_cst = build_vector (vectype, t); return vect_init_vector (stmt, vec_cst); } gcc_assert (TREE_CODE (op) == SSA_NAME); /** ===> Case 2: operand is an SSA_NAME - find the stmt that defines it. **/ def_stmt = SSA_NAME_DEF_STMT (op); def_stmt_info = vinfo_for_stmt (def_stmt); if (vect_debug_details (NULL)) { fprintf (dump_file, "vect_get_vec_def_for_operand: def_stmt: "); print_generic_expr (dump_file, def_stmt, TDF_SLIM); } /** ==> Case 2.1: operand is defined inside the loop. **/ if (def_stmt_info) { /* Get the def from the vectorized stmt. */ vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info); gcc_assert (vec_stmt); vec_oprnd = TREE_OPERAND (vec_stmt, 0); return vec_oprnd; } /** ==> Case 2.2: operand is defined by the loop-header phi-node - it is a reduction/induction. **/ bb = bb_for_stmt (def_stmt); if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb)) { if (vect_debug_details (NULL)) fprintf (dump_file, "reduction/induction - unsupported."); internal_error ("no support for reduction/induction"); /* FORNOW */ } /** ==> Case 2.3: operand is defined outside the loop - it is a loop invariant. */ switch (TREE_CODE (def_stmt)) { case PHI_NODE: def = PHI_RESULT (def_stmt); break; case MODIFY_EXPR: def = TREE_OPERAND (def_stmt, 0); break; case NOP_EXPR: def = TREE_OPERAND (def_stmt, 0); gcc_assert (IS_EMPTY_STMT (def_stmt)); def = op; break; default: if (vect_debug_details (NULL)) { fprintf (dump_file, "unsupported defining stmt: "); print_generic_expr (dump_file, def_stmt, TDF_SLIM); } internal_error ("unsupported defining stmt"); } /* Build a tree with vector elements. Create 'vec_inv = {inv,inv,..,inv}' */ if (vect_debug_details (NULL)) fprintf (dump_file, "Create vector_inv."); for (i = nunits - 1; i >= 0; --i) { t = tree_cons (NULL_TREE, def, t); } vec_inv = build_constructor (vectype, t); return vect_init_vector (stmt, vec_inv); } /* Function vect_finish_stmt_generation. Insert a new stmt. */ static void vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi) { bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT); if (vect_debug_details (NULL)) { fprintf (dump_file, "add new stmt: "); print_generic_expr (dump_file, vec_stmt, TDF_SLIM); } /* Make sure bsi points to the stmt that is being vectorized. */ /* Assumption: any stmts created for the vectorization of stmt S were inserted before S. BSI is expected to point to S or some new stmt before S. */ while (stmt != bsi_stmt (*bsi) && !bsi_end_p (*bsi)) bsi_next (bsi); gcc_assert (stmt == bsi_stmt (*bsi)); } /* Function vectorizable_assignment. Check if STMT performs an assignment (copy) that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt) { tree vec_dest; tree scalar_dest; tree op; tree vec_oprnd; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); struct loop *loop = STMT_VINFO_LOOP (stmt_info); tree new_temp; /* Is vectorizable assignment? */ if (TREE_CODE (stmt) != MODIFY_EXPR) return false; scalar_dest = TREE_OPERAND (stmt, 0); if (TREE_CODE (scalar_dest) != SSA_NAME) return false; op = TREE_OPERAND (stmt, 1); if (!vect_is_simple_use (op, loop, NULL)) { if (vect_debug_details (NULL)) fprintf (dump_file, "use not simple."); return false; } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type; return true; } /** Trasform. **/ if (vect_debug_details (NULL)) fprintf (dump_file, "transform assignment."); /* Handle def. */ vec_dest = vect_create_destination_var (scalar_dest, vectype); /* Handle use. */ op = TREE_OPERAND (stmt, 1); vec_oprnd = vect_get_vec_def_for_operand (op, stmt); /* Arguments are ready. create the new vector stmt. */ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd); new_temp = make_ssa_name (vec_dest, *vec_stmt); TREE_OPERAND (*vec_stmt, 0) = new_temp; vect_finish_stmt_generation (stmt, *vec_stmt, bsi); return true; } /* Function vectorizable_operation. Check if STMT performs a binary or unary operation that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt) { tree vec_dest; tree scalar_dest; tree operation; tree op0, op1 = NULL; tree vec_oprnd0, vec_oprnd1=NULL; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); struct loop *loop = STMT_VINFO_LOOP (stmt_info); int i; enum tree_code code; enum machine_mode vec_mode; tree new_temp; int op_type; tree op; optab optab; /* Is STMT a vectorizable binary/unary operation? */ if (TREE_CODE (stmt) != MODIFY_EXPR) return false; if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME) return false; operation = TREE_OPERAND (stmt, 1); code = TREE_CODE (operation); optab = optab_for_tree_code (code, vectype); /* Support only unary or binary operations. */ op_type = TREE_CODE_LENGTH (code); if (op_type != unary_op && op_type != binary_op) { if (vect_debug_details (NULL)) fprintf (dump_file, "num. args = %d (not unary/binary op).", op_type); return false; } for (i = 0; i < op_type; i++) { op = TREE_OPERAND (operation, i); if (!vect_is_simple_use (op, loop, NULL)) { if (vect_debug_details (NULL)) fprintf (dump_file, "use not simple."); return false; } } /* Supportable by target? */ if (!optab) { if (vect_debug_details (NULL)) fprintf (dump_file, "no optab."); return false; } vec_mode = TYPE_MODE (vectype); if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing) { if (vect_debug_details (NULL)) fprintf (dump_file, "op not supported by target."); return false; } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = op_vec_info_type; return true; } /** Transform. **/ if (vect_debug_details (NULL)) fprintf (dump_file, "transform binary/unary operation."); /* Handle def. */ scalar_dest = TREE_OPERAND (stmt, 0); vec_dest = vect_create_destination_var (scalar_dest, vectype); /* Handle uses. */ op0 = TREE_OPERAND (operation, 0); vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt); if (op_type == binary_op) { op1 = TREE_OPERAND (operation, 1); vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt); } /* Arguments are ready. create the new vector stmt. */ if (op_type == binary_op) *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, build2 (code, vectype, vec_oprnd0, vec_oprnd1)); else *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, build1 (code, vectype, vec_oprnd0)); new_temp = make_ssa_name (vec_dest, *vec_stmt); TREE_OPERAND (*vec_stmt, 0) = new_temp; vect_finish_stmt_generation (stmt, *vec_stmt, bsi); return true; } /* Function vectorizable_store. Check if STMT defines a non scalar data-ref (array/pointer/structure) that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt) { tree scalar_dest; tree data_ref; tree op; tree vec_oprnd1; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); struct loop *loop = STMT_VINFO_LOOP (stmt_info); enum machine_mode vec_mode; tree dummy; /* Is vectorizable store? */ if (TREE_CODE (stmt) != MODIFY_EXPR) return false; scalar_dest = TREE_OPERAND (stmt, 0); if (TREE_CODE (scalar_dest) != ARRAY_REF && TREE_CODE (scalar_dest) != INDIRECT_REF) return false; op = TREE_OPERAND (stmt, 1); if (!vect_is_simple_use (op, loop, NULL)) { if (vect_debug_details (NULL)) fprintf (dump_file, "use not simple."); return false; } vec_mode = TYPE_MODE (vectype); /* FORNOW. In some cases can vectorize even if data-type not supported (e.g. - array initialization with 0). */ if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing) return false; if (!STMT_VINFO_DATA_REF (stmt_info)) return false; if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = store_vec_info_type; return true; } /** Trasform. **/ if (vect_debug_details (NULL)) fprintf (dump_file, "transform store"); /* Handle use - get the vectorized def from the defining stmt. */ vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt); /* Handle def. */ /* FORNOW: make sure the data reference is aligned. */ vect_align_data_ref (stmt); data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false); data_ref = build_fold_indirect_ref (data_ref); /* Arguments are ready. create the new vector stmt. */ *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1); vect_finish_stmt_generation (stmt, *vec_stmt, bsi); return true; } /* vectorizable_load. Check if STMT reads a non scalar data-ref (array/pointer/structure) that can be vectorized. If VEC_STMT is also passed, vectorize the STMT: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at BSI. Return FALSE if not a vectorizable STMT, TRUE otherwise. */ static bool vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt) { tree scalar_dest; tree vec_dest = NULL; tree data_ref = NULL; tree op; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree new_temp; int mode; tree init_addr; tree new_stmt; tree dummy; basic_block new_bb; struct loop *loop = STMT_VINFO_LOOP (stmt_info); edge pe = loop_preheader_edge (loop); bool software_pipeline_loads_p = false; /* Is vectorizable load? */ if (TREE_CODE (stmt) != MODIFY_EXPR) return false; scalar_dest = TREE_OPERAND (stmt, 0); if (TREE_CODE (scalar_dest) != SSA_NAME) return false; op = TREE_OPERAND (stmt, 1); if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF) return false; if (!STMT_VINFO_DATA_REF (stmt_info)) return false; mode = (int) TYPE_MODE (vectype); /* FORNOW. In some cases can vectorize even if data-type not supported (e.g. - data copies). */ if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing) { if (vect_debug_details (loop)) fprintf (dump_file, "Aligned load, but unsupported type."); return false; } if (!aligned_access_p (dr)) { if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing && (!targetm.vectorize.builtin_mask_for_load || targetm.vectorize.builtin_mask_for_load ())) software_pipeline_loads_p = true; else if (!targetm.vectorize.misaligned_mem_ok (mode)) { /* Possibly unaligned access, and can't software pipeline the loads. */ if (vect_debug_details (loop)) fprintf (dump_file, "Arbitrary load not supported."); return false; } } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_TYPE (stmt_info) = load_vec_info_type; return true; } /** Trasform. **/ if (vect_debug_details (NULL)) fprintf (dump_file, "transform load."); if (!software_pipeline_loads_p) { /* Create: p = initial_addr; indx = 0; loop { vec_dest = *(p); indx = indx + 1; } */ vec_dest = vect_create_destination_var (scalar_dest, vectype); data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false); if (aligned_access_p (dr)) data_ref = build_fold_indirect_ref (data_ref); else { int mis = DR_MISALIGNMENT (dr); tree tmis = (mis == -1 ? integer_zero_node : build_int_cst (integer_type_node, mis)); tmis = int_const_binop (MULT_EXPR, tmis, build_int_cst (integer_type_node, BITS_PER_UNIT), 1); data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis); } new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref); new_temp = make_ssa_name (vec_dest, new_stmt); TREE_OPERAND (new_stmt, 0) = new_temp; vect_finish_stmt_generation (stmt, new_stmt, bsi); } else /* software-pipeline the loads */ { /* Create: p1 = initial_addr; msq_init = *(floor(p1)) p2 = initial_addr + VS - 1; magic = have_builtin ? builtin_result : initial_address; indx = 0; loop { p2' = p2 + indx * vectype_size lsq = *(floor(p2')) vec_dest = realign_load (msq, lsq, magic) indx = indx + 1; msq = lsq; } */ tree offset; tree magic; tree phi_stmt; tree msq_init; tree msq, lsq; tree dataref_ptr; tree params; /* <1> Create msq_init = *(floor(p1)) in the loop preheader */ vec_dest = vect_create_destination_var (scalar_dest, vectype); data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &init_addr, true); data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref); new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref); new_temp = make_ssa_name (vec_dest, new_stmt); TREE_OPERAND (new_stmt, 0) = new_temp; new_bb = bsi_insert_on_edge_immediate (pe, new_stmt); gcc_assert (!new_bb); msq_init = TREE_OPERAND (new_stmt, 0); /* <2> Create lsq = *(floor(p2')) in the loop */ offset = build_int_cst (integer_type_node, GET_MODE_NUNITS (TYPE_MODE (vectype))); offset = int_const_binop (MINUS_EXPR, offset, integer_one_node, 1); vec_dest = vect_create_destination_var (scalar_dest, vectype); dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false); data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr); new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref); new_temp = make_ssa_name (vec_dest, new_stmt); TREE_OPERAND (new_stmt, 0) = new_temp; vect_finish_stmt_generation (stmt, new_stmt, bsi); lsq = TREE_OPERAND (new_stmt, 0); /* <3> */ if (targetm.vectorize.builtin_mask_for_load) { /* Create permutation mask, if required, in loop preheader. */ tree builtin_decl; params = build_tree_list (NULL_TREE, init_addr); vec_dest = vect_create_destination_var (scalar_dest, vectype); builtin_decl = targetm.vectorize.builtin_mask_for_load (); new_stmt = build_function_call_expr (builtin_decl, params); new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt); new_temp = make_ssa_name (vec_dest, new_stmt); TREE_OPERAND (new_stmt, 0) = new_temp; new_bb = bsi_insert_on_edge_immediate (pe, new_stmt); gcc_assert (!new_bb); magic = TREE_OPERAND (new_stmt, 0); } else { /* Use current address instead of init_addr for reduced reg pressure. */ magic = dataref_ptr; } /* <4> Create msq = phi in loop */ vec_dest = vect_create_destination_var (scalar_dest, vectype); msq = make_ssa_name (vec_dest, NULL_TREE); phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */ SSA_NAME_DEF_STMT (msq) = phi_stmt; add_phi_arg (&phi_stmt, msq_init, loop_preheader_edge (loop)); add_phi_arg (&phi_stmt, lsq, loop_latch_edge (loop)); /* <5> Create in loop */ vec_dest = vect_create_destination_var (scalar_dest, vectype); new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic); new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt); new_temp = make_ssa_name (vec_dest, new_stmt); TREE_OPERAND (new_stmt, 0) = new_temp; vect_finish_stmt_generation (stmt, new_stmt, bsi); } *vec_stmt = new_stmt; return true; } /* Function vect_transform_stmt. Create a vectorized stmt to replace STMT, and insert it at BSI. */ static bool vect_transform_stmt (tree stmt, block_stmt_iterator *bsi) { bool is_store = false; tree vec_stmt = NULL_TREE; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); bool done; switch (STMT_VINFO_TYPE (stmt_info)) { case op_vec_info_type: done = vectorizable_operation (stmt, bsi, &vec_stmt); gcc_assert (done); break; case assignment_vec_info_type: done = vectorizable_assignment (stmt, bsi, &vec_stmt); gcc_assert (done); break; case load_vec_info_type: done = vectorizable_load (stmt, bsi, &vec_stmt); gcc_assert (done); break; case store_vec_info_type: done = vectorizable_store (stmt, bsi, &vec_stmt); gcc_assert (done); is_store = true; break; default: if (vect_debug_details (NULL)) fprintf (dump_file, "stmt not supported."); gcc_unreachable (); } STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt; return is_store; } /* This function builds ni_name = number of iterations loop executes on the loop preheader. */ static tree vect_build_loop_niters (loop_vec_info loop_vinfo) { tree ni_name, stmt, var; edge pe; basic_block new_bb; struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); tree ni = unshare_expr (LOOP_VINFO_NITERS(loop_vinfo)); var = create_tmp_var (TREE_TYPE (ni), "niters"); add_referenced_tmp_var (var); if (TREE_CODE (ni) == INTEGER_CST) { /* This case is generated when treating a known loop bound indivisible by VF. Here we cannot use force_gimple_operand. */ stmt = build (MODIFY_EXPR, void_type_node, var, ni); ni_name = make_ssa_name (var, stmt); TREE_OPERAND (stmt, 0) = ni_name; } else ni_name = force_gimple_operand (ni, &stmt, false, var); pe = loop_preheader_edge (loop); new_bb = bsi_insert_on_edge_immediate (pe, stmt); if (new_bb) add_bb_to_loop (new_bb, EDGE_PRED (new_bb, 0)->src->loop_father); return ni_name; } /* This function generates the following statements: ni_name = number of iterations loop executes ratio = ni_name / vf ratio_mult_vf_name = ratio * vf and places them at the loop preheader edge. */ static void vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo, tree *ni_name_p, tree *ratio_mult_vf_name_p, tree *ratio_p) { edge pe; basic_block new_bb; tree stmt, ni_name; tree ratio; tree ratio_mult_vf_name, ratio_mult_vf; struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); tree ni = LOOP_VINFO_NITERS(loop_vinfo); int vf, i; /* Generate temporary variable that contains number of iterations loop executes. */ ni_name = vect_build_loop_niters (loop_vinfo); /* ratio = ni / vf. vf is power of 2; then if ratio = = n >> log2 (vf). */ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); ratio = vect_build_symbol_bound (ni_name, vf, loop); /* Update initial conditions of loop copy. */ /* ratio_mult_vf = ratio * vf; then if ratio_mult_vf = ratio << log2 (vf). */ i = exact_log2 (vf); ratio_mult_vf = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf"); add_referenced_tmp_var (ratio_mult_vf); ratio_mult_vf_name = make_ssa_name (ratio_mult_vf, NULL_TREE); stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name, build2 (LSHIFT_EXPR, TREE_TYPE (ratio), ratio, build_int_cst (unsigned_type_node, i))); SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt; pe = loop_preheader_edge (loop); new_bb = bsi_insert_on_edge_immediate (pe, stmt); if (new_bb) add_bb_to_loop (new_bb, EDGE_PRED (new_bb, 0)->src->loop_father); *ni_name_p = ni_name; *ratio_mult_vf_name_p = ratio_mult_vf_name; *ratio_p = ratio; return; } /* This function generates stmt tmp = n / vf; and attaches it to preheader of LOOP. */ static tree vect_build_symbol_bound (tree n, int vf, struct loop * loop) { tree var, stmt, var_name; edge pe; basic_block new_bb; int i; /* create temporary variable */ var = create_tmp_var (TREE_TYPE (n), "bnd"); add_referenced_tmp_var (var); var_name = make_ssa_name (var, NULL_TREE); /* vf is power of 2; then n/vf = n >> log2 (vf). */ i = exact_log2 (vf); stmt = build2 (MODIFY_EXPR, void_type_node, var_name, build2 (RSHIFT_EXPR, TREE_TYPE (n), n, build_int_cst (unsigned_type_node,i))); SSA_NAME_DEF_STMT (var_name) = stmt; pe = loop_preheader_edge (loop); new_bb = bsi_insert_on_edge_immediate (pe, stmt); if (new_bb) add_bb_to_loop (new_bb, EDGE_PRED (new_bb, 0)->src->loop_father); else if (vect_debug_details (NULL)) fprintf (dump_file, "New bb on preheader edge was not generated."); return var_name; } /* Function vect_transform_loop_bound. Create a new exit condition for the loop. */ static void vect_transform_loop_bound (loop_vec_info loop_vinfo, tree niters) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); edge exit_edge = loop->single_exit; block_stmt_iterator loop_exit_bsi = bsi_last (exit_edge->src); tree indx_before_incr, indx_after_incr; tree orig_cond_expr; HOST_WIDE_INT old_N = 0; int vf; tree cond_stmt; tree new_loop_bound; bool symbol_niters; tree cond; tree lb_type; symbol_niters = !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo); if (!symbol_niters) old_N = LOOP_VINFO_INT_NITERS (loop_vinfo); vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); orig_cond_expr = LOOP_VINFO_EXIT_COND (loop_vinfo); #ifdef ENABLE_CHECKING gcc_assert (orig_cond_expr); #endif gcc_assert (orig_cond_expr == bsi_stmt (loop_exit_bsi)); create_iv (integer_zero_node, integer_one_node, NULL_TREE, loop, &loop_exit_bsi, false, &indx_before_incr, &indx_after_incr); /* bsi_insert is using BSI_NEW_STMT. We need to bump it back to point to the exit condition. */ bsi_next (&loop_exit_bsi); gcc_assert (bsi_stmt (loop_exit_bsi) == orig_cond_expr); /* new loop exit test: */ lb_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (orig_cond_expr, 0), 1)); if (!symbol_niters) new_loop_bound = fold_convert (lb_type, build_int_cst (unsigned_type_node, old_N/vf)); else new_loop_bound = niters; if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */ cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, new_loop_bound); else /* 'then' edge loops back. */ cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, new_loop_bound); cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond_expr), cond, TREE_OPERAND (orig_cond_expr, 1), TREE_OPERAND (orig_cond_expr, 2)); bsi_insert_before (&loop_exit_bsi, cond_stmt, BSI_SAME_STMT); /* remove old loop exit test: */ bsi_remove (&loop_exit_bsi); if (vect_debug_details (NULL)) print_generic_expr (dump_file, cond_stmt, TDF_SLIM); } /* Advance IVs of the loop (to be vectorized later) to correct position. When loop is vectorized, its IVs are not always advanced correctly since vectorization changes the loop count. It's ok in case epilog loop was not produced after original one before vectorization process (the vectorizer checks that there is no uses of IVs after the loop). However, in case the epilog loop was peeled, IVs from original loop are used in epilog loop and should be advanced correctly. Here we use access functions of IVs and number of iteration loop executes in order to bring IVs to correct position. Function also update phis of basic block at the exit from the loop. */ static void vect_update_ivs_after_vectorizer (struct loop *loop, tree niters) { edge exit = loop->exit_edges[0]; tree phi; edge latch = loop_latch_edge (loop); /* Generate basic block at the exit from the loop. */ basic_block new_bb = split_edge (exit); add_bb_to_loop (new_bb, EDGE_SUCC (new_bb, 0)->dest->loop_father); loop->exit_edges[0] = EDGE_PRED (new_bb, 0); for (phi = phi_nodes (loop->header); phi; phi = TREE_CHAIN (phi)) { tree access_fn = NULL; tree evolution_part; tree init_expr; tree step_expr; tree var, stmt, ni, ni_name; int i, j, num_elem1, num_elem2; tree phi1; block_stmt_iterator last_bsi; /* Skip virtual phi's. The data dependences that are associated with virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */ if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi)))) { if (vect_debug_details (NULL)) fprintf (dump_file, "virtual phi. skip."); continue; } access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi)); evolution_part = evolution_part_in_loop_num (access_fn, loop->num); /* FORNOW: We do not transform initial conditions of IVs which evolution functions are a polynomial of degree >= 2 or exponential. */ step_expr = evolution_part; init_expr = initial_condition (access_fn); ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr), build2 (MULT_EXPR, TREE_TYPE (niters), niters, step_expr), init_expr); var = create_tmp_var (TREE_TYPE (init_expr), "tmp"); add_referenced_tmp_var (var); ni_name = force_gimple_operand (ni, &stmt, false, var); /* Insert stmt into new_bb. */ last_bsi = bsi_last (new_bb); bsi_insert_after (&last_bsi, stmt, BSI_NEW_STMT); /* Fix phi expressions in duplicated loop. */ num_elem1 = PHI_NUM_ARGS (phi); for (i = 0; i < num_elem1; i++) if (PHI_ARG_EDGE (phi, i) == latch) { tree def = PHI_ARG_DEF (phi, i); for (phi1 = phi_nodes (EDGE_SUCC (new_bb, 0)->dest); phi1; phi1 = TREE_CHAIN (phi1)) { num_elem2 = PHI_NUM_ARGS (phi1); for (j = 0; j < num_elem2; j++) if (PHI_ARG_DEF (phi1, j) == def) { SET_PHI_ARG_DEF (phi1, j, ni_name); PHI_ARG_EDGE (phi1, j) = EDGE_SUCC (new_bb, 0); break; } } break; } } } /* This function is the main driver of transformation to be done for loop before vectorizing it in case of unknown loop bound. */ static void vect_transform_for_unknown_loop_bound (loop_vec_info loop_vinfo, tree * ratio, struct loops *loops) { tree ni_name, ratio_mult_vf_name; #ifdef ENABLE_CHECKING int loop_num; #endif struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); struct loop *new_loop; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); /* Generate the following variables on the preheader of original loop: ni_name = number of iteration the original loop executes ratio = ni_name / vf ratio_mult_vf_name = ratio * vf */ vect_generate_tmps_on_preheader (loop_vinfo, &ni_name, &ratio_mult_vf_name, ratio); /* Update loop info. */ loop->pre_header = loop_preheader_edge (loop)->src; loop->pre_header_edges[0] = loop_preheader_edge (loop); #ifdef ENABLE_CHECKING loop_num = loop->num; #endif new_loop = tree_duplicate_loop_to_edge (loop, loops, loop->exit_edges[0], ratio_mult_vf_name, ni_name, true); #ifdef ENABLE_CHECKING gcc_assert (new_loop); gcc_assert (loop_num == loop->num); #endif /* Update IVs of original loop as if they were advanced by ratio_mult_vf_name steps. */ #ifdef ENABLE_CHECKING /* Check existence of intermediate bb. */ gcc_assert (loop->exit_edges[0]->dest == new_loop->pre_header); #endif vect_update_ivs_after_vectorizer (loop, ratio_mult_vf_name); return; } /* Function vect_gen_niters_for_prolog_loop Set the number of iterations for the loop represented by LOOP_VINFO to the minimum between NITERS (the original iteration count of the loop) and the misalignment DR - the first data reference in the list LOOP_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of this loop, the data reference DR will refer to an aligned location. */ static tree vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree niters) { struct data_reference *dr = LOOP_UNALIGNED_DR (loop_vinfo, 0); int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); tree var, stmt; tree iters, iters_name; edge pe; basic_block new_bb; tree dr_stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt); tree start_addr, byte_miss_align, elem_miss_align; int vec_type_align = GET_MODE_ALIGNMENT (TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info))) / BITS_PER_UNIT; tree tmp1, tmp2; tree new_stmt_list = NULL_TREE; start_addr = vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmt_list, NULL_TREE); pe = loop_preheader_edge (loop); new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list); if (new_bb) add_bb_to_loop (new_bb, EDGE_PRED (new_bb, 0)->src->loop_father); byte_miss_align = build (BIT_AND_EXPR, integer_type_node, start_addr, build (MINUS_EXPR, integer_type_node, build_int_cst (unsigned_type_node, vec_type_align), integer_one_node)); tmp1 = build_int_cst (unsigned_type_node, vec_type_align/vf); elem_miss_align = build (FLOOR_DIV_EXPR, integer_type_node, byte_miss_align, tmp1); tmp2 = build (BIT_AND_EXPR, integer_type_node, build (MINUS_EXPR, integer_type_node, build_int_cst (unsigned_type_node, vf), elem_miss_align), build (MINUS_EXPR, integer_type_node, build_int_cst (unsigned_type_node, vf), integer_one_node)); iters = build2 (MIN_EXPR, TREE_TYPE (tmp2), tmp2, niters); var = create_tmp_var (TREE_TYPE (iters), "iters"); add_referenced_tmp_var (var); iters_name = force_gimple_operand (iters, &stmt, false, var); /* Insert stmt on loop preheader edge. */ pe = loop_preheader_edge (loop); new_bb = bsi_insert_on_edge_immediate (pe, stmt); if (new_bb) add_bb_to_loop (new_bb, EDGE_PRED (new_bb, 0)->src->loop_father); return iters_name; } /* Function vect_update_niters_after_peeling NITERS iterations were peeled from the loop represented by LOOP_VINFO. The new number of iterations is therefore original_niters - NITERS. Record the new number of iterations in LOOP_VINFO. */ static void vect_update_niters_after_peeling (loop_vec_info loop_vinfo, tree niters) { tree n_iters = LOOP_VINFO_NITERS (loop_vinfo); LOOP_VINFO_NITERS (loop_vinfo) = build (MINUS_EXPR, integer_type_node, n_iters, niters); } /* Function vect_update_inits_of_dr NITERS iterations were peeled from LOOP. DR represents a data reference in LOOP. This function updates the information recorded in DR to account for the fact that the first NITERS iterations had already been executed. Specifically, it updates the initial_condition of the access_function of DR. */ static void vect_update_inits_of_dr (struct data_reference *dr, struct loop *loop, tree niters) { tree access_fn = DR_ACCESS_FN (dr, 0); tree init, init_new, step; step = evolution_part_in_loop_num (access_fn, loop->num); init = initial_condition (access_fn); init_new = build (PLUS_EXPR, TREE_TYPE (init), build (MULT_EXPR, TREE_TYPE (niters), niters, step), init); DR_ACCESS_FN (dr, 0) = chrec_replace_initial_condition (access_fn, init_new); return; } /* Function vect_update_inits_of_drs NITERS iterations were peeled from the loop represented by LOOP_VINFO. This function updates the information recorded for the data references in the loop to account for the fact that the first NITERS iterations had already been executed. Specifically, it updates the initial_condition of the access_function of all the data_references in the loop. */ static void vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters) { unsigned int i; varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo); varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo); struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\n<>\n"); for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i); vect_update_inits_of_dr (dr, loop, niters); } for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i); vect_update_inits_of_dr (dr, loop, niters); DR_MISALIGNMENT (dr) = -1; } } /* Function vect_do_peeling_for_alignment Peel the first 'niters' iterations of the loop represented by LOOP_VINFO. 'niters' is set to the misalignment of one of the data references in the loop, thereby forcing it to refer to an aligned location at the beginning of the execution of this loop. The data reference for which we are peeling is chosen from LOOP_UNALIGNED_DR. */ static void vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); tree niters_of_prolog_loop, ni_name; struct data_reference *dr = LOOP_UNALIGNED_DR (loop_vinfo, 0); if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); ni_name = vect_build_loop_niters (loop_vinfo); niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name); /* Peel the prolog loop and iterate it niters_of_prolog_loop. */ tree_duplicate_loop_to_edge (loop, loops, loop_preheader_edge(loop), niters_of_prolog_loop, ni_name, false); /* Update stmt info of dr according to which we peeled. */ DR_MISALIGNMENT (dr) = 0; /* Update number of times loop executes. */ vect_update_niters_after_peeling (loop_vinfo, niters_of_prolog_loop); /* Update all inits of access functions of all data refs. */ vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop); /* After peeling we have to reset scalar evolution analyzer. */ scev_reset (); return; } /* Function vect_transform_loop. The analysis phase has determined that the loop is vectorizable. Vectorize the loop - created vectorized stmts to replace the scalar stmts in the loop, and update the loop exit condition. */ static void vect_transform_loop (loop_vec_info loop_vinfo, struct loops *loops ATTRIBUTE_UNUSED) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); int nbbs = loop->num_nodes; block_stmt_iterator si; int i; tree ratio = NULL; int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo); if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); /* Peel the loop if there are data refs with unknown alignment. Only one data ref with unknown store is allowed. */ if (LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo)) vect_do_peeling_for_alignment (loop_vinfo, loops); /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a compile time constant), then an epilog loop needs to be created. We therefore duplicate the initial loop. The original loop will be vectorized, and will compute the first (n/VF) iterations. The second copy of the loop will remain serial and will compute the remaining (n%VF) iterations. (VF is the vectorization factor). */ if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)) vect_transform_for_unknown_loop_bound (loop_vinfo, &ratio, loops); /* FORNOW: we'll treat the case where niters is constant and niters % vf != 0 in the way similar to one with symbolic niters. For this we'll generate variable which value is equal to niters. */ if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && (LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)) vect_transform_for_unknown_loop_bound (loop_vinfo, &ratio, loops); /* 1) Make sure the loop header has exactly two entries 2) Make sure we have a preheader basic block. */ gcc_assert (EDGE_COUNT (loop->header->preds) == 2); loop_split_edge_with (loop_preheader_edge (loop), NULL); /* FORNOW: the vectorizer supports only loops which body consist of one basic block (header + empty latch). When the vectorizer will support more involved loop forms, the order by which the BBs are traversed need to be reconsidered. */ for (i = 0; i < nbbs; i++) { basic_block bb = bbs[i]; for (si = bsi_start (bb); !bsi_end_p (si);) { tree stmt = bsi_stmt (si); stmt_vec_info stmt_info; bool is_store; if (vect_debug_details (NULL)) { fprintf (dump_file, "------>vectorizing statement: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } stmt_info = vinfo_for_stmt (stmt); gcc_assert (stmt_info); if (!STMT_VINFO_RELEVANT_P (stmt_info)) { bsi_next (&si); continue; } #ifdef ENABLE_CHECKING /* FORNOW: Verify that all stmts operate on the same number of units and no inner unrolling is necessary. */ gcc_assert (GET_MODE_NUNITS (TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info))) == vectorization_factor); #endif /* -------- vectorize statement ------------ */ if (vect_debug_details (NULL)) fprintf (dump_file, "transform statement."); is_store = vect_transform_stmt (stmt, &si); if (is_store) { /* free the attached stmt_vec_info and remove the stmt. */ stmt_ann_t ann = stmt_ann (stmt); free (stmt_info); set_stmt_info (ann, NULL); bsi_remove (&si); continue; } bsi_next (&si); } /* stmts in BB */ } /* BBs in loop */ vect_transform_loop_bound (loop_vinfo, ratio); if (vect_debug_details (loop)) fprintf (dump_file,"Success! loop vectorized."); if (vect_debug_stats (loop)) fprintf (dump_file, "LOOP VECTORIZED."); } /* Function vect_is_simple_use. Input: LOOP - the loop that is being vectorized. OPERAND - operand of a stmt in LOOP. DEF - the defining stmt in case OPERAND is an SSA_NAME. Returns whether a stmt with OPERAND can be vectorized. Supportable operands are constants, loop invariants, and operands that are defined by the current iteration of the loop. Unsupportable operands are those that are defined by a previous iteration of the loop (as is the case in reduction/induction computations). */ static bool vect_is_simple_use (tree operand, struct loop *loop, tree *def) { tree def_stmt; basic_block bb; if (def) *def = NULL_TREE; if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST) return true; if (TREE_CODE (operand) != SSA_NAME) return false; def_stmt = SSA_NAME_DEF_STMT (operand); if (def_stmt == NULL_TREE ) { if (vect_debug_details (NULL)) fprintf (dump_file, "no def_stmt."); return false; } /* empty stmt is expected only in case of a function argument. (Otherwise - we expect a phi_node or a modify_expr). */ if (IS_EMPTY_STMT (def_stmt)) { tree arg = TREE_OPERAND (def_stmt, 0); if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST) return true; if (vect_debug_details (NULL)) { fprintf (dump_file, "Unexpected empty stmt: "); print_generic_expr (dump_file, def_stmt, TDF_SLIM); } return false; } /* phi_node inside the loop indicates an induction/reduction pattern. This is not supported yet. */ bb = bb_for_stmt (def_stmt); if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb)) { if (vect_debug_details (NULL)) fprintf (dump_file, "reduction/induction - unsupported."); return false; /* FORNOW: not supported yet. */ } /* Expecting a modify_expr or a phi_node. */ if (TREE_CODE (def_stmt) == MODIFY_EXPR || TREE_CODE (def_stmt) == PHI_NODE) { if (def) *def = def_stmt; return true; } return false; } /* Function vect_analyze_operations. Scan the loop stmts and make sure they are all vectorizable. */ static bool vect_analyze_operations (loop_vec_info loop_vinfo) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); int nbbs = loop->num_nodes; block_stmt_iterator si; int vectorization_factor = 0; int i; bool ok; tree scalar_type; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); for (i = 0; i < nbbs; i++) { basic_block bb = bbs[i]; for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) { tree stmt = bsi_stmt (si); int nunits; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype; if (vect_debug_details (NULL)) { fprintf (dump_file, "==> examining statement: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } gcc_assert (stmt_info); /* skip stmts which do not need to be vectorized. this is expected to include: - the COND_EXPR which is the loop exit condition - any LABEL_EXPRs in the loop - computations that are used only for array indexing or loop control */ if (!STMT_VINFO_RELEVANT_P (stmt_info)) { if (vect_debug_details (NULL)) fprintf (dump_file, "irrelevant."); continue; } if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt)))) { if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: vector stmt in loop:"); print_generic_expr (dump_file, stmt, TDF_SLIM); } return false; } if (STMT_VINFO_DATA_REF (stmt_info)) scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info))); else if (TREE_CODE (stmt) == MODIFY_EXPR) scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0)); else scalar_type = TREE_TYPE (stmt); if (vect_debug_details (NULL)) { fprintf (dump_file, "get vectype for scalar type: "); print_generic_expr (dump_file, scalar_type, TDF_SLIM); } vectype = get_vectype_for_scalar_type (scalar_type); if (!vectype) { if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: unsupported data-type "); print_generic_expr (dump_file, scalar_type, TDF_SLIM); } return false; } if (vect_debug_details (NULL)) { fprintf (dump_file, "vectype: "); print_generic_expr (dump_file, vectype, TDF_SLIM); } STMT_VINFO_VECTYPE (stmt_info) = vectype; ok = (vectorizable_operation (stmt, NULL, NULL) || vectorizable_assignment (stmt, NULL, NULL) || vectorizable_load (stmt, NULL, NULL) || vectorizable_store (stmt, NULL, NULL)); if (!ok) { if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: stmt not supported: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return false; } nunits = GET_MODE_NUNITS (TYPE_MODE (vectype)); if (vect_debug_details (NULL)) fprintf (dump_file, "nunits = %d", nunits); if (vectorization_factor) { /* FORNOW: don't allow mixed units. This restriction will be relaxed in the future. */ if (nunits != vectorization_factor) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: mixed data-types"); return false; } } else vectorization_factor = nunits; #ifdef ENABLE_CHECKING gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type)) * vectorization_factor == UNITS_PER_SIMD_WORD); #endif } } /* TODO: Analyze cost. Decide if worth while to vectorize. */ if (vectorization_factor <= 1) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: unsupported data-type"); return false; } LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor; if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && vect_debug_details (NULL)) fprintf (dump_file, "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC, vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo)); if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0) { /* In this case we have to generate epilog loop, that can be done only for loops with one entry edge. */ if (LOOP_VINFO_LOOP (loop_vinfo)->num_entries != 1 || !(LOOP_VINFO_LOOP (loop_vinfo)->pre_header)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: more than one entry."); return false; } } return true; } /* Function exist_non_indexing_operands_for_use_p USE is one of the uses attached to STMT. Check if USE is used in STMT for anything other than indexing an array. */ static bool exist_non_indexing_operands_for_use_p (tree use, tree stmt) { tree operand; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); /* USE corresponds to some operand in STMT. If there is no data reference in STMT, then any operand that corresponds to USE is not indexing an array. */ if (!STMT_VINFO_DATA_REF (stmt_info)) return true; /* STMT has a data_ref. FORNOW this means that its of one of the following forms: -1- ARRAY_REF = var -2- var = ARRAY_REF (This should have been verified in analyze_data_refs). 'var' in the second case corresponds to a def, not a use, so USE cannot correspond to any operands that are not used for array indexing. Therefore, all we need to check is if STMT falls into the first case, and whether var corresponds to USE. */ if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME) return false; operand = TREE_OPERAND (stmt, 1); if (TREE_CODE (operand) != SSA_NAME) return false; if (operand == use) return true; return false; } /* Function vect_is_simple_iv_evolution. FORNOW: A simple evolution of an induction variables in the loop is considered a polynomial evolution with constant step. */ static bool vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init, tree * step, bool strict) { tree init_expr; tree step_expr; tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb); /* When there is no evolution in this loop, the evolution function is not "simple". */ if (evolution_part == NULL_TREE) return false; /* When the evolution is a polynomial of degree >= 2 the evolution function is not "simple". */ if (tree_is_chrec (evolution_part)) return false; step_expr = evolution_part; init_expr = unshare_expr (initial_condition (access_fn)); if (vect_debug_details (NULL)) { fprintf (dump_file, "step: "); print_generic_expr (dump_file, step_expr, TDF_SLIM); fprintf (dump_file, ", init: "); print_generic_expr (dump_file, init_expr, TDF_SLIM); } *init = init_expr; *step = step_expr; if (TREE_CODE (step_expr) != INTEGER_CST) { if (vect_debug_details (NULL)) fprintf (dump_file, "step unknown."); return false; } if (strict) if (!integer_onep (step_expr)) { if (vect_debug_details (NULL)) print_generic_expr (dump_file, step_expr, TDF_SLIM); return false; } return true; } /* Function vect_analyze_scalar_cycles. Examine the cross iteration def-use cycles of scalar variables, by analyzing the loop (scalar) PHIs; verify that the cross iteration def-use cycles that they represent do not impede vectorization. FORNOW: Reduction as in the following loop, is not supported yet: loop1: for (i=0; iheader; tree dummy; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi)) { tree access_fn = NULL; if (vect_debug_details (NULL)) { fprintf (dump_file, "Analyze phi: "); print_generic_expr (dump_file, phi, TDF_SLIM); } /* Skip virtual phi's. The data dependences that are associated with virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */ if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi)))) { if (vect_debug_details (NULL)) fprintf (dump_file, "virtual phi. skip."); continue; } /* Analyze the evolution function. */ /* FORNOW: The only scalar cross-iteration cycles that we allow are those of loop induction variables; This property is verified here. Furthermore, if that induction variable is used in an operation that needs to be vectorized (i.e, is not solely used to index arrays and check the exit condition) - we do not support its vectorization yet. This property is verified in vect_is_simple_use, during vect_analyze_operations. */ access_fn = /* instantiate_parameters (loop,*/ analyze_scalar_evolution (loop, PHI_RESULT (phi)); if (!access_fn) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: unsupported scalar cycle."); return false; } if (vect_debug_details (NULL)) { fprintf (dump_file, "Access function of PHI: "); print_generic_expr (dump_file, access_fn, TDF_SLIM); } if (!vect_is_simple_iv_evolution (loop->num, access_fn, &dummy, &dummy, false)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: unsupported scalar cycle."); return false; } } return true; } /* Function vect_analyze_data_ref_dependence. Return TRUE if there (might) exist a dependence between a memory-reference DRA and a memory-reference DRB. */ static bool vect_analyze_data_ref_dependence (struct data_reference *dra, struct data_reference *drb, struct loop *loop) { bool differ_p; struct data_dependence_relation *ddr; if (!array_base_name_differ_p (dra, drb, &differ_p)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: can't determine dependence between: "); print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM); fprintf (dump_file, " and "); print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM); } return true; } if (differ_p) return false; ddr = initialize_data_dependence_relation (dra, drb); compute_affine_dependence (ddr); if (DDR_ARE_DEPENDENT (ddr) == chrec_known) return false; if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: possible dependence between data-refs "); print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM); fprintf (dump_file, " and "); print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM); } return true; } /* Function vect_analyze_data_ref_dependences. Examine all the data references in the loop, and make sure there do not exist any data dependences between them. TODO: dependences which distance is greater than the vectorization factor can be ignored. */ static bool vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo) { unsigned int i, j; varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo); varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo); struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); /* Examine store-store (output) dependences. */ if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); if (vect_debug_details (NULL)) fprintf (dump_file, "compare all store-store pairs."); for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++) { for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++) { struct data_reference *dra = VARRAY_GENERIC_PTR (loop_write_refs, i); struct data_reference *drb = VARRAY_GENERIC_PTR (loop_write_refs, j); if (vect_analyze_data_ref_dependence (dra, drb, loop)) return false; } } /* Examine load-store (true/anti) dependences. */ if (vect_debug_details (NULL)) fprintf (dump_file, "compare all load-store pairs."); for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++) { for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++) { struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i); struct data_reference *drb = VARRAY_GENERIC_PTR (loop_write_refs, j); if (vect_analyze_data_ref_dependence (dra, drb, loop)) return false; } } return true; } /* Function vect_get_first_index. REF is a data reference. If it is an ARRAY_REF: if its lower bound is simple enough, put it in ARRAY_FIRST_INDEX and return TRUE; otherwise - return FALSE. If it is not an ARRAY_REF: REF has no "first index"; ARRAY_FIRST_INDEX in zero, and the function returns TRUE. */ static bool vect_get_first_index (tree ref, tree *array_first_index) { tree array_start; if (TREE_CODE (ref) != ARRAY_REF) *array_first_index = size_zero_node; else { array_start = array_ref_low_bound (ref); if (!host_integerp (array_start,0)) { if (vect_debug_details (NULL)) { fprintf (dump_file, "array min val not simple integer cst."); print_generic_expr (dump_file, array_start, TDF_DETAILS); } return false; } *array_first_index = array_start; } return true; } /* Function vect_compute_array_base_alignment. A utility function of vect_compute_array_ref_alignment. Compute the misalignment of ARRAY in bits. Input: ARRAY - an array_ref (possibly multidimensional) of type ARRAY_TYPE. VECTYPE - we are interested in the misalignment modulo the size of vectype. if NULL: don't compute misalignment, just return the base of ARRAY. PREV_DIMENSIONS - initialized to one. MISALIGNMENT - the computed misalignment in bits. Output: If VECTYPE is not NULL: Return NULL_TREE if the misalignment cannot be computed. Otherwise, return the base of the array, and put the computed misalignment in MISALIGNMENT. If VECTYPE is NULL: Return the base of the array. For a[idx_N]...[idx_2][idx_1][idx_0], the address of a[idx_N]...[idx_2][idx_1] is {&a + idx_1 * dim_0 + idx_2 * dim_0 * dim_1 + ... ... + idx_N * dim_0 * ... * dim_N-1}. (The misalignment of &a is not checked here). Note, that every term contains dim_0, therefore, if dim_0 is a multiple of NUNITS, the whole sum is a multiple of NUNITS. Otherwise, if idx_1 is constant, and dim_1 is a multiple of NUINTS, we can say that the misalignment of the sum is equal to the misalignment of {idx_1 * dim_0}. If idx_1 is not constant, we can't determine this array misalignment, and we return false. We proceed recursively in this manner, accumulating total misalignment and the multiplication of previous dimensions for correct misalignment calculation. */ static tree vect_compute_array_base_alignment (tree array, tree vectype, tree *prev_dimensions, tree *misalignment) { tree index; tree domain; tree dimension_size; tree mis; tree bits_per_vectype; tree bits_per_vectype_unit; /* The 'stop condition' of the recursion. */ if (TREE_CODE (array) != ARRAY_REF) return array; if (!vectype) /* Just get the base decl. */ return vect_compute_array_base_alignment (TREE_OPERAND (array, 0), NULL, NULL, NULL); if (!host_integerp (*misalignment, 1) || TREE_OVERFLOW (*misalignment) || !host_integerp (*prev_dimensions, 1) || TREE_OVERFLOW (*prev_dimensions)) return NULL_TREE; domain = TYPE_DOMAIN (TREE_TYPE (array)); dimension_size = int_const_binop (PLUS_EXPR, int_const_binop (MINUS_EXPR, TYPE_MAX_VALUE (domain), TYPE_MIN_VALUE (domain), 1), size_one_node, 1); /* Check if the dimension size is a multiple of NUNITS, the remaining sum is a multiple of NUNITS: dimension_size % GET_MODE_NUNITS (TYPE_MODE (vectype)) == 0 ? */ mis = int_const_binop (TRUNC_MOD_EXPR, dimension_size, build_int_cst (NULL_TREE, GET_MODE_NUNITS (TYPE_MODE (vectype))), 1); if (integer_zerop (mis)) /* This array is aligned. Continue just in order to get the base decl. */ return vect_compute_array_base_alignment (TREE_OPERAND (array, 0), NULL, NULL, NULL); index = TREE_OPERAND (array, 1); if (!host_integerp (index, 1)) /* The current index is not constant. */ return NULL_TREE; index = int_const_binop (MINUS_EXPR, index, TYPE_MIN_VALUE (domain), 0); bits_per_vectype = fold_convert (unsigned_type_node, build_int_cst (NULL_TREE, BITS_PER_UNIT * GET_MODE_SIZE (TYPE_MODE (vectype)))); bits_per_vectype_unit = fold_convert (unsigned_type_node, build_int_cst (NULL_TREE, BITS_PER_UNIT * GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (vectype))))); /* Add {idx_i * dim_i-1 * ... * dim_0 } to the misalignment computed earlier: *misalignment = (*misalignment + index_val * dimension_size * *prev_dimensions) % vectype_nunits; */ mis = int_const_binop (MULT_EXPR, index, dimension_size, 1); mis = int_const_binop (MULT_EXPR, mis, *prev_dimensions, 1); mis = int_const_binop (MULT_EXPR, mis, bits_per_vectype_unit, 1); mis = int_const_binop (PLUS_EXPR, *misalignment, mis, 1); *misalignment = int_const_binop (TRUNC_MOD_EXPR, mis, bits_per_vectype, 1); *prev_dimensions = int_const_binop (MULT_EXPR, *prev_dimensions, dimension_size, 1); return vect_compute_array_base_alignment (TREE_OPERAND (array, 0), vectype, prev_dimensions, misalignment); } /* Function vect_compute_data_ref_alignment Compute the misalignment of the data reference DR. Output: 1. If during the misalignment computation it is found that the data reference cannot be vectorized then false is returned. 2. DR_MISALIGNMENT (DR) is defined. FOR NOW: No analysis is actually performed. Misalignment is calculated only for trivial cases. TODO. */ static bool vect_compute_data_ref_alignment (struct data_reference *dr, loop_vec_info loop_vinfo) { tree stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree ref = DR_REF (dr); tree vectype; tree scalar_type; tree offset = size_zero_node; tree base, bit_offset, alignment; tree unit_bits = fold_convert (unsigned_type_node, build_int_cst (NULL_TREE, BITS_PER_UNIT)); tree dr_base; bool base_aligned_p; if (vect_debug_details (NULL)) fprintf (dump_file, "vect_compute_data_ref_alignment:"); /* Initialize misalignment to unknown. */ DR_MISALIGNMENT (dr) = -1; scalar_type = TREE_TYPE (ref); vectype = get_vectype_for_scalar_type (scalar_type); if (!vectype) { if (vect_debug_details (NULL)) { fprintf (dump_file, "no vectype for stmt: "); print_generic_expr (dump_file, stmt, TDF_SLIM); fprintf (dump_file, " scalar_type: "); print_generic_expr (dump_file, scalar_type, TDF_DETAILS); } /* It is not possible to vectorize this data reference. */ return false; } gcc_assert (TREE_CODE (ref) == ARRAY_REF || TREE_CODE (ref) == INDIRECT_REF); if (TREE_CODE (ref) == ARRAY_REF) dr_base = ref; else dr_base = STMT_VINFO_VECT_DR_BASE (stmt_info); base = vect_get_base_and_bit_offset (dr, dr_base, vectype, loop_vinfo, &bit_offset, &base_aligned_p); if (!base) { if (vect_debug_details (NULL)) { fprintf (dump_file, "Unknown alignment for access: "); print_generic_expr (dump_file, STMT_VINFO_VECT_DR_BASE (stmt_info), TDF_SLIM); } return true; } if (!base_aligned_p) { if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))) { if (vect_debug_details (NULL)) { fprintf (dump_file, "can't force alignment of ref: "); print_generic_expr (dump_file, ref, TDF_SLIM); } return true; } /* Force the alignment of the decl. NOTE: This is the only change to the code we make during the analysis phase, before deciding to vectorize the loop. */ if (vect_debug_details (NULL)) fprintf (dump_file, "force alignment"); DECL_ALIGN (base) = TYPE_ALIGN (vectype); DECL_USER_ALIGN (base) = TYPE_ALIGN (vectype); } /* At this point we assume that the base is aligned, and the offset from it (including index, if relevant) has been computed and is in BIT_OFFSET. */ gcc_assert (base_aligned_p || (TREE_CODE (base) == VAR_DECL && DECL_ALIGN (base) >= TYPE_ALIGN (vectype))); /* Convert into bytes. */ offset = int_const_binop (TRUNC_DIV_EXPR, bit_offset, unit_bits, 1); /* Check that there is no remainder in bits. */ bit_offset = int_const_binop (TRUNC_MOD_EXPR, bit_offset, unit_bits, 1); if (!integer_zerop (bit_offset)) { if (vect_debug_details (NULL)) { fprintf (dump_file, "bit offset alignment: "); print_generic_expr (dump_file, bit_offset, TDF_SLIM); } return false; } /* Alignment required, in bytes: */ alignment = fold_convert (unsigned_type_node, build_int_cst (NULL_TREE, TYPE_ALIGN (vectype)/BITS_PER_UNIT)); /* Modulo alignment. */ offset = int_const_binop (TRUNC_MOD_EXPR, offset, alignment, 0); if (!host_integerp (offset, 1) || TREE_OVERFLOW (offset)) { if (vect_debug_details (NULL)) fprintf (dump_file, "unexpected misalign value"); return false; } DR_MISALIGNMENT (dr) = tree_low_cst (offset, 1); if (vect_debug_details (NULL)) fprintf (dump_file, "misalign = %d", DR_MISALIGNMENT (dr)); return true; } /* Function vect_compute_array_ref_alignment Compute the alignment of an array-ref. The alignment we compute here is relative to TYPE_ALIGN(VECTYPE) boundary. Output: OFFSET - the alignment in bits Return value - the base of the array-ref. E.g, if the array-ref is a.b[k].c[i][j] the returned base is a.b[k].c */ static tree vect_compute_array_ref_alignment (struct data_reference *dr, loop_vec_info loop_vinfo, tree vectype, tree *offset) { tree array_first_index = size_zero_node; tree init; tree ref = DR_REF (dr); tree scalar_type = TREE_TYPE (ref); tree oprnd0 = TREE_OPERAND (ref, 0); tree dims = size_one_node; tree misalign = size_zero_node; tree next_ref, this_offset = size_zero_node; tree nunits; tree nbits; if (TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE) /* The reference is an array without its last index. */ next_ref = vect_compute_array_base_alignment (ref, vectype, &dims, &misalign); else next_ref = vect_compute_array_base_alignment (oprnd0, vectype, &dims, &misalign); if (!vectype) /* Alignment is not requested. Just return the base. */ return next_ref; /* Compute alignment. */ if (!host_integerp (misalign, 1) || TREE_OVERFLOW (misalign) || !next_ref) return NULL_TREE; this_offset = misalign; /* Check the first index accessed. */ if (!vect_get_first_index (ref, &array_first_index)) { if (vect_debug_details (NULL)) fprintf (dump_file, "no first_index for array."); return NULL_TREE; } /* Check the index of the array_ref. */ init = initial_condition_in_loop_num (DR_ACCESS_FN (dr, 0), LOOP_VINFO_LOOP (loop_vinfo)->num); /* FORNOW: In order to simplify the handling of alignment, we make sure that the first location at which the array is accessed ('init') is on an 'NUNITS' boundary, since we are assuming here that 'array base' is aligned. This is too conservative, since we require that both {'array_base' is a multiple of NUNITS} && {'init' is a multiple of NUNITS}, instead of just {('array_base' + 'init') is a multiple of NUNITS}. This should be relaxed in the future. */ if (!init || !host_integerp (init, 0)) { if (vect_debug_details (NULL)) fprintf (dump_file, "non constant init. "); return NULL_TREE; } /* bytes per scalar element: */ nunits = fold_convert (unsigned_type_node, build_int_cst (NULL_TREE, GET_MODE_SIZE (TYPE_MODE (scalar_type)))); nbits = int_const_binop (MULT_EXPR, nunits, build_int_cst (NULL_TREE, BITS_PER_UNIT), 1); /* misalign = offset + (init-array_first_index)*nunits*bits_in_byte */ misalign = int_const_binop (MINUS_EXPR, init, array_first_index, 0); misalign = int_const_binop (MULT_EXPR, misalign, nbits, 0); misalign = int_const_binop (PLUS_EXPR, misalign, this_offset, 0); /* TODO: allow negative misalign values. */ if (!host_integerp (misalign, 1) || TREE_OVERFLOW (misalign)) { if (vect_debug_details (NULL)) fprintf (dump_file, "unexpected misalign value"); return NULL_TREE; } *offset = misalign; return next_ref; } /* Function vect_compute_data_refs_alignment Compute the misalignment of data references in the loop. This pass may take place at function granularity instead of at loop granularity. FOR NOW: No analysis is actually performed. Misalignment is calculated only for trivial cases. TODO. */ static void vect_compute_data_refs_alignment (loop_vec_info loop_vinfo) { varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo); varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo); unsigned int i; for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i); vect_compute_data_ref_alignment (dr, loop_vinfo); } for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i); vect_compute_data_ref_alignment (dr, loop_vinfo); } } /* Function vect_enhance_data_refs_alignment This pass will use loop versioning and loop peeling in order to enhance the alignment of data references in the loop. FOR NOW: we assume that whatever versioning/peeling takes place, only the original loop is to be vectorized; Any other loops that are created by the transformations performed in this pass - are not supposed to be vectorized. This restriction will be relaxed. FOR NOW: No transformation is actually performed. TODO. */ static void vect_enhance_data_refs_alignment (loop_vec_info loop_info ATTRIBUTE_UNUSED) { /* This pass will require a cost model to guide it whether to apply peeling or versioning or a combination of the two. For example, the scheme that intel uses when given a loop with several memory accesses, is as follows: choose one memory access ('p') which alignment you want to force by doing peeling. Then, either (1) generate a loop in which 'p' is aligned and all other accesses are not necessarily aligned, or (2) use loop versioning to generate one loop in which all accesses are aligned, and another loop in which only 'p' is necessarily aligned. ("Automatic Intra-Register Vectorization for the Intel Architecture", Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International Journal of Parallel Programming, Vol. 30, No. 2, April 2002.) Devising a cost model is the most critical aspect of this work. It will guide us on which access to peel for, whether to use loop versioning, how many versions to create, etc. The cost model will probably consist of generic considerations as well as target specific considerations (on powerpc for example, misaligned stores are more painful than misaligned loads). Here is the general steps involved in alignment enhancements: -- original loop, before alignment analysis: for (i=0; i>\n"); /* This pass may take place at function granularity instead of at loop granularity. */ vect_compute_data_refs_alignment (loop_vinfo); /* This pass will use loop versioning and loop peeling in order to enhance the alignment of data references in the loop. FOR NOW: we assume that whatever versioning/peeling took place, the original loop is to be vectorized. Any other loops that were created by the transformations performed in this pass - are not supposed to be vectorized. This restriction will be relaxed. */ vect_enhance_data_refs_alignment (loop_vinfo); /* Finally, check that loop can be vectorized. FOR NOW: Until support for misaligned stores is in place, only if all stores are aligned can the loop be vectorized. This restriction will be relaxed. In the meantime, we can force the alignment of on of the data-references in the loop using peeling. We currently use a heuristic that peels the first misaligned store, but we plan to develop a better cost model to guide the decision on which data-access to peel for. */ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i); if (!aligned_access_p (dr)) { /* Decide here whether we need peeling for alignment. */ decide_peeling_count++; if (decide_peeling_count > MAX_NUMBER_OF_UNALIGNED_DATA_REFS) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: multiple misaligned stores."); return false; } else { LOOP_UNALIGNED_DR (loop_vinfo, decide_peeling_count - 1) = dr; LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo) = true; } } } /* The vectorizer now supports misaligned loads, so we don't fail anymore in the presence of a misaligned read dataref. For some targets however it may be preferable not to vectorize in such a case as misaligned accesses are very costly. This should be considered in the future. */ /* for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i); if (!aligned_access_p (dr)) { if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo)) || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo))) fprintf (dump_file, "not vectorized: unaligned load."); return false; } } */ return true; } /* Function vect_analyze_data_ref_access. Analyze the access pattern of the data-reference DR. For now, a data access has to consecutive and aligned to be considered vectorizable. */ static bool vect_analyze_data_ref_access (struct data_reference *dr) { varray_type access_fns = DR_ACCESS_FNS (dr); tree access_fn; tree init, step; unsigned int dimensions, i; /* Check that in case of multidimensional array ref A[i1][i2]..[iN], i1, i2, ..., iN-1 are loop invariant (to make sure that the memory access is contiguous). */ dimensions = VARRAY_ACTIVE_SIZE (access_fns); for (i = 1; i < dimensions; i++) /* Not including the last dimension. */ { access_fn = DR_ACCESS_FN (dr, i); if (evolution_part_in_loop_num (access_fn, loop_containing_stmt (DR_STMT (dr))->num)) { /* Evolution part is not NULL in this loop (it is neither constant nor invariant). */ if (vect_debug_details (NULL)) { fprintf (dump_file, "not vectorized: complicated multidim. array access."); print_generic_expr (dump_file, access_fn, TDF_SLIM); } return false; } } access_fn = DR_ACCESS_FN (dr, 0); /* The last dimension access function. */ if (!evolution_function_is_constant_p (access_fn) && !vect_is_simple_iv_evolution (loop_containing_stmt (DR_STMT (dr))->num, access_fn, &init, &step, true)) { if (vect_debug_details (NULL)) { fprintf (dump_file, "not vectorized: complicated access function."); print_generic_expr (dump_file, access_fn, TDF_SLIM); } return false; } return true; } /* Function vect_analyze_data_ref_accesses. Analyze the access pattern of all the data references in the loop. FORNOW: the only access pattern that is considered vectorizable is a simple step 1 (consecutive) access. FORNOW: handle only arrays and pointer accesses. */ static bool vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo) { unsigned int i; varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo); varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo); if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i); bool ok = vect_analyze_data_ref_access (dr); if (!ok) { if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo)) || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo))) fprintf (dump_file, "not vectorized: complicated access pattern."); return false; } } for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++) { struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i); bool ok = vect_analyze_data_ref_access (dr); if (!ok) { if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo)) || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo))) fprintf (dump_file, "not vectorized: complicated access pattern."); return false; } } return true; } /* Function vect_analyze_pointer_ref_access. Input: STMT - a stmt that contains a data-ref MEMREF - a data-ref in STMT, which is an INDIRECT_REF. If the data-ref access is vectorizable, return a data_reference structure that represents it (DR). Otherwise - return NULL. */ static struct data_reference * vect_analyze_pointer_ref_access (tree memref, tree stmt, bool is_read) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct loop *loop = STMT_VINFO_LOOP (stmt_info); tree access_fn = analyze_scalar_evolution (loop, TREE_OPERAND (memref, 0)); tree init, step; int step_val; tree reftype, innertype; enum machine_mode innermode; tree indx_access_fn; int loopnum = loop->num; struct data_reference *dr; if (!access_fn) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: complicated pointer access."); return NULL; } if (vect_debug_details (NULL)) { fprintf (dump_file, "Access function of ptr: "); print_generic_expr (dump_file, access_fn, TDF_SLIM); } if (!vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step, false)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: pointer access is not simple."); return NULL; } STRIP_NOPS (init); if (!host_integerp (step,0)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: non constant step for pointer access."); return NULL; } step_val = TREE_INT_CST_LOW (step); reftype = TREE_TYPE (TREE_OPERAND (memref, 0)); if (TREE_CODE (reftype) != POINTER_TYPE) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: unexpected pointer access form."); return NULL; } reftype = TREE_TYPE (init); if (TREE_CODE (reftype) != POINTER_TYPE) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: unexpected pointer access form."); return NULL; } innertype = TREE_TYPE (reftype); innermode = TYPE_MODE (innertype); if (GET_MODE_SIZE (innermode) != step_val) { /* FORNOW: support only consecutive access */ if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: non consecutive access."); return NULL; } indx_access_fn = build_polynomial_chrec (loopnum, integer_zero_node, integer_one_node); if (vect_debug_details (NULL)) { fprintf (dump_file, "Access function of ptr indx: "); print_generic_expr (dump_file, indx_access_fn, TDF_SLIM); } dr = init_data_ref (stmt, memref, init, indx_access_fn, is_read); return dr; } /* Function vect_get_symbl_and_dr. The function returns SYMBL - the relevant variable for memory tag (for aliasing purposes). Also data reference structure DR is created. Input: MEMREF - data reference in STMT IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF Output: DR - data_reference struct for MEMREF return value - the relevant variable for memory tag (for aliasing purposes). */ static tree vect_get_symbl_and_dr (tree memref, tree stmt, bool is_read, loop_vec_info loop_vinfo, struct data_reference **dr) { tree symbl, oprnd0, oprnd1; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree offset; tree array_base, base; struct data_reference *new_dr; bool base_aligned_p; *dr = NULL; switch (TREE_CODE (memref)) { case INDIRECT_REF: new_dr = vect_analyze_pointer_ref_access (memref, stmt, is_read); if (! new_dr) return NULL_TREE; *dr = new_dr; symbl = DR_BASE_NAME (new_dr); STMT_VINFO_VECT_DR_BASE (stmt_info) = symbl; switch (TREE_CODE (symbl)) { case PLUS_EXPR: case MINUS_EXPR: oprnd0 = TREE_OPERAND (symbl, 0); oprnd1 = TREE_OPERAND (symbl, 1); STRIP_NOPS(oprnd1); /* Only {address_base + offset} expressions are supported, where address_base can be POINTER_TYPE or ARRAY_TYPE and offset can be anything but POINTER_TYPE or ARRAY_TYPE. TODO: swap operands if {offset + address_base}. */ if ((TREE_CODE (TREE_TYPE (oprnd1)) == POINTER_TYPE && TREE_CODE (oprnd1) != INTEGER_CST) || TREE_CODE (TREE_TYPE (oprnd1)) == ARRAY_TYPE) return NULL_TREE; if (TREE_CODE (TREE_TYPE (oprnd0)) == POINTER_TYPE) symbl = oprnd0; else symbl = vect_get_symbl_and_dr (oprnd0, stmt, is_read, loop_vinfo, &new_dr); case SSA_NAME: case ADDR_EXPR: /* symbl remains unchanged. */ break; default: if (vect_debug_details (NULL)) { fprintf (dump_file, "unhandled data ref: "); print_generic_expr (dump_file, memref, TDF_SLIM); fprintf (dump_file, " (symbl "); print_generic_expr (dump_file, symbl, TDF_SLIM); fprintf (dump_file, ") in stmt "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return NULL_TREE; } break; case ARRAY_REF: offset = size_zero_node; /* Store the array base in the stmt info. For one dimensional array ref a[i], the base is a, for multidimensional a[i1][i2]..[iN], the base is a[i1][i2]..[iN-1]. */ array_base = TREE_OPERAND (memref, 0); STMT_VINFO_VECT_DR_BASE (stmt_info) = array_base; new_dr = analyze_array (stmt, memref, is_read); *dr = new_dr; /* Find the relevant symbol for aliasing purposes. */ base = DR_BASE_NAME (new_dr); switch (TREE_CODE (base)) { case VAR_DECL: symbl = base; break; case INDIRECT_REF: symbl = TREE_OPERAND (base, 0); break; case COMPONENT_REF: /* Could have recorded more accurate information - i.e, the actual FIELD_DECL that is being referenced - but later passes expect VAR_DECL as the nmt. */ symbl = vect_get_base_and_bit_offset (new_dr, base, NULL_TREE, loop_vinfo, &offset, &base_aligned_p); if (symbl) break; /* fall through */ default: if (vect_debug_details (NULL)) { fprintf (dump_file, "unhandled struct/class field access "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return NULL_TREE; } break; default: if (vect_debug_details (NULL)) { fprintf (dump_file, "unhandled data ref: "); print_generic_expr (dump_file, memref, TDF_SLIM); fprintf (dump_file, " in stmt "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return NULL_TREE; } return symbl; } /* Function vect_analyze_data_refs. Find all the data references in the loop. FORNOW: Handle aligned INDIRECT_REFs and ARRAY_REFs which base is really an array (not a pointer) and which alignment can be forced. This restriction will be relaxed. */ static bool vect_analyze_data_refs (loop_vec_info loop_vinfo) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); int nbbs = loop->num_nodes; block_stmt_iterator si; int j; struct data_reference *dr; tree tag; tree address_base; bool base_aligned_p; tree offset; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); for (j = 0; j < nbbs; j++) { basic_block bb = bbs[j]; for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) { bool is_read = false; tree stmt = bsi_stmt (si); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt); v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt); vuse_optype vuses = STMT_VUSE_OPS (stmt); varray_type *datarefs = NULL; int nvuses, nv_may_defs, nv_must_defs; tree memref = NULL; tree symbl; /* Assumption: there exists a data-ref in stmt, if and only if it has vuses/vdefs. */ if (!vuses && !v_may_defs && !v_must_defs) continue; nvuses = NUM_VUSES (vuses); nv_may_defs = NUM_V_MAY_DEFS (v_may_defs); nv_must_defs = NUM_V_MUST_DEFS (v_must_defs); if (nvuses && (nv_may_defs || nv_must_defs)) { if (vect_debug_details (NULL)) { fprintf (dump_file, "unexpected vdefs and vuses in stmt: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return false; } if (TREE_CODE (stmt) != MODIFY_EXPR) { if (vect_debug_details (NULL)) { fprintf (dump_file, "unexpected vops in stmt: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return false; } if (vuses) { memref = TREE_OPERAND (stmt, 1); datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo)); is_read = true; } else /* vdefs */ { memref = TREE_OPERAND (stmt, 0); datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo)); is_read = false; } /* Analyze MEMREF. If it is of a supported form, build data_reference struct for it (DR) and find the relevant symbol for aliasing purposes. */ symbl = vect_get_symbl_and_dr (memref, stmt, is_read, loop_vinfo, &dr); if (!symbl) { if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: unhandled data ref: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return false; } /* Find and record the memtag assigned to this data-ref. */ switch (TREE_CODE (symbl)) { case VAR_DECL: STMT_VINFO_MEMTAG (stmt_info) = symbl; break; case SSA_NAME: symbl = SSA_NAME_VAR (symbl); tag = get_var_ann (symbl)->type_mem_tag; if (!tag) { tree ptr = TREE_OPERAND (memref, 0); if (TREE_CODE (ptr) == SSA_NAME) tag = get_var_ann (SSA_NAME_VAR (ptr))->type_mem_tag; } if (!tag) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: no memtag for ref."); return false; } STMT_VINFO_MEMTAG (stmt_info) = tag; break; case ADDR_EXPR: address_base = TREE_OPERAND (symbl, 0); switch (TREE_CODE (address_base)) { case ARRAY_REF: dr = analyze_array (stmt, TREE_OPERAND (symbl, 0), DR_IS_READ(dr)); STMT_VINFO_MEMTAG (stmt_info) = vect_get_base_and_bit_offset (dr, DR_BASE_NAME (dr), NULL_TREE, loop_vinfo, &offset, &base_aligned_p); break; case VAR_DECL: STMT_VINFO_MEMTAG (stmt_info) = address_base; break; default: if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: unhandled address expr: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } return false; } break; default: if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: unsupported data-ref: "); print_generic_expr (dump_file, memref, TDF_SLIM); } return false; } VARRAY_PUSH_GENERIC_PTR (*datarefs, dr); STMT_VINFO_DATA_REF (stmt_info) = dr; } } return true; } /* Utility functions used by vect_mark_stmts_to_be_vectorized. */ /* Function vect_mark_relevant. Mark STMT as "relevant for vectorization" and add it to WORKLIST. */ static void vect_mark_relevant (varray_type worklist, tree stmt) { stmt_vec_info stmt_info; if (vect_debug_details (NULL)) fprintf (dump_file, "mark relevant."); if (TREE_CODE (stmt) == PHI_NODE) { VARRAY_PUSH_TREE (worklist, stmt); return; } stmt_info = vinfo_for_stmt (stmt); if (!stmt_info) { if (vect_debug_details (NULL)) { fprintf (dump_file, "mark relevant: no stmt info!!."); print_generic_expr (dump_file, stmt, TDF_SLIM); } return; } if (STMT_VINFO_RELEVANT_P (stmt_info)) { if (vect_debug_details (NULL)) fprintf (dump_file, "already marked relevant."); return; } STMT_VINFO_RELEVANT_P (stmt_info) = 1; VARRAY_PUSH_TREE (worklist, stmt); } /* Function vect_stmt_relevant_p. Return true if STMT in loop that is represented by LOOP_VINFO is "relevant for vectorization". A stmt is considered "relevant for vectorization" if: - it has uses outside the loop. - it has vdefs (it alters memory). - control stmts in the loop (except for the exit condition). CHECKME: what other side effects would the vectorizer allow? */ static bool vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo) { v_may_def_optype v_may_defs; v_must_def_optype v_must_defs; struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); int i; dataflow_t df; int num_uses; /* cond stmt other than loop exit cond. */ if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo))) return true; /* changing memory. */ v_may_defs = STMT_V_MAY_DEF_OPS (stmt); v_must_defs = STMT_V_MUST_DEF_OPS (stmt); if (v_may_defs || v_must_defs) { if (vect_debug_details (NULL)) fprintf (dump_file, "vec_stmt_relevant_p: stmt has vdefs."); return true; } /* uses outside the loop. */ df = get_immediate_uses (stmt); num_uses = num_immediate_uses (df); for (i = 0; i < num_uses; i++) { tree use = immediate_use (df, i); basic_block bb = bb_for_stmt (use); if (!flow_bb_inside_loop_p (loop, bb)) { if (vect_debug_details (NULL)) fprintf (dump_file, "vec_stmt_relevant_p: used out of loop."); return true; } } return false; } /* Function vect_mark_stmts_to_be_vectorized. Not all stmts in the loop need to be vectorized. For example: for i... for j... 1. T0 = i + j 2. T1 = a[T0] 3. j = j + 1 Stmt 1 and 3 do not need to be vectorized, because loop control and addressing of vectorized data-refs are handled differently. This pass detects such stmts. */ static bool vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo) { varray_type worklist; struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); unsigned int nbbs = loop->num_nodes; block_stmt_iterator si; tree stmt; stmt_ann_t ann; unsigned int i; int j; use_optype use_ops; stmt_vec_info stmt_info; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); VARRAY_TREE_INIT (worklist, 64, "work list"); /* 1. Init worklist. */ for (i = 0; i < nbbs; i++) { basic_block bb = bbs[i]; for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) { stmt = bsi_stmt (si); if (vect_debug_details (NULL)) { fprintf (dump_file, "init: stmt relevant? "); print_generic_expr (dump_file, stmt, TDF_SLIM); } stmt_info = vinfo_for_stmt (stmt); STMT_VINFO_RELEVANT_P (stmt_info) = 0; if (vect_stmt_relevant_p (stmt, loop_vinfo)) vect_mark_relevant (worklist, stmt); } } /* 2. Process_worklist */ while (VARRAY_ACTIVE_SIZE (worklist) > 0) { stmt = VARRAY_TOP_TREE (worklist); VARRAY_POP (worklist); if (vect_debug_details (NULL)) { fprintf (dump_file, "worklist: examine stmt: "); print_generic_expr (dump_file, stmt, TDF_SLIM); } /* Examine the USES in this statement. Mark all the statements which feed this statement's uses as "relevant", unless the USE is used as an array index. */ if (TREE_CODE (stmt) == PHI_NODE) { /* follow the def-use chain inside the loop. */ for (j = 0; j < PHI_NUM_ARGS (stmt); j++) { tree arg = PHI_ARG_DEF (stmt, j); tree def_stmt = NULL_TREE; basic_block bb; if (!vect_is_simple_use (arg, loop, &def_stmt)) { if (vect_debug_details (NULL)) fprintf (dump_file, "worklist: unsupported use."); varray_clear (worklist); return false; } if (!def_stmt) continue; if (vect_debug_details (NULL)) { fprintf (dump_file, "worklist: def_stmt: "); print_generic_expr (dump_file, def_stmt, TDF_SLIM); } bb = bb_for_stmt (def_stmt); if (flow_bb_inside_loop_p (loop, bb)) vect_mark_relevant (worklist, def_stmt); } } ann = stmt_ann (stmt); use_ops = USE_OPS (ann); for (i = 0; i < NUM_USES (use_ops); i++) { tree use = USE_OP (use_ops, i); /* We are only interested in uses that need to be vectorized. Uses that are used for address computation are not considered relevant. */ if (exist_non_indexing_operands_for_use_p (use, stmt)) { tree def_stmt = NULL_TREE; basic_block bb; if (!vect_is_simple_use (use, loop, &def_stmt)) { if (vect_debug_details (NULL)) fprintf (dump_file, "worklist: unsupported use."); varray_clear (worklist); return false; } if (!def_stmt) continue; if (vect_debug_details (NULL)) { fprintf (dump_file, "worklist: examine use %d: ", i); print_generic_expr (dump_file, use, TDF_SLIM); } bb = bb_for_stmt (def_stmt); if (flow_bb_inside_loop_p (loop, bb)) vect_mark_relevant (worklist, def_stmt); } } } /* while worklist */ varray_clear (worklist); return true; } /* Function vect_analyze_loop_with_symbolic_num_of_iters. In case the number of iterations that LOOP iterates in unknown at compile time, an epilog loop will be generated, and the loop induction variables (IVs) will be "advanced" to the value they are supposed to take just before the epilog loop. Here we check that the access function of the loop IVs and the expression that represents the loop bound are simple enough. These restrictions will be relaxed in the future. */ static bool vect_analyze_loop_with_symbolic_num_of_iters (tree niters, struct loop *loop) { basic_block bb = loop->header; tree phi; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); if (chrec_contains_undetermined (niters)) { if (vect_debug_details (NULL)) fprintf (dump_file, "Infinite number of iterations."); return false; } if (!niters) { if (vect_debug_details (NULL)) fprintf (dump_file, "niters is NULL pointer."); return false; } if (vect_debug_details (NULL)) { fprintf (dump_file, "Symbolic number of iterations is "); print_generic_expr (dump_file, niters, TDF_DETAILS); } /* Analyze phi functions of the loop header. */ for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi)) { tree access_fn = NULL; tree evolution_part; if (vect_debug_details (NULL)) { fprintf (dump_file, "Analyze phi: "); print_generic_expr (dump_file, phi, TDF_SLIM); } /* Skip virtual phi's. The data dependences that are associated with virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */ if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi)))) { if (vect_debug_details (NULL)) fprintf (dump_file, "virtual phi. skip."); continue; } /* Analyze the evolution function. */ access_fn = instantiate_parameters (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi))); if (!access_fn) { if (vect_debug_details (NULL)) fprintf (dump_file, "No Access function."); return false; } if (vect_debug_details (NULL)) { fprintf (dump_file, "Access function of PHI: "); print_generic_expr (dump_file, access_fn, TDF_SLIM); } evolution_part = evolution_part_in_loop_num (access_fn, loop->num); if (evolution_part == NULL_TREE) return false; /* FORNOW: We do not transform initial conditions of IVs which evolution functions are a polynomial of degree >= 2. */ if (tree_is_chrec (evolution_part)) return false; } return true; } /* Function vect_get_loop_niters. Determine how many iterations the loop is executed. */ static tree vect_get_loop_niters (struct loop *loop, tree *number_of_iterations) { tree niters; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<>\n"); niters = number_of_iterations_in_loop (loop); if (niters != NULL_TREE && niters != chrec_dont_know) { *number_of_iterations = niters; if (vect_debug_details (NULL)) { fprintf (dump_file, "==> get_loop_niters:" ); print_generic_expr (dump_file, *number_of_iterations, TDF_SLIM); } } return get_loop_exit_condition (loop); } /* Function vect_analyze_loop_form. Verify the following restrictions (some may be relaxed in the future): - it's an inner-most loop - number of BBs = 2 (which are the loop header and the latch) - the loop has a pre-header - the loop has a single entry and exit - the loop exit condition is simple enough, and the number of iterations can be analyzed (a countable loop). */ static loop_vec_info vect_analyze_loop_form (struct loop *loop) { loop_vec_info loop_vinfo; tree loop_cond; tree number_of_iterations = NULL; if (vect_debug_details (loop)) fprintf (dump_file, "\n<>\n"); if (loop->inner || !loop->single_exit || loop->num_nodes != 2) { if (vect_debug_stats (loop) || vect_debug_details (loop)) { fprintf (dump_file, "not vectorized: bad loop form. "); if (loop->inner) fprintf (dump_file, "nested loop."); else if (!loop->single_exit) fprintf (dump_file, "multiple exits."); else if (loop->num_nodes != 2) fprintf (dump_file, "too many BBs in loop."); } return NULL; } /* We assume that the loop exit condition is at the end of the loop. i.e, that the loop is represented as a do-while (with a proper if-guard before the loop if needed), where the loop header contains all the executable statements, and the latch is empty. */ if (!empty_block_p (loop->latch)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: unexpectd loop form."); return NULL; } if (empty_block_p (loop->header)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: empty loop."); return NULL; } loop_cond = vect_get_loop_niters (loop, &number_of_iterations); if (!loop_cond) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: complicated exit condition."); return NULL; } if (!number_of_iterations) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: number of iterations cannot be computed."); return NULL; } loop_vinfo = new_loop_vec_info (loop); LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations; if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "loop bound unknown."); /* Unknown loop bound. */ if (!vect_analyze_loop_with_symbolic_num_of_iters (number_of_iterations, loop)) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: can't determine loop bound."); return NULL; } else { /* We need only one loop entry for unknown loop bound support. */ if (loop->num_entries != 1 || !loop->pre_header) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: more than one loop entry."); return NULL; } } } else if (LOOP_VINFO_INT_NITERS (loop_vinfo) == 0) { if (vect_debug_stats (loop) || vect_debug_details (loop)) fprintf (dump_file, "not vectorized: number of iterations = 0."); return NULL; } LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond; return loop_vinfo; } /* Function vect_analyze_loop. Apply a set of analyses on LOOP, and create a loop_vec_info struct for it. The different analyses will record information in the loop_vec_info struct. */ static loop_vec_info vect_analyze_loop (struct loop *loop) { bool ok; loop_vec_info loop_vinfo; if (vect_debug_details (NULL)) fprintf (dump_file, "\n<<<<<<< analyze_loop_nest >>>>>>>\n"); /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */ loop_vinfo = vect_analyze_loop_form (loop); if (!loop_vinfo) { if (vect_debug_details (loop)) fprintf (dump_file, "bad loop form."); return NULL; } /* Find all data references in the loop (which correspond to vdefs/vuses) and analyze their evolution in the loop. FORNOW: Handle only simple, array references, which alignment can be forced, and aligned pointer-references. */ ok = vect_analyze_data_refs (loop_vinfo); if (!ok) { if (vect_debug_details (loop)) fprintf (dump_file, "bad data references."); destroy_loop_vec_info (loop_vinfo); return NULL; } /* Data-flow analysis to detect stmts that do not need to be vectorized. */ ok = vect_mark_stmts_to_be_vectorized (loop_vinfo); if (!ok) { if (vect_debug_details (loop)) fprintf (dump_file, "unexpected pattern."); if (vect_debug_details (loop)) fprintf (dump_file, "not vectorized: unexpected pattern."); destroy_loop_vec_info (loop_vinfo); return NULL; } /* Check that all cross-iteration scalar data-flow cycles are OK. Cross-iteration cycles caused by virtual phis are analyzed separately. */ ok = vect_analyze_scalar_cycles (loop_vinfo); if (!ok) { if (vect_debug_details (loop)) fprintf (dump_file, "bad scalar cycle."); destroy_loop_vec_info (loop_vinfo); return NULL; } /* Analyze data dependences between the data-refs in the loop. FORNOW: fail at the first data dependence that we encounter. */ ok = vect_analyze_data_ref_dependences (loop_vinfo); if (!ok) { if (vect_debug_details (loop)) fprintf (dump_file, "bad data dependence."); destroy_loop_vec_info (loop_vinfo); return NULL; } /* Analyze the access patterns of the data-refs in the loop (consecutive, complex, etc.). FORNOW: Only handle consecutive access pattern. */ ok = vect_analyze_data_ref_accesses (loop_vinfo); if (!ok) { if (vect_debug_details (loop)) fprintf (dump_file, "bad data access."); destroy_loop_vec_info (loop_vinfo); return NULL; } /* Analyze the alignment of the data-refs in the loop. FORNOW: Only aligned accesses are handled. */ ok = vect_analyze_data_refs_alignment (loop_vinfo); if (!ok) { if (vect_debug_details (loop)) fprintf (dump_file, "bad data alignment."); destroy_loop_vec_info (loop_vinfo); return NULL; } /* Scan all the operations in the loop and make sure they are vectorizable. */ ok = vect_analyze_operations (loop_vinfo); if (!ok) { if (vect_debug_details (loop)) fprintf (dump_file, "bad operation or unsupported loop bound."); destroy_loop_vec_info (loop_vinfo); return NULL; } LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1; return loop_vinfo; } /* Function need_imm_uses_for. Return whether we ought to include information for 'var' when calculating immediate uses. For this pass we only want use information for non-virtual variables. */ static bool need_imm_uses_for (tree var) { return is_gimple_reg (var); } /* Function vectorize_loops. Entry Point to loop vectorization phase. */ void vectorize_loops (struct loops *loops) { unsigned int i, loops_num; unsigned int num_vectorized_loops = 0; /* Does the target support SIMD? */ /* FORNOW: until more sophisticated machine modelling is in place. */ if (!UNITS_PER_SIMD_WORD) { if (vect_debug_details (NULL)) fprintf (dump_file, "vectorizer: target vector size is not defined."); return; } compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for); /* ----------- Analyze loops. ----------- */ /* If some loop was duplicated, it gets bigger number than all previously defined loops. This fact allows us to run only over initial loops skipping newly generated ones. */ loops_num = loops->num; for (i = 1; i < loops_num; i++) { loop_vec_info loop_vinfo; struct loop *loop = loops->parray[i]; if (!loop) continue; loop_vinfo = vect_analyze_loop (loop); loop->aux = loop_vinfo; if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo)) continue; vect_transform_loop (loop_vinfo, loops); num_vectorized_loops++; } if (vect_debug_stats (NULL) || vect_debug_details (NULL)) fprintf (dump_file, "\nvectorized %u loops in function.\n", num_vectorized_loops); /* ----------- Finalize. ----------- */ free_df (); for (i = 1; i < loops_num; i++) { struct loop *loop = loops->parray[i]; loop_vec_info loop_vinfo; if (!loop) continue; loop_vinfo = loop->aux; destroy_loop_vec_info (loop_vinfo); loop->aux = NULL; } rewrite_into_ssa (false); if (bitmap_first_set_bit (vars_to_rename) >= 0) { /* The rewrite of ssa names may cause violation of loop closed ssa form invariants. TODO -- avoid these rewrites completely. Information in virtual phi nodes is sufficient for it. */ rewrite_into_loop_closed_ssa (); } rewrite_into_loop_closed_ssa (); bitmap_clear (vars_to_rename); }