/* Operations with very long integers. -*- C++ -*- Copyright (C) 2012-2017 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef WIDE_INT_H #define WIDE_INT_H /* wide-int.[cc|h] implements a class that efficiently performs mathematical operations on finite precision integers. wide_ints are designed to be transient - they are not for long term storage of values. There is tight integration between wide_ints and the other longer storage GCC representations (rtl and tree). The actual precision of a wide_int depends on the flavor. There are three predefined flavors: 1) wide_int (the default). This flavor does the math in the precision of its input arguments. It is assumed (and checked) that the precisions of the operands and results are consistent. This is the most efficient flavor. It is not possible to examine bits above the precision that has been specified. Because of this, the default flavor has semantics that are simple to understand and in general model the underlying hardware that the compiler is targetted for. This flavor must be used at the RTL level of gcc because there is, in general, not enough information in the RTL representation to extend a value beyond the precision specified in the mode. This flavor should also be used at the TREE and GIMPLE levels of the compiler except for the circumstances described in the descriptions of the other two flavors. The default wide_int representation does not contain any information inherent about signedness of the represented value, so it can be used to represent both signed and unsigned numbers. For operations where the results depend on signedness (full width multiply, division, shifts, comparisons, and operations that need overflow detected), the signedness must be specified separately. 2) offset_int. This is a fixed-precision integer that can hold any address offset, measured in either bits or bytes, with at least one extra sign bit. At the moment the maximum address size GCC supports is 64 bits. With 8-bit bytes and an extra sign bit, offset_int therefore needs to have at least 68 bits of precision. We round this up to 128 bits for efficiency. Values of type T are converted to this precision by sign- or zero-extending them based on the signedness of T. The extra sign bit means that offset_int is effectively a signed 128-bit integer, i.e. it behaves like int128_t. Since the values are logically signed, there is no need to distinguish between signed and unsigned operations. Sign-sensitive comparison operators <, <=, > and >= are therefore supported. Shift operators << and >> are also supported, with >> being an _arithmetic_ right shift. [ Note that, even though offset_int is effectively int128_t, it can still be useful to use unsigned comparisons like wi::leu_p (a, b) as a more efficient short-hand for "a >= 0 && a <= b". ] 3) widest_int. This representation is an approximation of infinite precision math. However, it is not really infinite precision math as in the GMP library. It is really finite precision math where the precision is 4 times the size of the largest integer that the target port can represent. Like offset_int, widest_int is wider than all the values that it needs to represent, so the integers are logically signed. Sign-sensitive comparison operators <, <=, > and >= are supported, as are << and >>. There are several places in the GCC where this should/must be used: * Code that does induction variable optimizations. This code works with induction variables of many different types at the same time. Because of this, it ends up doing many different calculations where the operands are not compatible types. The widest_int makes this easy, because it provides a field where nothing is lost when converting from any variable, * There are a small number of passes that currently use the widest_int that should use the default. These should be changed. There are surprising features of offset_int and widest_int that the users should be careful about: 1) Shifts and rotations are just weird. You have to specify a precision in which the shift or rotate is to happen in. The bits above this precision are zeroed. While this is what you want, it is clearly non obvious. 2) Larger precision math sometimes does not produce the same answer as would be expected for doing the math at the proper precision. In particular, a multiply followed by a divide will produce a different answer if the first product is larger than what can be represented in the input precision. The offset_int and the widest_int flavors are more expensive than the default wide int, so in addition to the caveats with these two, the default is the prefered representation. All three flavors of wide_int are represented as a vector of HOST_WIDE_INTs. The default and widest_int vectors contain enough elements to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only enough elements to hold ADDR_MAX_PRECISION bits. The values are stored in the vector with the least significant HOST_BITS_PER_WIDE_INT bits in element 0. The default wide_int contains three fields: the vector (VAL), the precision and a length (LEN). The length is the number of HWIs needed to represent the value. widest_int and offset_int have a constant precision that cannot be changed, so they only store the VAL and LEN fields. Since most integers used in a compiler are small values, it is generally profitable to use a representation of the value that is as small as possible. LEN is used to indicate the number of elements of the vector that are in use. The numbers are stored as sign extended numbers as a means of compression. Leading HOST_WIDE_INTs that contain strings of either -1 or 0 are removed as long as they can be reconstructed from the top bit that is being represented. The precision and length of a wide_int are always greater than 0. Any bits in a wide_int above the precision are sign-extended from the most significant bit. For example, a 4-bit value 0x8 is represented as VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer constants to be represented with undefined bits above the precision. This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN, so that the INTEGER_CST representation can be used both in TYPE_PRECISION and in wider precisions. There are constructors to create the various forms of wide_int from trees, rtl and constants. For trees you can simply say: tree t = ...; wide_int x = t; However, a little more syntax is required for rtl constants since they do not have an explicit precision. To make an rtl into a wide_int, you have to pair it with a mode. The canonical way to do this is with rtx_mode_t as in: rtx r = ... wide_int x = rtx_mode_t (r, mode); Similarly, a wide_int can only be constructed from a host value if the target precision is given explicitly, such as in: wide_int x = wi::shwi (c, prec); // sign-extend C if necessary wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary However, offset_int and widest_int have an inherent precision and so can be initialized directly from a host value: offset_int x = (int) c; // sign-extend C widest_int x = (unsigned int) c; // zero-extend C It is also possible to do arithmetic directly on trees, rtxes and constants. For example: wi::add (t1, t2); // add equal-sized INTEGER_CSTs t1 and t2 wi::add (t1, 1); // add 1 to INTEGER_CST t1 wi::add (r1, r2); // add equal-sized rtx constants r1 and r2 wi::lshift (1, 100); // 1 << 100 as a widest_int Many binary operations place restrictions on the combinations of inputs, using the following rules: - {tree, rtx, wide_int} op {tree, rtx, wide_int} -> wide_int The inputs must be the same precision. The result is a wide_int of the same precision - {tree, rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int (un)signed HOST_WIDE_INT op {tree, rtx, wide_int} -> wide_int The HOST_WIDE_INT is extended or truncated to the precision of the other input. The result is a wide_int of the same precision as that input. - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int The inputs are extended to widest_int precision and produce a widest_int result. - offset_int op offset_int -> offset_int offset_int op (un)signed HOST_WIDE_INT -> offset_int (un)signed HOST_WIDE_INT op offset_int -> offset_int - widest_int op widest_int -> widest_int widest_int op (un)signed HOST_WIDE_INT -> widest_int (un)signed HOST_WIDE_INT op widest_int -> widest_int Other combinations like: - widest_int op offset_int and - wide_int op offset_int are not allowed. The inputs should instead be extended or truncated so that they match. The inputs to comparison functions like wi::eq_p and wi::lts_p follow the same compatibility rules, although their return types are different. Unary functions on X produce the same result as a binary operation X + X. Shift functions X op Y also produce the same result as X + X; the precision of the shift amount Y can be arbitrarily different from X. */ /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very early examination of the target's mode file. The WIDE_INT_MAX_ELTS can accomodate at least 1 more bit so that unsigned numbers of that mode can be represented as a signed value. Note that it is still possible to create fixed_wide_ints that have precisions greater than MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a double-width multiplication result, for example. */ #define WIDE_INT_MAX_ELTS \ ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT) #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT) /* This is the max size of any pointer on any machine. It does not seem to be as easy to sniff this out of the machine description as it is for MAX_BITSIZE_MODE_ANY_INT since targets may support multiple address sizes and may have different address sizes for different address spaces. However, currently the largest pointer on any platform is 64 bits. When that changes, then it is likely that a target hook should be defined so that targets can make this value larger for those targets. */ #define ADDR_MAX_BITSIZE 64 /* This is the internal precision used when doing any address arithmetic. The '4' is really 3 + 1. Three of the bits are for the number of extra bits needed to do bit addresses and the other bit is to allow everything to be signed without loosing any precision. Then everything is rounded up to the next HWI for efficiency. */ #define ADDR_MAX_PRECISION \ ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \ & ~(HOST_BITS_PER_WIDE_INT - 1)) /* The number of HWIs needed to store an offset_int. */ #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT) /* The type of result produced by a binary operation on types T1 and T2. Defined purely for brevity. */ #define WI_BINARY_RESULT(T1, T2) \ typename wi::binary_traits ::result_type /* The type of result produced by T1 << T2. Leads to substitution failure if the operation isn't supported. Defined purely for brevity. */ #define WI_SIGNED_SHIFT_RESULT(T1, T2) \ typename wi::binary_traits ::signed_shift_result_type /* The type of result produced by a signed binary predicate on types T1 and T2. This is bool if signed comparisons make sense for T1 and T2 and leads to substitution failure otherwise. */ #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \ typename wi::binary_traits ::signed_predicate_result /* The type of result produced by a unary operation on type T. */ #define WI_UNARY_RESULT(T) \ typename wi::unary_traits ::result_type /* Define a variable RESULT to hold the result of a binary operation on X and Y, which have types T1 and T2 respectively. Define VAL to point to the blocks of RESULT. Once the user of the macro has filled in VAL, it should call RESULT.set_len to set the number of initialized blocks. */ #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \ WI_BINARY_RESULT (T1, T2) RESULT = \ wi::int_traits ::get_binary_result (X, Y); \ HOST_WIDE_INT *VAL = RESULT.write_val () /* Similar for the result of a unary operation on X, which has type T. */ #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \ WI_UNARY_RESULT (T) RESULT = \ wi::int_traits ::get_binary_result (X, X); \ HOST_WIDE_INT *VAL = RESULT.write_val () template class generic_wide_int; template class fixed_wide_int_storage; class wide_int_storage; /* An N-bit integer. Until we can use typedef templates, use this instead. */ #define FIXED_WIDE_INT(N) \ generic_wide_int < fixed_wide_int_storage > typedef generic_wide_int wide_int; typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int; typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int; template struct wide_int_ref_storage; typedef generic_wide_int > wide_int_ref; /* This can be used instead of wide_int_ref if the referenced value is known to have type T. It carries across properties of T's representation, such as whether excess upper bits in a HWI are defined, and can therefore help avoid redundant work. The macro could be replaced with a template typedef, once we're able to use those. */ #define WIDE_INT_REF_FOR(T) \ generic_wide_int \ ::is_sign_extended> > namespace wi { /* Classifies an integer based on its precision. */ enum precision_type { /* The integer has both a precision and defined signedness. This allows the integer to be converted to any width, since we know whether to fill any extra bits with zeros or signs. */ FLEXIBLE_PRECISION, /* The integer has a variable precision but no defined signedness. */ VAR_PRECISION, /* The integer has a constant precision (known at GCC compile time) and is signed. */ CONST_PRECISION }; /* This class, which has no default implementation, is expected to provide the following members: static const enum precision_type precision_type; Classifies the type of T. static const unsigned int precision; Only defined if precision_type == CONST_PRECISION. Specifies the precision of all integers of type T. static const bool host_dependent_precision; True if the precision of T depends (or can depend) on the host. static unsigned int get_precision (const T &x) Return the number of bits in X. static wi::storage_ref *decompose (HOST_WIDE_INT *scratch, unsigned int precision, const T &x) Decompose X as a PRECISION-bit integer, returning the associated wi::storage_ref. SCRATCH is available as scratch space if needed. The routine should assert that PRECISION is acceptable. */ template struct int_traits; /* This class provides a single type, result_type, which specifies the type of integer produced by a binary operation whose inputs have types T1 and T2. The definition should be symmetric. */ template ::precision_type, enum precision_type P2 = int_traits ::precision_type> struct binary_traits; /* The result of a unary operation on T is the same as the result of a binary operation on two values of type T. */ template struct unary_traits : public binary_traits {}; /* Specify the result type for each supported combination of binary inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be mixed, in order to give stronger type checking. When both inputs are CONST_PRECISION, they must have the same precision. */ template struct binary_traits { typedef widest_int result_type; }; template struct binary_traits { typedef wide_int result_type; }; template struct binary_traits { /* Spelled out explicitly (rather than through FIXED_WIDE_INT) so as not to confuse gengtype. */ typedef generic_wide_int < fixed_wide_int_storage ::precision> > result_type; typedef bool signed_predicate_result; }; template struct binary_traits { typedef wide_int result_type; }; template struct binary_traits { /* Spelled out explicitly (rather than through FIXED_WIDE_INT) so as not to confuse gengtype. */ typedef generic_wide_int < fixed_wide_int_storage ::precision> > result_type; typedef result_type signed_shift_result_type; typedef bool signed_predicate_result; }; template struct binary_traits { /* Spelled out explicitly (rather than through FIXED_WIDE_INT) so as not to confuse gengtype. */ STATIC_ASSERT (int_traits ::precision == int_traits ::precision); typedef generic_wide_int < fixed_wide_int_storage ::precision> > result_type; typedef result_type signed_shift_result_type; typedef bool signed_predicate_result; }; template struct binary_traits { typedef wide_int result_type; }; } /* Public functions for querying and operating on integers. */ namespace wi { template unsigned int get_precision (const T &); template unsigned int get_binary_precision (const T1 &, const T2 &); template void copy (T1 &, const T2 &); #define UNARY_PREDICATE \ template bool #define UNARY_FUNCTION \ template WI_UNARY_RESULT (T) #define BINARY_PREDICATE \ template bool #define BINARY_FUNCTION \ template WI_BINARY_RESULT (T1, T2) #define SHIFT_FUNCTION \ template WI_UNARY_RESULT (T1) UNARY_PREDICATE fits_shwi_p (const T &); UNARY_PREDICATE fits_uhwi_p (const T &); UNARY_PREDICATE neg_p (const T &, signop = SIGNED); template HOST_WIDE_INT sign_mask (const T &); BINARY_PREDICATE eq_p (const T1 &, const T2 &); BINARY_PREDICATE ne_p (const T1 &, const T2 &); BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop); BINARY_PREDICATE lts_p (const T1 &, const T2 &); BINARY_PREDICATE ltu_p (const T1 &, const T2 &); BINARY_PREDICATE le_p (const T1 &, const T2 &, signop); BINARY_PREDICATE les_p (const T1 &, const T2 &); BINARY_PREDICATE leu_p (const T1 &, const T2 &); BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop); BINARY_PREDICATE gts_p (const T1 &, const T2 &); BINARY_PREDICATE gtu_p (const T1 &, const T2 &); BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop); BINARY_PREDICATE ges_p (const T1 &, const T2 &); BINARY_PREDICATE geu_p (const T1 &, const T2 &); template int cmp (const T1 &, const T2 &, signop); template int cmps (const T1 &, const T2 &); template int cmpu (const T1 &, const T2 &); UNARY_FUNCTION bit_not (const T &); UNARY_FUNCTION neg (const T &); UNARY_FUNCTION neg (const T &, bool *); UNARY_FUNCTION abs (const T &); UNARY_FUNCTION ext (const T &, unsigned int, signop); UNARY_FUNCTION sext (const T &, unsigned int); UNARY_FUNCTION zext (const T &, unsigned int); UNARY_FUNCTION set_bit (const T &, unsigned int); BINARY_FUNCTION min (const T1 &, const T2 &, signop); BINARY_FUNCTION smin (const T1 &, const T2 &); BINARY_FUNCTION umin (const T1 &, const T2 &); BINARY_FUNCTION max (const T1 &, const T2 &, signop); BINARY_FUNCTION smax (const T1 &, const T2 &); BINARY_FUNCTION umax (const T1 &, const T2 &); BINARY_FUNCTION bit_and (const T1 &, const T2 &); BINARY_FUNCTION bit_and_not (const T1 &, const T2 &); BINARY_FUNCTION bit_or (const T1 &, const T2 &); BINARY_FUNCTION bit_or_not (const T1 &, const T2 &); BINARY_FUNCTION bit_xor (const T1 &, const T2 &); BINARY_FUNCTION add (const T1 &, const T2 &); BINARY_FUNCTION add (const T1 &, const T2 &, signop, bool *); BINARY_FUNCTION sub (const T1 &, const T2 &); BINARY_FUNCTION sub (const T1 &, const T2 &, signop, bool *); BINARY_FUNCTION mul (const T1 &, const T2 &); BINARY_FUNCTION mul (const T1 &, const T2 &, signop, bool *); BINARY_FUNCTION smul (const T1 &, const T2 &, bool *); BINARY_FUNCTION umul (const T1 &, const T2 &, bool *); BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop); BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop, bool * = 0); BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &); BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &); BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop, bool * = 0); BINARY_FUNCTION udiv_floor (const T1 &, const T2 &); BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &); BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop, bool * = 0); BINARY_FUNCTION div_round (const T1 &, const T2 &, signop, bool * = 0); BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop, WI_BINARY_RESULT (T1, T2) *); BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED); BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop, bool * = 0); BINARY_FUNCTION smod_trunc (const T1 &, const T2 &); BINARY_FUNCTION umod_trunc (const T1 &, const T2 &); BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop, bool * = 0); BINARY_FUNCTION umod_floor (const T1 &, const T2 &); BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop, bool * = 0); BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop, bool * = 0); template bool multiple_of_p (const T1 &, const T2 &, signop); template bool multiple_of_p (const T1 &, const T2 &, signop, WI_BINARY_RESULT (T1, T2) *); SHIFT_FUNCTION lshift (const T1 &, const T2 &); SHIFT_FUNCTION lrshift (const T1 &, const T2 &); SHIFT_FUNCTION arshift (const T1 &, const T2 &); SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn); SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0); SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0); #undef SHIFT_FUNCTION #undef BINARY_PREDICATE #undef BINARY_FUNCTION #undef UNARY_PREDICATE #undef UNARY_FUNCTION bool only_sign_bit_p (const wide_int_ref &, unsigned int); bool only_sign_bit_p (const wide_int_ref &); int clz (const wide_int_ref &); int clrsb (const wide_int_ref &); int ctz (const wide_int_ref &); int exact_log2 (const wide_int_ref &); int floor_log2 (const wide_int_ref &); int ffs (const wide_int_ref &); int popcount (const wide_int_ref &); int parity (const wide_int_ref &); template unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int); template unsigned int min_precision (const T &, signop); } namespace wi { /* Contains the components of a decomposed integer for easy, direct access. */ struct storage_ref { storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int); const HOST_WIDE_INT *val; unsigned int len; unsigned int precision; /* Provide enough trappings for this class to act as storage for generic_wide_int. */ unsigned int get_len () const; unsigned int get_precision () const; const HOST_WIDE_INT *get_val () const; }; } inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in, unsigned int len_in, unsigned int precision_in) : val (val_in), len (len_in), precision (precision_in) { } inline unsigned int wi::storage_ref::get_len () const { return len; } inline unsigned int wi::storage_ref::get_precision () const { return precision; } inline const HOST_WIDE_INT * wi::storage_ref::get_val () const { return val; } /* This class defines an integer type using the storage provided by the template argument. The storage class must provide the following functions: unsigned int get_precision () const Return the number of bits in the integer. HOST_WIDE_INT *get_val () const Return a pointer to the array of blocks that encodes the integer. unsigned int get_len () const Return the number of blocks in get_val (). If this is smaller than the number of blocks implied by get_precision (), the remaining blocks are sign extensions of block get_len () - 1. Although not required by generic_wide_int itself, writable storage classes can also provide the following functions: HOST_WIDE_INT *write_val () Get a modifiable version of get_val () unsigned int set_len (unsigned int len) Set the value returned by get_len () to LEN. */ template class GTY(()) generic_wide_int : public storage { public: generic_wide_int (); template generic_wide_int (const T &); template generic_wide_int (const T &, unsigned int); /* Conversions. */ HOST_WIDE_INT to_shwi (unsigned int) const; HOST_WIDE_INT to_shwi () const; unsigned HOST_WIDE_INT to_uhwi (unsigned int) const; unsigned HOST_WIDE_INT to_uhwi () const; HOST_WIDE_INT to_short_addr () const; /* Public accessors for the interior of a wide int. */ HOST_WIDE_INT sign_mask () const; HOST_WIDE_INT elt (unsigned int) const; unsigned HOST_WIDE_INT ulow () const; unsigned HOST_WIDE_INT uhigh () const; HOST_WIDE_INT slow () const; HOST_WIDE_INT shigh () const; template generic_wide_int &operator = (const T &); #define BINARY_PREDICATE(OP, F) \ template \ bool OP (const T &c) const { return wi::F (*this, c); } #define UNARY_OPERATOR(OP, F) \ WI_UNARY_RESULT (generic_wide_int) OP () const { return wi::F (*this); } #define BINARY_OPERATOR(OP, F) \ template \ WI_BINARY_RESULT (generic_wide_int, T) \ OP (const T &c) const { return wi::F (*this, c); } #define ASSIGNMENT_OPERATOR(OP, F) \ template \ generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); } /* Restrict these to cases where the shift operator is defined. */ #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \ template \ generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); } #define INCDEC_OPERATOR(OP, DELTA) \ generic_wide_int &OP () { *this += DELTA; return *this; } UNARY_OPERATOR (operator ~, bit_not) UNARY_OPERATOR (operator -, neg) BINARY_PREDICATE (operator ==, eq_p) BINARY_PREDICATE (operator !=, ne_p) BINARY_OPERATOR (operator &, bit_and) BINARY_OPERATOR (and_not, bit_and_not) BINARY_OPERATOR (operator |, bit_or) BINARY_OPERATOR (or_not, bit_or_not) BINARY_OPERATOR (operator ^, bit_xor) BINARY_OPERATOR (operator +, add) BINARY_OPERATOR (operator -, sub) BINARY_OPERATOR (operator *, mul) ASSIGNMENT_OPERATOR (operator &=, bit_and) ASSIGNMENT_OPERATOR (operator |=, bit_or) ASSIGNMENT_OPERATOR (operator ^=, bit_xor) ASSIGNMENT_OPERATOR (operator +=, add) ASSIGNMENT_OPERATOR (operator -=, sub) ASSIGNMENT_OPERATOR (operator *=, mul) SHIFT_ASSIGNMENT_OPERATOR (operator <<=, <<) SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>) INCDEC_OPERATOR (operator ++, 1) INCDEC_OPERATOR (operator --, -1) #undef BINARY_PREDICATE #undef UNARY_OPERATOR #undef BINARY_OPERATOR #undef SHIFT_ASSIGNMENT_OPERATOR #undef ASSIGNMENT_OPERATOR #undef INCDEC_OPERATOR /* Debugging functions. */ void dump () const; static const bool is_sign_extended = wi::int_traits >::is_sign_extended; }; template inline generic_wide_int ::generic_wide_int () {} template template inline generic_wide_int ::generic_wide_int (const T &x) : storage (x) { } template template inline generic_wide_int ::generic_wide_int (const T &x, unsigned int precision) : storage (x, precision) { } /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION. If THIS does not fit in PRECISION, the information is lost. */ template inline HOST_WIDE_INT generic_wide_int ::to_shwi (unsigned int precision) const { if (precision < HOST_BITS_PER_WIDE_INT) return sext_hwi (this->get_val ()[0], precision); else return this->get_val ()[0]; } /* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */ template inline HOST_WIDE_INT generic_wide_int ::to_shwi () const { if (is_sign_extended) return this->get_val ()[0]; else return to_shwi (this->get_precision ()); } /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from PRECISION. If THIS does not fit in PRECISION, the information is lost. */ template inline unsigned HOST_WIDE_INT generic_wide_int ::to_uhwi (unsigned int precision) const { if (precision < HOST_BITS_PER_WIDE_INT) return zext_hwi (this->get_val ()[0], precision); else return this->get_val ()[0]; } /* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */ template inline unsigned HOST_WIDE_INT generic_wide_int ::to_uhwi () const { return to_uhwi (this->get_precision ()); } /* TODO: The compiler is half converted from using HOST_WIDE_INT to represent addresses to using offset_int to represent addresses. We use to_short_addr at the interface from new code to old, unconverted code. */ template inline HOST_WIDE_INT generic_wide_int ::to_short_addr () const { return this->get_val ()[0]; } /* Return the implicit value of blocks above get_len (). */ template inline HOST_WIDE_INT generic_wide_int ::sign_mask () const { unsigned int len = this->get_len (); unsigned HOST_WIDE_INT high = this->get_val ()[len - 1]; if (!is_sign_extended) { unsigned int precision = this->get_precision (); int excess = len * HOST_BITS_PER_WIDE_INT - precision; if (excess > 0) high <<= excess; } return (HOST_WIDE_INT) (high) < 0 ? -1 : 0; } /* Return the signed value of the least-significant explicitly-encoded block. */ template inline HOST_WIDE_INT generic_wide_int ::slow () const { return this->get_val ()[0]; } /* Return the signed value of the most-significant explicitly-encoded block. */ template inline HOST_WIDE_INT generic_wide_int ::shigh () const { return this->get_val ()[this->get_len () - 1]; } /* Return the unsigned value of the least-significant explicitly-encoded block. */ template inline unsigned HOST_WIDE_INT generic_wide_int ::ulow () const { return this->get_val ()[0]; } /* Return the unsigned value of the most-significant explicitly-encoded block. */ template inline unsigned HOST_WIDE_INT generic_wide_int ::uhigh () const { return this->get_val ()[this->get_len () - 1]; } /* Return block I, which might be implicitly or explicit encoded. */ template inline HOST_WIDE_INT generic_wide_int ::elt (unsigned int i) const { if (i >= this->get_len ()) return sign_mask (); else return this->get_val ()[i]; } template template inline generic_wide_int & generic_wide_int ::operator = (const T &x) { storage::operator = (x); return *this; } /* Dump the contents of the integer to stderr, for debugging. */ template void generic_wide_int ::dump () const { unsigned int len = this->get_len (); const HOST_WIDE_INT *val = this->get_val (); unsigned int precision = this->get_precision (); fprintf (stderr, "["); if (len * HOST_BITS_PER_WIDE_INT < precision) fprintf (stderr, "...,"); for (unsigned int i = 0; i < len - 1; ++i) fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]); fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n", val[0], precision); } namespace wi { template struct int_traits < generic_wide_int > : public wi::int_traits { static unsigned int get_precision (const generic_wide_int &); static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, const generic_wide_int &); }; } template inline unsigned int wi::int_traits < generic_wide_int >:: get_precision (const generic_wide_int &x) { return x.get_precision (); } template inline wi::storage_ref wi::int_traits < generic_wide_int >:: decompose (HOST_WIDE_INT *, unsigned int precision, const generic_wide_int &x) { gcc_checking_assert (precision == x.get_precision ()); return wi::storage_ref (x.get_val (), x.get_len (), precision); } /* Provide the storage for a wide_int_ref. This acts like a read-only wide_int, with the optimization that VAL is normally a pointer to another integer's storage, so that no array copy is needed. */ template struct wide_int_ref_storage : public wi::storage_ref { private: /* Scratch space that can be used when decomposing the original integer. It must live as long as this object. */ HOST_WIDE_INT scratch[2]; public: wide_int_ref_storage (const wi::storage_ref &); template wide_int_ref_storage (const T &); template wide_int_ref_storage (const T &, unsigned int); }; /* Create a reference from an existing reference. */ template inline wide_int_ref_storage :: wide_int_ref_storage (const wi::storage_ref &x) : storage_ref (x) {} /* Create a reference to integer X in its natural precision. Note that the natural precision is host-dependent for primitive types. */ template template inline wide_int_ref_storage ::wide_int_ref_storage (const T &x) : storage_ref (wi::int_traits ::decompose (scratch, wi::get_precision (x), x)) { } /* Create a reference to integer X in precision PRECISION. */ template template inline wide_int_ref_storage ::wide_int_ref_storage (const T &x, unsigned int precision) : storage_ref (wi::int_traits ::decompose (scratch, precision, x)) { } namespace wi { template struct int_traits > { static const enum precision_type precision_type = VAR_PRECISION; /* wi::storage_ref can be a reference to a primitive type, so this is the conservatively-correct setting. */ static const bool host_dependent_precision = true; static const bool is_sign_extended = SE; }; } namespace wi { unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, unsigned int, signop sgn); unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, bool = true); } /* The storage used by wide_int. */ class GTY(()) wide_int_storage { private: HOST_WIDE_INT val[WIDE_INT_MAX_ELTS]; unsigned int len; unsigned int precision; public: wide_int_storage (); template wide_int_storage (const T &); /* The standard generic_wide_int storage methods. */ unsigned int get_precision () const; const HOST_WIDE_INT *get_val () const; unsigned int get_len () const; HOST_WIDE_INT *write_val (); void set_len (unsigned int, bool = false); static wide_int from (const wide_int_ref &, unsigned int, signop); static wide_int from_array (const HOST_WIDE_INT *, unsigned int, unsigned int, bool = true); static wide_int create (unsigned int); /* FIXME: target-dependent, so should disappear. */ wide_int bswap () const; }; namespace wi { template <> struct int_traits { static const enum precision_type precision_type = VAR_PRECISION; /* Guaranteed by a static assert in the wide_int_storage constructor. */ static const bool host_dependent_precision = false; static const bool is_sign_extended = true; template static wide_int get_binary_result (const T1 &, const T2 &); }; } inline wide_int_storage::wide_int_storage () {} /* Initialize the storage from integer X, in its natural precision. Note that we do not allow integers with host-dependent precision to become wide_ints; wide_ints must always be logically independent of the host. */ template inline wide_int_storage::wide_int_storage (const T &x) { { STATIC_ASSERT (!wi::int_traits::host_dependent_precision); } { STATIC_ASSERT (wi::int_traits::precision_type != wi::CONST_PRECISION); } WIDE_INT_REF_FOR (T) xi (x); precision = xi.precision; wi::copy (*this, xi); } inline unsigned int wide_int_storage::get_precision () const { return precision; } inline const HOST_WIDE_INT * wide_int_storage::get_val () const { return val; } inline unsigned int wide_int_storage::get_len () const { return len; } inline HOST_WIDE_INT * wide_int_storage::write_val () { return val; } inline void wide_int_storage::set_len (unsigned int l, bool is_sign_extended) { len = l; if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision) val[len - 1] = sext_hwi (val[len - 1], precision % HOST_BITS_PER_WIDE_INT); } /* Treat X as having signedness SGN and convert it to a PRECISION-bit number. */ inline wide_int wide_int_storage::from (const wide_int_ref &x, unsigned int precision, signop sgn) { wide_int result = wide_int::create (precision); result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, x.precision, precision, sgn)); return result; } /* Create a wide_int from the explicit block encoding given by VAL and LEN. PRECISION is the precision of the integer. NEED_CANON_P is true if the encoding may have redundant trailing blocks. */ inline wide_int wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len, unsigned int precision, bool need_canon_p) { wide_int result = wide_int::create (precision); result.set_len (wi::from_array (result.write_val (), val, len, precision, need_canon_p)); return result; } /* Return an uninitialized wide_int with precision PRECISION. */ inline wide_int wide_int_storage::create (unsigned int precision) { wide_int x; x.precision = precision; return x; } template inline wide_int wi::int_traits ::get_binary_result (const T1 &x, const T2 &y) { /* This shouldn't be used for two flexible-precision inputs. */ STATIC_ASSERT (wi::int_traits ::precision_type != FLEXIBLE_PRECISION || wi::int_traits ::precision_type != FLEXIBLE_PRECISION); if (wi::int_traits ::precision_type == FLEXIBLE_PRECISION) return wide_int::create (wi::get_precision (y)); else return wide_int::create (wi::get_precision (x)); } /* The storage used by FIXED_WIDE_INT (N). */ template class GTY(()) fixed_wide_int_storage { private: HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT]; unsigned int len; public: fixed_wide_int_storage (); template fixed_wide_int_storage (const T &); /* The standard generic_wide_int storage methods. */ unsigned int get_precision () const; const HOST_WIDE_INT *get_val () const; unsigned int get_len () const; HOST_WIDE_INT *write_val (); void set_len (unsigned int, bool = false); static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop); static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int, bool = true); }; namespace wi { template struct int_traits < fixed_wide_int_storage > { static const enum precision_type precision_type = CONST_PRECISION; static const bool host_dependent_precision = false; static const bool is_sign_extended = true; static const unsigned int precision = N; template static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &); }; } template inline fixed_wide_int_storage ::fixed_wide_int_storage () {} /* Initialize the storage from integer X, in precision N. */ template template inline fixed_wide_int_storage ::fixed_wide_int_storage (const T &x) { /* Check for type compatibility. We don't want to initialize a fixed-width integer from something like a wide_int. */ WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED; wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N)); } template inline unsigned int fixed_wide_int_storage ::get_precision () const { return N; } template inline const HOST_WIDE_INT * fixed_wide_int_storage ::get_val () const { return val; } template inline unsigned int fixed_wide_int_storage ::get_len () const { return len; } template inline HOST_WIDE_INT * fixed_wide_int_storage ::write_val () { return val; } template inline void fixed_wide_int_storage ::set_len (unsigned int l, bool) { len = l; /* There are no excess bits in val[len - 1]. */ STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0); } /* Treat X as having signedness SGN and convert it to an N-bit number. */ template inline FIXED_WIDE_INT (N) fixed_wide_int_storage ::from (const wide_int_ref &x, signop sgn) { FIXED_WIDE_INT (N) result; result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, x.precision, N, sgn)); return result; } /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by VAL and LEN. NEED_CANON_P is true if the encoding may have redundant trailing blocks. */ template inline FIXED_WIDE_INT (N) fixed_wide_int_storage ::from_array (const HOST_WIDE_INT *val, unsigned int len, bool need_canon_p) { FIXED_WIDE_INT (N) result; result.set_len (wi::from_array (result.write_val (), val, len, N, need_canon_p)); return result; } template template inline FIXED_WIDE_INT (N) wi::int_traits < fixed_wide_int_storage >:: get_binary_result (const T1 &, const T2 &) { return FIXED_WIDE_INT (N) (); } /* A reference to one element of a trailing_wide_ints structure. */ class trailing_wide_int_storage { private: /* The precision of the integer, which is a fixed property of the parent trailing_wide_ints. */ unsigned int m_precision; /* A pointer to the length field. */ unsigned char *m_len; /* A pointer to the HWI array. There are enough elements to hold all values of precision M_PRECISION. */ HOST_WIDE_INT *m_val; public: trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *); /* The standard generic_wide_int storage methods. */ unsigned int get_len () const; unsigned int get_precision () const; const HOST_WIDE_INT *get_val () const; HOST_WIDE_INT *write_val (); void set_len (unsigned int, bool = false); template trailing_wide_int_storage &operator = (const T &); }; typedef generic_wide_int trailing_wide_int; /* trailing_wide_int behaves like a wide_int. */ namespace wi { template <> struct int_traits : public int_traits {}; } /* An array of N wide_int-like objects that can be put at the end of a variable-sized structure. Use extra_size to calculate how many bytes beyond the sizeof need to be allocated. Use set_precision to initialize the structure. */ template class GTY(()) trailing_wide_ints { private: /* The shared precision of each number. */ unsigned short m_precision; /* The shared maximum length of each number. */ unsigned char m_max_len; /* The current length of each number. */ unsigned char m_len[N]; /* The variable-length part of the structure, which always contains at least one HWI. Element I starts at index I * M_MAX_LEN. */ HOST_WIDE_INT m_val[1]; public: void set_precision (unsigned int); trailing_wide_int operator [] (unsigned int); static size_t extra_size (unsigned int); }; inline trailing_wide_int_storage:: trailing_wide_int_storage (unsigned int precision, unsigned char *len, HOST_WIDE_INT *val) : m_precision (precision), m_len (len), m_val (val) { } inline unsigned int trailing_wide_int_storage::get_len () const { return *m_len; } inline unsigned int trailing_wide_int_storage::get_precision () const { return m_precision; } inline const HOST_WIDE_INT * trailing_wide_int_storage::get_val () const { return m_val; } inline HOST_WIDE_INT * trailing_wide_int_storage::write_val () { return m_val; } inline void trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended) { *m_len = len; if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision) m_val[len - 1] = sext_hwi (m_val[len - 1], m_precision % HOST_BITS_PER_WIDE_INT); } template inline trailing_wide_int_storage & trailing_wide_int_storage::operator = (const T &x) { WIDE_INT_REF_FOR (T) xi (x, m_precision); wi::copy (*this, xi); return *this; } /* Initialize the structure and record that all elements have precision PRECISION. */ template inline void trailing_wide_ints ::set_precision (unsigned int precision) { m_precision = precision; m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT); } /* Return a reference to element INDEX. */ template inline trailing_wide_int trailing_wide_ints ::operator [] (unsigned int index) { return trailing_wide_int_storage (m_precision, &m_len[index], &m_val[index * m_max_len]); } /* Return how many extra bytes need to be added to the end of the structure in order to handle N wide_ints of precision PRECISION. */ template inline size_t trailing_wide_ints ::extra_size (unsigned int precision) { unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT); return (N * max_len - 1) * sizeof (HOST_WIDE_INT); } /* This macro is used in structures that end with a trailing_wide_ints field called FIELD. It declares get_NAME() and set_NAME() methods to access element I of FIELD. */ #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \ trailing_wide_int get_##NAME () { return FIELD[I]; } \ template void set_##NAME (const T &x) { FIELD[I] = x; } namespace wi { /* Implementation of int_traits for primitive integer types like "int". */ template struct primitive_int_traits { static const enum precision_type precision_type = FLEXIBLE_PRECISION; static const bool host_dependent_precision = true; static const bool is_sign_extended = true; static unsigned int get_precision (T); static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T); }; } template inline unsigned int wi::primitive_int_traits ::get_precision (T) { return sizeof (T) * CHAR_BIT; } template inline wi::storage_ref wi::primitive_int_traits ::decompose (HOST_WIDE_INT *scratch, unsigned int precision, T x) { scratch[0] = x; if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT) return wi::storage_ref (scratch, 1, precision); scratch[1] = 0; return wi::storage_ref (scratch, 2, precision); } /* Allow primitive C types to be used in wi:: routines. */ namespace wi { template <> struct int_traits : public primitive_int_traits {}; template <> struct int_traits : public primitive_int_traits {}; template <> struct int_traits : public primitive_int_traits {}; template <> struct int_traits : public primitive_int_traits {}; #if defined HAVE_LONG_LONG template <> struct int_traits : public primitive_int_traits {}; template <> struct int_traits : public primitive_int_traits {}; #endif } namespace wi { /* Stores HWI-sized integer VAL, treating it as having signedness SGN and precision PRECISION. */ struct hwi_with_prec { hwi_with_prec (HOST_WIDE_INT, unsigned int, signop); HOST_WIDE_INT val; unsigned int precision; signop sgn; }; hwi_with_prec shwi (HOST_WIDE_INT, unsigned int); hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int); hwi_with_prec minus_one (unsigned int); hwi_with_prec zero (unsigned int); hwi_with_prec one (unsigned int); hwi_with_prec two (unsigned int); } inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p, signop s) : val (v), precision (p), sgn (s) { } /* Return a signed integer that has value VAL and precision PRECISION. */ inline wi::hwi_with_prec wi::shwi (HOST_WIDE_INT val, unsigned int precision) { return hwi_with_prec (val, precision, SIGNED); } /* Return an unsigned integer that has value VAL and precision PRECISION. */ inline wi::hwi_with_prec wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision) { return hwi_with_prec (val, precision, UNSIGNED); } /* Return a wide int of -1 with precision PRECISION. */ inline wi::hwi_with_prec wi::minus_one (unsigned int precision) { return wi::shwi (-1, precision); } /* Return a wide int of 0 with precision PRECISION. */ inline wi::hwi_with_prec wi::zero (unsigned int precision) { return wi::shwi (0, precision); } /* Return a wide int of 1 with precision PRECISION. */ inline wi::hwi_with_prec wi::one (unsigned int precision) { return wi::shwi (1, precision); } /* Return a wide int of 2 with precision PRECISION. */ inline wi::hwi_with_prec wi::two (unsigned int precision) { return wi::shwi (2, precision); } namespace wi { template <> struct int_traits { static const enum precision_type precision_type = VAR_PRECISION; /* hwi_with_prec has an explicitly-given precision, rather than the precision of HOST_WIDE_INT. */ static const bool host_dependent_precision = false; static const bool is_sign_extended = true; static unsigned int get_precision (const wi::hwi_with_prec &); static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, const wi::hwi_with_prec &); }; } inline unsigned int wi::int_traits ::get_precision (const wi::hwi_with_prec &x) { return x.precision; } inline wi::storage_ref wi::int_traits :: decompose (HOST_WIDE_INT *scratch, unsigned int precision, const wi::hwi_with_prec &x) { gcc_checking_assert (precision == x.precision); scratch[0] = x.val; if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT) return wi::storage_ref (scratch, 1, precision); scratch[1] = 0; return wi::storage_ref (scratch, 2, precision); } /* Private functions for handling large cases out of line. They take individual length and array parameters because that is cheaper for the inline caller than constructing an object on the stack and passing a reference to it. (Although many callers use wide_int_refs, we generally want those to be removed by SRA.) */ namespace wi { bool eq_p_large (const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int); bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, const HOST_WIDE_INT *, unsigned int); bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, const HOST_WIDE_INT *, unsigned int); int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int, const HOST_WIDE_INT *, unsigned int); int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int, const HOST_WIDE_INT *, unsigned int); unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, unsigned int); unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, unsigned int); unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, unsigned int); unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, unsigned int); unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, unsigned int, unsigned int); unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, unsigned int, unsigned int); unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int); unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int); unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int); unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int); unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int); unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int, signop, bool *); unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int, signop, bool *); unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int, signop, bool *, bool); unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *, HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, const HOST_WIDE_INT *, unsigned int, unsigned int, signop, bool *); } /* Return the number of bits that integer X can hold. */ template inline unsigned int wi::get_precision (const T &x) { return wi::int_traits ::get_precision (x); } /* Return the number of bits that the result of a binary operation can hold when the input operands are X and Y. */ template inline unsigned int wi::get_binary_precision (const T1 &x, const T2 &y) { return get_precision (wi::int_traits :: get_binary_result (x, y)); } /* Copy the contents of Y to X, but keeping X's current precision. */ template inline void wi::copy (T1 &x, const T2 &y) { HOST_WIDE_INT *xval = x.write_val (); const HOST_WIDE_INT *yval = y.get_val (); unsigned int len = y.get_len (); unsigned int i = 0; do xval[i] = yval[i]; while (++i < len); x.set_len (len, y.is_sign_extended); } /* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */ template inline bool wi::fits_shwi_p (const T &x) { WIDE_INT_REF_FOR (T) xi (x); return xi.len == 1; } /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of precision. */ template inline bool wi::fits_uhwi_p (const T &x) { WIDE_INT_REF_FOR (T) xi (x); if (xi.precision <= HOST_BITS_PER_WIDE_INT) return true; if (xi.len == 1) return xi.slow () >= 0; return xi.len == 2 && xi.uhigh () == 0; } /* Return true if X is negative based on the interpretation of SGN. For UNSIGNED, this is always false. */ template inline bool wi::neg_p (const T &x, signop sgn) { WIDE_INT_REF_FOR (T) xi (x); if (sgn == UNSIGNED) return false; return xi.sign_mask () < 0; } /* Return -1 if the top bit of X is set and 0 if the top bit is clear. */ template inline HOST_WIDE_INT wi::sign_mask (const T &x) { WIDE_INT_REF_FOR (T) xi (x); return xi.sign_mask (); } /* Return true if X == Y. X and Y must be binary-compatible. */ template inline bool wi::eq_p (const T1 &x, const T2 &y) { unsigned int precision = get_binary_precision (x, y); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); if (xi.is_sign_extended && yi.is_sign_extended) { /* This case reduces to array equality. */ if (xi.len != yi.len) return false; unsigned int i = 0; do if (xi.val[i] != yi.val[i]) return false; while (++i != xi.len); return true; } if (__builtin_expect (yi.len == 1, true)) { /* XI is only equal to YI if it too has a single HWI. */ if (xi.len != 1) return false; /* Excess bits in xi.val[0] will be signs or zeros, so comparisons with 0 are simple. */ if (STATIC_CONSTANT_P (yi.val[0] == 0)) return xi.val[0] == 0; /* Otherwise flush out any excess bits first. */ unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0]; int excess = HOST_BITS_PER_WIDE_INT - precision; if (excess > 0) diff <<= excess; return diff == 0; } return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision); } /* Return true if X != Y. X and Y must be binary-compatible. */ template inline bool wi::ne_p (const T1 &x, const T2 &y) { return !eq_p (x, y); } /* Return true if X < Y when both are treated as signed values. */ template inline bool wi::lts_p (const T1 &x, const T2 &y) { unsigned int precision = get_binary_precision (x, y); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); /* We optimize x < y, where y is 64 or fewer bits. */ if (wi::fits_shwi_p (yi)) { /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */ if (STATIC_CONSTANT_P (yi.val[0] == 0)) return neg_p (xi); /* If x fits directly into a shwi, we can compare directly. */ if (wi::fits_shwi_p (xi)) return xi.to_shwi () < yi.to_shwi (); /* If x doesn't fit and is negative, then it must be more negative than any value in y, and hence smaller than y. */ if (neg_p (xi)) return true; /* If x is positive, then it must be larger than any value in y, and hence greater than y. */ return false; } /* Optimize the opposite case, if it can be detected at compile time. */ if (STATIC_CONSTANT_P (xi.len == 1)) /* If YI is negative it is lower than the least HWI. If YI is positive it is greater than the greatest HWI. */ return !neg_p (yi); return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len); } /* Return true if X < Y when both are treated as unsigned values. */ template inline bool wi::ltu_p (const T1 &x, const T2 &y) { unsigned int precision = get_binary_precision (x, y); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); /* Optimize comparisons with constants. */ if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0]; if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0]; /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both values does not change the result. */ if (__builtin_expect (xi.len + yi.len == 2, true)) { unsigned HOST_WIDE_INT xl = xi.to_uhwi (); unsigned HOST_WIDE_INT yl = yi.to_uhwi (); return xl < yl; } return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len); } /* Return true if X < Y. Signedness of X and Y is indicated by SGN. */ template inline bool wi::lt_p (const T1 &x, const T2 &y, signop sgn) { if (sgn == SIGNED) return lts_p (x, y); else return ltu_p (x, y); } /* Return true if X <= Y when both are treated as signed values. */ template inline bool wi::les_p (const T1 &x, const T2 &y) { return !lts_p (y, x); } /* Return true if X <= Y when both are treated as unsigned values. */ template inline bool wi::leu_p (const T1 &x, const T2 &y) { return !ltu_p (y, x); } /* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */ template inline bool wi::le_p (const T1 &x, const T2 &y, signop sgn) { if (sgn == SIGNED) return les_p (x, y); else return leu_p (x, y); } /* Return true if X > Y when both are treated as signed values. */ template inline bool wi::gts_p (const T1 &x, const T2 &y) { return lts_p (y, x); } /* Return true if X > Y when both are treated as unsigned values. */ template inline bool wi::gtu_p (const T1 &x, const T2 &y) { return ltu_p (y, x); } /* Return true if X > Y. Signedness of X and Y is indicated by SGN. */ template inline bool wi::gt_p (const T1 &x, const T2 &y, signop sgn) { if (sgn == SIGNED) return gts_p (x, y); else return gtu_p (x, y); } /* Return true if X >= Y when both are treated as signed values. */ template inline bool wi::ges_p (const T1 &x, const T2 &y) { return !lts_p (x, y); } /* Return true if X >= Y when both are treated as unsigned values. */ template inline bool wi::geu_p (const T1 &x, const T2 &y) { return !ltu_p (x, y); } /* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */ template inline bool wi::ge_p (const T1 &x, const T2 &y, signop sgn) { if (sgn == SIGNED) return ges_p (x, y); else return geu_p (x, y); } /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y as signed values. */ template inline int wi::cmps (const T1 &x, const T2 &y) { unsigned int precision = get_binary_precision (x, y); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); if (wi::fits_shwi_p (yi)) { /* Special case for comparisons with 0. */ if (STATIC_CONSTANT_P (yi.val[0] == 0)) return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0); /* If x fits into a signed HWI, we can compare directly. */ if (wi::fits_shwi_p (xi)) { HOST_WIDE_INT xl = xi.to_shwi (); HOST_WIDE_INT yl = yi.to_shwi (); return xl < yl ? -1 : xl > yl; } /* If x doesn't fit and is negative, then it must be more negative than any signed HWI, and hence smaller than y. */ if (neg_p (xi)) return -1; /* If x is positive, then it must be larger than any signed HWI, and hence greater than y. */ return 1; } /* Optimize the opposite case, if it can be detected at compile time. */ if (STATIC_CONSTANT_P (xi.len == 1)) /* If YI is negative it is lower than the least HWI. If YI is positive it is greater than the greatest HWI. */ return neg_p (yi) ? 1 : -1; return cmps_large (xi.val, xi.len, precision, yi.val, yi.len); } /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y as unsigned values. */ template inline int wi::cmpu (const T1 &x, const T2 &y) { unsigned int precision = get_binary_precision (x, y); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); /* Optimize comparisons with constants. */ if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) { /* If XI doesn't fit in a HWI then it must be larger than YI. */ if (xi.len != 1) return 1; /* Otherwise compare directly. */ unsigned HOST_WIDE_INT xl = xi.to_uhwi (); unsigned HOST_WIDE_INT yl = yi.val[0]; return xl < yl ? -1 : xl > yl; } if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) { /* If YI doesn't fit in a HWI then it must be larger than XI. */ if (yi.len != 1) return -1; /* Otherwise compare directly. */ unsigned HOST_WIDE_INT xl = xi.val[0]; unsigned HOST_WIDE_INT yl = yi.to_uhwi (); return xl < yl ? -1 : xl > yl; } /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both values does not change the result. */ if (__builtin_expect (xi.len + yi.len == 2, true)) { unsigned HOST_WIDE_INT xl = xi.to_uhwi (); unsigned HOST_WIDE_INT yl = yi.to_uhwi (); return xl < yl ? -1 : xl > yl; } return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len); } /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of X and Y indicated by SGN. */ template inline int wi::cmp (const T1 &x, const T2 &y, signop sgn) { if (sgn == SIGNED) return cmps (x, y); else return cmpu (x, y); } /* Return ~x. */ template inline WI_UNARY_RESULT (T) wi::bit_not (const T &x) { WI_UNARY_RESULT_VAR (result, val, T, x); WIDE_INT_REF_FOR (T) xi (x, get_precision (result)); for (unsigned int i = 0; i < xi.len; ++i) val[i] = ~xi.val[i]; result.set_len (xi.len); return result; } /* Return -x. */ template inline WI_UNARY_RESULT (T) wi::neg (const T &x) { return sub (0, x); } /* Return -x. Indicate in *OVERFLOW if X is the minimum signed value. */ template inline WI_UNARY_RESULT (T) wi::neg (const T &x, bool *overflow) { *overflow = only_sign_bit_p (x); return sub (0, x); } /* Return the absolute value of x. */ template inline WI_UNARY_RESULT (T) wi::abs (const T &x) { return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x); } /* Return the result of sign-extending the low OFFSET bits of X. */ template inline WI_UNARY_RESULT (T) wi::sext (const T &x, unsigned int offset) { WI_UNARY_RESULT_VAR (result, val, T, x); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T) xi (x, precision); if (offset <= HOST_BITS_PER_WIDE_INT) { val[0] = sext_hwi (xi.ulow (), offset); result.set_len (1, true); } else result.set_len (sext_large (val, xi.val, xi.len, precision, offset)); return result; } /* Return the result of zero-extending the low OFFSET bits of X. */ template inline WI_UNARY_RESULT (T) wi::zext (const T &x, unsigned int offset) { WI_UNARY_RESULT_VAR (result, val, T, x); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T) xi (x, precision); /* This is not just an optimization, it is actually required to maintain canonization. */ if (offset >= precision) { wi::copy (result, xi); return result; } /* In these cases we know that at least the top bit will be clear, so no sign extension is necessary. */ if (offset < HOST_BITS_PER_WIDE_INT) { val[0] = zext_hwi (xi.ulow (), offset); result.set_len (1, true); } else result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true); return result; } /* Return the result of extending the low OFFSET bits of X according to signedness SGN. */ template inline WI_UNARY_RESULT (T) wi::ext (const T &x, unsigned int offset, signop sgn) { return sgn == SIGNED ? sext (x, offset) : zext (x, offset); } /* Return an integer that represents X | (1 << bit). */ template inline WI_UNARY_RESULT (T) wi::set_bit (const T &x, unsigned int bit) { WI_UNARY_RESULT_VAR (result, val, T, x); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T) xi (x, precision); if (precision <= HOST_BITS_PER_WIDE_INT) { val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit); result.set_len (1); } else result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit)); return result; } /* Return the mininum of X and Y, treating them both as having signedness SGN. */ template inline WI_BINARY_RESULT (T1, T2) wi::min (const T1 &x, const T2 &y, signop sgn) { WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); unsigned int precision = get_precision (result); if (wi::le_p (x, y, sgn)) wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); else wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); return result; } /* Return the minimum of X and Y, treating both as signed values. */ template inline WI_BINARY_RESULT (T1, T2) wi::smin (const T1 &x, const T2 &y) { return wi::min (x, y, SIGNED); } /* Return the minimum of X and Y, treating both as unsigned values. */ template inline WI_BINARY_RESULT (T1, T2) wi::umin (const T1 &x, const T2 &y) { return wi::min (x, y, UNSIGNED); } /* Return the maxinum of X and Y, treating them both as having signedness SGN. */ template inline WI_BINARY_RESULT (T1, T2) wi::max (const T1 &x, const T2 &y, signop sgn) { WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); unsigned int precision = get_precision (result); if (wi::ge_p (x, y, sgn)) wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); else wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); return result; } /* Return the maximum of X and Y, treating both as signed values. */ template inline WI_BINARY_RESULT (T1, T2) wi::smax (const T1 &x, const T2 &y) { return wi::max (x, y, SIGNED); } /* Return the maximum of X and Y, treating both as unsigned values. */ template inline WI_BINARY_RESULT (T1, T2) wi::umax (const T1 &x, const T2 &y) { return wi::max (x, y, UNSIGNED); } /* Return X & Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::bit_and (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; if (__builtin_expect (xi.len + yi.len == 2, true)) { val[0] = xi.ulow () & yi.ulow (); result.set_len (1, is_sign_extended); } else result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len, precision), is_sign_extended); return result; } /* Return X & ~Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::bit_and_not (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; if (__builtin_expect (xi.len + yi.len == 2, true)) { val[0] = xi.ulow () & ~yi.ulow (); result.set_len (1, is_sign_extended); } else result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len, precision), is_sign_extended); return result; } /* Return X | Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::bit_or (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; if (__builtin_expect (xi.len + yi.len == 2, true)) { val[0] = xi.ulow () | yi.ulow (); result.set_len (1, is_sign_extended); } else result.set_len (or_large (val, xi.val, xi.len, yi.val, yi.len, precision), is_sign_extended); return result; } /* Return X | ~Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::bit_or_not (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; if (__builtin_expect (xi.len + yi.len == 2, true)) { val[0] = xi.ulow () | ~yi.ulow (); result.set_len (1, is_sign_extended); } else result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len, precision), is_sign_extended); return result; } /* Return X ^ Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::bit_xor (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; if (__builtin_expect (xi.len + yi.len == 2, true)) { val[0] = xi.ulow () ^ yi.ulow (); result.set_len (1, is_sign_extended); } else result.set_len (xor_large (val, xi.val, xi.len, yi.val, yi.len, precision), is_sign_extended); return result; } /* Return X + Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::add (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); if (precision <= HOST_BITS_PER_WIDE_INT) { val[0] = xi.ulow () + yi.ulow (); result.set_len (1); } /* If the precision is known at compile time to be greater than HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case knowing that (a) all bits in those HWIs are significant and (b) the result has room for at least two HWIs. This provides a fast path for things like offset_int and widest_int. The STATIC_CONSTANT_P test prevents this path from being used for wide_ints. wide_ints with precisions greater than HOST_BITS_PER_WIDE_INT are relatively rare and there's not much point handling them inline. */ else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) && __builtin_expect (xi.len + yi.len == 2, true)) { unsigned HOST_WIDE_INT xl = xi.ulow (); unsigned HOST_WIDE_INT yl = yi.ulow (); unsigned HOST_WIDE_INT resultl = xl + yl; val[0] = resultl; val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl)) >> (HOST_BITS_PER_WIDE_INT - 1))); } else result.set_len (add_large (val, xi.val, xi.len, yi.val, yi.len, precision, UNSIGNED, 0)); return result; } /* Return X + Y. Treat X and Y as having the signednes given by SGN and indicate in *OVERFLOW whether the operation overflowed. */ template inline WI_BINARY_RESULT (T1, T2) wi::add (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); if (precision <= HOST_BITS_PER_WIDE_INT) { unsigned HOST_WIDE_INT xl = xi.ulow (); unsigned HOST_WIDE_INT yl = yi.ulow (); unsigned HOST_WIDE_INT resultl = xl + yl; if (sgn == SIGNED) *overflow = (((resultl ^ xl) & (resultl ^ yl)) >> (precision - 1)) & 1; else *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) < (xl << (HOST_BITS_PER_WIDE_INT - precision))); val[0] = resultl; result.set_len (1); } else result.set_len (add_large (val, xi.val, xi.len, yi.val, yi.len, precision, sgn, overflow)); return result; } /* Return X - Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::sub (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); if (precision <= HOST_BITS_PER_WIDE_INT) { val[0] = xi.ulow () - yi.ulow (); result.set_len (1); } /* If the precision is known at compile time to be greater than HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case knowing that (a) all bits in those HWIs are significant and (b) the result has room for at least two HWIs. This provides a fast path for things like offset_int and widest_int. The STATIC_CONSTANT_P test prevents this path from being used for wide_ints. wide_ints with precisions greater than HOST_BITS_PER_WIDE_INT are relatively rare and there's not much point handling them inline. */ else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) && __builtin_expect (xi.len + yi.len == 2, true)) { unsigned HOST_WIDE_INT xl = xi.ulow (); unsigned HOST_WIDE_INT yl = yi.ulow (); unsigned HOST_WIDE_INT resultl = xl - yl; val[0] = resultl; val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; result.set_len (1 + (((resultl ^ xl) & (xl ^ yl)) >> (HOST_BITS_PER_WIDE_INT - 1))); } else result.set_len (sub_large (val, xi.val, xi.len, yi.val, yi.len, precision, UNSIGNED, 0)); return result; } /* Return X - Y. Treat X and Y as having the signednes given by SGN and indicate in *OVERFLOW whether the operation overflowed. */ template inline WI_BINARY_RESULT (T1, T2) wi::sub (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); if (precision <= HOST_BITS_PER_WIDE_INT) { unsigned HOST_WIDE_INT xl = xi.ulow (); unsigned HOST_WIDE_INT yl = yi.ulow (); unsigned HOST_WIDE_INT resultl = xl - yl; if (sgn == SIGNED) *overflow = (((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1; else *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) > (xl << (HOST_BITS_PER_WIDE_INT - precision))); val[0] = resultl; result.set_len (1); } else result.set_len (sub_large (val, xi.val, xi.len, yi.val, yi.len, precision, sgn, overflow)); return result; } /* Return X * Y. */ template inline WI_BINARY_RESULT (T1, T2) wi::mul (const T1 &x, const T2 &y) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); if (precision <= HOST_BITS_PER_WIDE_INT) { val[0] = xi.ulow () * yi.ulow (); result.set_len (1); } else result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len, precision, UNSIGNED, 0, false)); return result; } /* Return X * Y. Treat X and Y as having the signednes given by SGN and indicate in *OVERFLOW whether the operation overflowed. */ template inline WI_BINARY_RESULT (T1, T2) wi::mul (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len, precision, sgn, overflow, false)); return result; } /* Return X * Y, treating both X and Y as signed values. Indicate in *OVERFLOW whether the operation overflowed. */ template inline WI_BINARY_RESULT (T1, T2) wi::smul (const T1 &x, const T2 &y, bool *overflow) { return mul (x, y, SIGNED, overflow); } /* Return X * Y, treating both X and Y as unsigned values. Indicate in *OVERFLOW whether the operation overflowed. */ template inline WI_BINARY_RESULT (T1, T2) wi::umul (const T1 &x, const T2 &y, bool *overflow) { return mul (x, y, UNSIGNED, overflow); } /* Perform a widening multiplication of X and Y, extending the values according to SGN, and return the high part of the result. */ template inline WI_BINARY_RESULT (T1, T2) wi::mul_high (const T1 &x, const T2 &y, signop sgn) { WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y, precision); result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len, precision, sgn, 0, true)); return result; } /* Return X / Y, rouding towards 0. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the result overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::div_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow)); return quotient; } /* Return X / Y, rouding towards 0. Treat X and Y as signed values. */ template inline WI_BINARY_RESULT (T1, T2) wi::sdiv_trunc (const T1 &x, const T2 &y) { return div_trunc (x, y, SIGNED); } /* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */ template inline WI_BINARY_RESULT (T1, T2) wi::udiv_trunc (const T1 &x, const T2 &y) { return div_trunc (x, y, UNSIGNED); } /* Return X / Y, rouding towards -inf. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the result overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::div_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; quotient.set_len (divmod_internal (quotient_val, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow)); remainder.set_len (remainder_len); if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) return quotient - 1; return quotient; } /* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */ template inline WI_BINARY_RESULT (T1, T2) wi::sdiv_floor (const T1 &x, const T2 &y) { return div_floor (x, y, SIGNED); } /* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */ /* ??? Why do we have both this and udiv_trunc. Aren't they the same? */ template inline WI_BINARY_RESULT (T1, T2) wi::udiv_floor (const T1 &x, const T2 &y) { return div_floor (x, y, UNSIGNED); } /* Return X / Y, rouding towards +inf. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the result overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::div_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; quotient.set_len (divmod_internal (quotient_val, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow)); remainder.set_len (remainder_len); if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) return quotient + 1; return quotient; } /* Return X / Y, rouding towards nearest with ties away from zero. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the result overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::div_round (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; quotient.set_len (divmod_internal (quotient_val, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow)); remainder.set_len (remainder_len); if (remainder != 0) { if (sgn == SIGNED) { WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) { if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) return quotient - 1; else return quotient + 1; } } else { if (wi::geu_p (remainder, wi::sub (y, remainder))) return quotient + 1; } } return quotient; } /* Return X / Y, rouding towards 0. Treat X and Y as having the signedness given by SGN. Store the remainder in *REMAINDER_PTR. */ template inline WI_BINARY_RESULT (T1, T2) wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn, WI_BINARY_RESULT (T1, T2) *remainder_ptr) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; quotient.set_len (divmod_internal (quotient_val, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, 0)); remainder.set_len (remainder_len); *remainder_ptr = remainder; return quotient; } /* Compute the greatest common divisor of two numbers A and B using Euclid's algorithm. */ template inline WI_BINARY_RESULT (T1, T2) wi::gcd (const T1 &a, const T2 &b, signop sgn) { T1 x, y, z; x = wi::abs (a); y = wi::abs (b); while (gt_p (x, 0, sgn)) { z = mod_trunc (y, x, sgn); y = x; x = z; } return y; } /* Compute X / Y, rouding towards 0, and return the remainder. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the division overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (remainder); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; divmod_internal (0, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow); remainder.set_len (remainder_len); return remainder; } /* Compute X / Y, rouding towards 0, and return the remainder. Treat X and Y as signed values. */ template inline WI_BINARY_RESULT (T1, T2) wi::smod_trunc (const T1 &x, const T2 &y) { return mod_trunc (x, y, SIGNED); } /* Compute X / Y, rouding towards 0, and return the remainder. Treat X and Y as unsigned values. */ template inline WI_BINARY_RESULT (T1, T2) wi::umod_trunc (const T1 &x, const T2 &y) { return mod_trunc (x, y, UNSIGNED); } /* Compute X / Y, rouding towards -inf, and return the remainder. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the division overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::mod_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; quotient.set_len (divmod_internal (quotient_val, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow)); remainder.set_len (remainder_len); if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) return remainder + y; return remainder; } /* Compute X / Y, rouding towards -inf, and return the remainder. Treat X and Y as unsigned values. */ /* ??? Why do we have both this and umod_trunc. Aren't they the same? */ template inline WI_BINARY_RESULT (T1, T2) wi::umod_floor (const T1 &x, const T2 &y) { return mod_floor (x, y, UNSIGNED); } /* Compute X / Y, rouding towards +inf, and return the remainder. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the division overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; quotient.set_len (divmod_internal (quotient_val, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow)); remainder.set_len (remainder_len); if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) return remainder - y; return remainder; } /* Compute X / Y, rouding towards nearest with ties away from zero, and return the remainder. Treat X and Y as having the signedness given by SGN. Indicate in *OVERFLOW if the division overflows. */ template inline WI_BINARY_RESULT (T1, T2) wi::mod_round (const T1 &x, const T2 &y, signop sgn, bool *overflow) { WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); unsigned int precision = get_precision (quotient); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); unsigned int remainder_len; quotient.set_len (divmod_internal (quotient_val, &remainder_len, remainder_val, xi.val, xi.len, precision, yi.val, yi.len, yi.precision, sgn, overflow)); remainder.set_len (remainder_len); if (remainder != 0) { if (sgn == SIGNED) { WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) { if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) return remainder + y; else return remainder - y; } } else { if (wi::geu_p (remainder, wi::sub (y, remainder))) return remainder - y; } } return remainder; } /* Return true if X is a multiple of Y. Treat X and Y as having the signedness given by SGN. */ template inline bool wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn) { return wi::mod_trunc (x, y, sgn) == 0; } /* Return true if X is a multiple of Y, storing X / Y in *RES if so. Treat X and Y as having the signedness given by SGN. */ template inline bool wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn, WI_BINARY_RESULT (T1, T2) *res) { WI_BINARY_RESULT (T1, T2) remainder; WI_BINARY_RESULT (T1, T2) quotient = divmod_trunc (x, y, sgn, &remainder); if (remainder == 0) { *res = quotient; return true; } return false; } /* Return X << Y. Return 0 if Y is greater than or equal to the precision of X. */ template inline WI_UNARY_RESULT (T1) wi::lshift (const T1 &x, const T2 &y) { WI_UNARY_RESULT_VAR (result, val, T1, x); unsigned int precision = get_precision (result); WIDE_INT_REF_FOR (T1) xi (x, precision); WIDE_INT_REF_FOR (T2) yi (y); /* Handle the simple cases quickly. */ if (geu_p (yi, precision)) { val[0] = 0; result.set_len (1); } else { unsigned int shift = yi.to_uhwi (); /* For fixed-precision integers like offset_int and widest_int, handle the case where the shift value is constant and the result is a single nonnegative HWI (meaning that we don't need to worry about val[1]). This is particularly common for converting a byte count to a bit count. For variable-precision integers like wide_int, handle HWI and sub-HWI integers inline. */ if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1) && xi.len == 1 && xi.val[0] <= (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) HOST_WIDE_INT_MAX >> shift)) : precision <= HOST_BITS_PER_WIDE_INT) { val[0] = xi.ulow () << shift; result.set_len (1); } else result.set_len (lshift_large (val, xi.val, xi.len, precision, shift)); } return result; } /* Return X >> Y, using a logical shift. Return 0 if Y is greater than or equal to the precision of X. */ template inline WI_UNARY_RESULT (T1) wi::lrshift (const T1 &x, const T2 &y) { WI_UNARY_RESULT_VAR (result, val, T1, x); /* Do things in the precision of the input rather than the output, since the result can be no larger than that. */ WIDE_INT_REF_FOR (T1) xi (x); WIDE_INT_REF_FOR (T2) yi (y); /* Handle the simple cases quickly. */ if (geu_p (yi, xi.precision)) { val[0] = 0; result.set_len (1); } else { unsigned int shift = yi.to_uhwi (); /* For fixed-precision integers like offset_int and widest_int, handle the case where the shift value is constant and the shifted value is a single nonnegative HWI (meaning that all bits above the HWI are zero). This is particularly common for converting a bit count to a byte count. For variable-precision integers like wide_int, handle HWI and sub-HWI integers inline. */ if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) ? (shift < HOST_BITS_PER_WIDE_INT && xi.len == 1 && xi.val[0] >= 0) : xi.precision <= HOST_BITS_PER_WIDE_INT) { val[0] = xi.to_uhwi () >> shift; result.set_len (1); } else result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision, get_precision (result), shift)); } return result; } /* Return X >> Y, using an arithmetic shift. Return a sign mask if Y is greater than or equal to the precision of X. */ template inline WI_UNARY_RESULT (T1) wi::arshift (const T1 &x, const T2 &y) { WI_UNARY_RESULT_VAR (result, val, T1, x); /* Do things in the precision of the input rather than the output, since the result can be no larger than that. */ WIDE_INT_REF_FOR (T1) xi (x); WIDE_INT_REF_FOR (T2) yi (y); /* Handle the simple cases quickly. */ if (geu_p (yi, xi.precision)) { val[0] = sign_mask (x); result.set_len (1); } else { unsigned int shift = yi.to_uhwi (); if (xi.precision <= HOST_BITS_PER_WIDE_INT) { val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift); result.set_len (1, true); } else result.set_len (arshift_large (val, xi.val, xi.len, xi.precision, get_precision (result), shift)); } return result; } /* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a logical shift otherwise. */ template inline WI_UNARY_RESULT (T1) wi::rshift (const T1 &x, const T2 &y, signop sgn) { if (sgn == UNSIGNED) return lrshift (x, y); else return arshift (x, y); } /* Return the result of rotating the low WIDTH bits of X left by Y bits and zero-extending the result. Use a full-width rotate if WIDTH is zero. */ template WI_UNARY_RESULT (T1) wi::lrotate (const T1 &x, const T2 &y, unsigned int width) { unsigned int precision = get_binary_precision (x, x); if (width == 0) width = precision; WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod); WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod)); if (width != precision) return wi::zext (left, width) | wi::zext (right, width); return left | right; } /* Return the result of rotating the low WIDTH bits of X right by Y bits and zero-extending the result. Use a full-width rotate if WIDTH is zero. */ template WI_UNARY_RESULT (T1) wi::rrotate (const T1 &x, const T2 &y, unsigned int width) { unsigned int precision = get_binary_precision (x, x); if (width == 0) width = precision; WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod); WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod)); if (width != precision) return wi::zext (left, width) | wi::zext (right, width); return left | right; } /* Return 0 if the number of 1s in X is even and 1 if the number of 1s is odd. */ inline int wi::parity (const wide_int_ref &x) { return popcount (x) & 1; } /* Extract WIDTH bits from X, starting at BITPOS. */ template inline unsigned HOST_WIDE_INT wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width) { unsigned precision = get_precision (x); if (precision < bitpos + width) precision = bitpos + width; WIDE_INT_REF_FOR (T) xi (x, precision); /* Handle this rare case after the above, so that we assert about bogus BITPOS values. */ if (width == 0) return 0; unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT; unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT; unsigned HOST_WIDE_INT res = xi.elt (start); res >>= shift; if (shift + width > HOST_BITS_PER_WIDE_INT) { unsigned HOST_WIDE_INT upper = xi.elt (start + 1); res |= upper << (-shift % HOST_BITS_PER_WIDE_INT); } return zext_hwi (res, width); } /* Return the minimum precision needed to store X with sign SGN. */ template inline unsigned int wi::min_precision (const T &x, signop sgn) { if (sgn == SIGNED) return get_precision (x) - clrsb (x); else return get_precision (x) - clz (x); } #define SIGNED_BINARY_PREDICATE(OP, F) \ template \ inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \ OP (const T1 &x, const T2 &y) \ { \ return wi::F (x, y); \ } SIGNED_BINARY_PREDICATE (operator <, lts_p) SIGNED_BINARY_PREDICATE (operator <=, les_p) SIGNED_BINARY_PREDICATE (operator >, gts_p) SIGNED_BINARY_PREDICATE (operator >=, ges_p) #undef SIGNED_BINARY_PREDICATE template inline WI_SIGNED_SHIFT_RESULT (T1, T2) operator << (const T1 &x, const T2 &y) { return wi::lshift (x, y); } template inline WI_SIGNED_SHIFT_RESULT (T1, T2) operator >> (const T1 &x, const T2 &y) { return wi::arshift (x, y); } template void gt_ggc_mx (generic_wide_int *) { } template void gt_pch_nx (generic_wide_int *) { } template void gt_pch_nx (generic_wide_int *, void (*) (void *, void *), void *) { } template void gt_ggc_mx (trailing_wide_ints *) { } template void gt_pch_nx (trailing_wide_ints *) { } template void gt_pch_nx (trailing_wide_ints *, void (*) (void *, void *), void *) { } namespace wi { /* Used for overloaded functions in which the only other acceptable scalar type is a pointer. It stops a plain 0 from being treated as a null pointer. */ struct never_used1 {}; struct never_used2 {}; wide_int min_value (unsigned int, signop); wide_int min_value (never_used1 *); wide_int min_value (never_used2 *); wide_int max_value (unsigned int, signop); wide_int max_value (never_used1 *); wide_int max_value (never_used2 *); /* FIXME: this is target dependent, so should be elsewhere. It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */ wide_int from_buffer (const unsigned char *, unsigned int); #ifndef GENERATOR_FILE void to_mpz (const wide_int_ref &, mpz_t, signop); #endif wide_int mask (unsigned int, bool, unsigned int); wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int); wide_int set_bit_in_zero (unsigned int, unsigned int); wide_int insert (const wide_int &x, const wide_int &y, unsigned int, unsigned int); template T mask (unsigned int, bool); template T shifted_mask (unsigned int, unsigned int, bool); template T set_bit_in_zero (unsigned int); unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int); unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int, bool, unsigned int); unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, unsigned int, bool); } /* Return a PRECISION-bit integer in which the low WIDTH bits are set and the other bits are clear, or the inverse if NEGATE_P. */ inline wide_int wi::mask (unsigned int width, bool negate_p, unsigned int precision) { wide_int result = wide_int::create (precision); result.set_len (mask (result.write_val (), width, negate_p, precision)); return result; } /* Return a PRECISION-bit integer in which the low START bits are clear, the next WIDTH bits are set, and the other bits are clear, or the inverse if NEGATE_P. */ inline wide_int wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p, unsigned int precision) { wide_int result = wide_int::create (precision); result.set_len (shifted_mask (result.write_val (), start, width, negate_p, precision)); return result; } /* Return a PRECISION-bit integer in which bit BIT is set and all the others are clear. */ inline wide_int wi::set_bit_in_zero (unsigned int bit, unsigned int precision) { return shifted_mask (bit, 1, false, precision); } /* Return an integer of type T in which the low WIDTH bits are set and the other bits are clear, or the inverse if NEGATE_P. */ template inline T wi::mask (unsigned int width, bool negate_p) { STATIC_ASSERT (wi::int_traits::precision); T result; result.set_len (mask (result.write_val (), width, negate_p, wi::int_traits ::precision)); return result; } /* Return an integer of type T in which the low START bits are clear, the next WIDTH bits are set, and the other bits are clear, or the inverse if NEGATE_P. */ template inline T wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p) { STATIC_ASSERT (wi::int_traits::precision); T result; result.set_len (shifted_mask (result.write_val (), start, width, negate_p, wi::int_traits ::precision)); return result; } /* Return an integer of type T in which bit BIT is set and all the others are clear. */ template inline T wi::set_bit_in_zero (unsigned int bit) { return shifted_mask (bit, 1, false); } #endif /* WIDE_INT_H */