/* ----------------------------------------------------------------------- ffi.c - Copyright (C) 2011 Anthony Green Copyright (C) 2011 Kyle Moffett Copyright (C) 2008 Red Hat, Inc Copyright (C) 2007, 2008 Free Software Foundation, Inc Copyright (c) 1998 Geoffrey Keating PowerPC Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include #include #include #include extern void ffi_closure_SYSV (void); extern void FFI_HIDDEN ffi_closure_LINUX64 (void); enum { /* The assembly depends on these exact flags. */ FLAG_RETURNS_SMST = 1 << (31-31), /* Used for FFI_SYSV small structs. */ FLAG_RETURNS_NOTHING = 1 << (31-30), /* These go in cr7 */ #ifndef __NO_FPRS__ FLAG_RETURNS_FP = 1 << (31-29), #endif FLAG_RETURNS_64BITS = 1 << (31-28), FLAG_RETURNS_128BITS = 1 << (31-27), /* cr6 */ FLAG_ARG_NEEDS_COPY = 1 << (31- 7), FLAG_ARG_NEEDS_PSAVE = FLAG_ARG_NEEDS_COPY, /* Used by ELFv2 */ #ifndef __NO_FPRS__ FLAG_FP_ARGUMENTS = 1 << (31- 6), /* cr1.eq; specified by ABI */ #endif FLAG_4_GPR_ARGUMENTS = 1 << (31- 5), FLAG_RETVAL_REFERENCE = 1 << (31- 4) }; /* About the SYSV ABI. */ #define ASM_NEEDS_REGISTERS 4 #define NUM_GPR_ARG_REGISTERS 8 #ifndef __NO_FPRS__ # define NUM_FPR_ARG_REGISTERS 8 #endif /* ffi_prep_args_SYSV is called by the assembly routine once stack space has been allocated for the function's arguments. The stack layout we want looks like this: | Return address from ffi_call_SYSV 4bytes | higher addresses |--------------------------------------------| | Previous backchain pointer 4 | stack pointer here |--------------------------------------------|<+ <<< on entry to | Saved r28-r31 4*4 | | ffi_call_SYSV |--------------------------------------------| | | GPR registers r3-r10 8*4 | | ffi_call_SYSV |--------------------------------------------| | | FPR registers f1-f8 (optional) 8*8 | | |--------------------------------------------| | stack | | Space for copied structures | | grows | |--------------------------------------------| | down V | Parameters that didn't fit in registers | | |--------------------------------------------| | lower addresses | Space for callee's LR 4 | | |--------------------------------------------| | stack pointer here | Current backchain pointer 4 |-/ during |--------------------------------------------| <<< ffi_call_SYSV */ void ffi_prep_args_SYSV (extended_cif *ecif, unsigned *const stack) { const unsigned bytes = ecif->cif->bytes; const unsigned flags = ecif->cif->flags; typedef union { char *c; unsigned *u; long long *ll; float *f; double *d; } valp; /* 'stacktop' points at the previous backchain pointer. */ valp stacktop; /* 'gpr_base' points at the space for gpr3, and grows upwards as we use GPR registers. */ valp gpr_base; int intarg_count; #ifndef __NO_FPRS__ /* 'fpr_base' points at the space for fpr1, and grows upwards as we use FPR registers. */ valp fpr_base; int fparg_count; #endif /* 'copy_space' grows down as we put structures in it. It should stay 16-byte aligned. */ valp copy_space; /* 'next_arg' grows up as we put parameters in it. */ valp next_arg; int i; ffi_type **ptr; #ifndef __NO_FPRS__ double double_tmp; #endif union { void **v; char **c; signed char **sc; unsigned char **uc; signed short **ss; unsigned short **us; unsigned int **ui; long long **ll; float **f; double **d; } p_argv; size_t struct_copy_size; unsigned gprvalue; stacktop.c = (char *) stack + bytes; gpr_base.u = stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS; intarg_count = 0; #ifndef __NO_FPRS__ fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS; fparg_count = 0; copy_space.c = ((flags & FLAG_FP_ARGUMENTS) ? fpr_base.c : gpr_base.c); #else copy_space.c = gpr_base.c; #endif next_arg.u = stack + 2; /* Check that everything starts aligned properly. */ FFI_ASSERT (((unsigned long) (char *) stack & 0xF) == 0); FFI_ASSERT (((unsigned long) copy_space.c & 0xF) == 0); FFI_ASSERT (((unsigned long) stacktop.c & 0xF) == 0); FFI_ASSERT ((bytes & 0xF) == 0); FFI_ASSERT (copy_space.c >= next_arg.c); /* Deal with return values that are actually pass-by-reference. */ if (flags & FLAG_RETVAL_REFERENCE) { *gpr_base.u++ = (unsigned long) (char *) ecif->rvalue; intarg_count++; } /* Now for the arguments. */ p_argv.v = ecif->avalue; for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs; i > 0; i--, ptr++, p_argv.v++) { unsigned short typenum = (*ptr)->type; /* We may need to handle some values depending on ABI */ if (ecif->cif->abi == FFI_LINUX_SOFT_FLOAT) { if (typenum == FFI_TYPE_FLOAT) typenum = FFI_TYPE_UINT32; if (typenum == FFI_TYPE_DOUBLE) typenum = FFI_TYPE_UINT64; if (typenum == FFI_TYPE_LONGDOUBLE) typenum = FFI_TYPE_UINT128; } else if (ecif->cif->abi != FFI_LINUX) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE if (typenum == FFI_TYPE_LONGDOUBLE) typenum = FFI_TYPE_STRUCT; #endif } /* Now test the translated value */ switch (typenum) { #ifndef __NO_FPRS__ case FFI_TYPE_FLOAT: /* With FFI_LINUX_SOFT_FLOAT floats are handled like UINT32. */ double_tmp = **p_argv.f; if (fparg_count >= NUM_FPR_ARG_REGISTERS) { *next_arg.f = (float) double_tmp; next_arg.u += 1; intarg_count++; } else *fpr_base.d++ = double_tmp; fparg_count++; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; case FFI_TYPE_DOUBLE: /* With FFI_LINUX_SOFT_FLOAT doubles are handled like UINT64. */ double_tmp = **p_argv.d; if (fparg_count >= NUM_FPR_ARG_REGISTERS) { if (intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count % 2 != 0) { intarg_count++; next_arg.u++; } *next_arg.d = double_tmp; next_arg.u += 2; } else *fpr_base.d++ = double_tmp; fparg_count++; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: double_tmp = (*p_argv.d)[0]; if (fparg_count >= NUM_FPR_ARG_REGISTERS - 1) { if (intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count % 2 != 0) { intarg_count++; next_arg.u++; } *next_arg.d = double_tmp; next_arg.u += 2; double_tmp = (*p_argv.d)[1]; *next_arg.d = double_tmp; next_arg.u += 2; } else { *fpr_base.d++ = double_tmp; double_tmp = (*p_argv.d)[1]; *fpr_base.d++ = double_tmp; } fparg_count += 2; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; #endif #endif /* have FPRs */ /* * The soft float ABI for long doubles works like this, a long double * is passed in four consecutive GPRs if available. A maximum of 2 * long doubles can be passed in gprs. If we do not have 4 GPRs * left, the long double is passed on the stack, 4-byte aligned. */ case FFI_TYPE_UINT128: { unsigned int int_tmp = (*p_argv.ui)[0]; unsigned int ii; if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3) { if (intarg_count < NUM_GPR_ARG_REGISTERS) intarg_count += NUM_GPR_ARG_REGISTERS - intarg_count; *(next_arg.u++) = int_tmp; for (ii = 1; ii < 4; ii++) { int_tmp = (*p_argv.ui)[ii]; *(next_arg.u++) = int_tmp; } } else { *(gpr_base.u++) = int_tmp; for (ii = 1; ii < 4; ii++) { int_tmp = (*p_argv.ui)[ii]; *(gpr_base.u++) = int_tmp; } } intarg_count += 4; break; } case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: if (intarg_count == NUM_GPR_ARG_REGISTERS-1) intarg_count++; if (intarg_count >= NUM_GPR_ARG_REGISTERS) { if (intarg_count % 2 != 0) { intarg_count++; next_arg.u++; } *next_arg.ll = **p_argv.ll; next_arg.u += 2; } else { /* whoops: abi states only certain register pairs * can be used for passing long long int * specifically (r3,r4), (r5,r6), (r7,r8), * (r9,r10) and if next arg is long long but * not correct starting register of pair then skip * until the proper starting register */ if (intarg_count % 2 != 0) { intarg_count ++; gpr_base.u++; } *gpr_base.ll++ = **p_argv.ll; } intarg_count += 2; break; case FFI_TYPE_STRUCT: struct_copy_size = ((*ptr)->size + 15) & ~0xF; copy_space.c -= struct_copy_size; memcpy (copy_space.c, *p_argv.c, (*ptr)->size); gprvalue = (unsigned long) copy_space.c; FFI_ASSERT (copy_space.c > next_arg.c); FFI_ASSERT (flags & FLAG_ARG_NEEDS_COPY); goto putgpr; case FFI_TYPE_UINT8: gprvalue = **p_argv.uc; goto putgpr; case FFI_TYPE_SINT8: gprvalue = **p_argv.sc; goto putgpr; case FFI_TYPE_UINT16: gprvalue = **p_argv.us; goto putgpr; case FFI_TYPE_SINT16: gprvalue = **p_argv.ss; goto putgpr; case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_POINTER: gprvalue = **p_argv.ui; putgpr: if (intarg_count >= NUM_GPR_ARG_REGISTERS) *next_arg.u++ = gprvalue; else *gpr_base.u++ = gprvalue; intarg_count++; break; } } /* Check that we didn't overrun the stack... */ FFI_ASSERT (copy_space.c >= next_arg.c); FFI_ASSERT (gpr_base.u <= stacktop.u - ASM_NEEDS_REGISTERS); /* The assert below is testing that the number of integer arguments agrees with the number found in ffi_prep_cif_machdep(). However, intarg_count is incremented whenever we place an FP arg on the stack, so account for that before our assert test. */ #ifndef __NO_FPRS__ if (fparg_count > NUM_FPR_ARG_REGISTERS) intarg_count -= fparg_count - NUM_FPR_ARG_REGISTERS; FFI_ASSERT (fpr_base.u <= stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS); #endif FFI_ASSERT (flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4); } /* About the LINUX64 ABI. */ enum { NUM_GPR_ARG_REGISTERS64 = 8, NUM_FPR_ARG_REGISTERS64 = 13 }; enum { ASM_NEEDS_REGISTERS64 = 4 }; #if _CALL_ELF == 2 static unsigned int discover_homogeneous_aggregate (const ffi_type *t, unsigned int *elnum) { switch (t->type) { case FFI_TYPE_FLOAT: case FFI_TYPE_DOUBLE: *elnum = 1; return (int) t->type; case FFI_TYPE_STRUCT:; { unsigned int base_elt = 0, total_elnum = 0; ffi_type **el = t->elements; while (*el) { unsigned int el_elt, el_elnum = 0; el_elt = discover_homogeneous_aggregate (*el, &el_elnum); if (el_elt == 0 || (base_elt && base_elt != el_elt)) return 0; base_elt = el_elt; total_elnum += el_elnum; if (total_elnum > 8) return 0; el++; } *elnum = total_elnum; return base_elt; } default: return 0; } } #endif /* ffi_prep_args64 is called by the assembly routine once stack space has been allocated for the function's arguments. The stack layout we want looks like this: | Ret addr from ffi_call_LINUX64 8bytes | higher addresses |--------------------------------------------| | CR save area 8bytes | |--------------------------------------------| | Previous backchain pointer 8 | stack pointer here |--------------------------------------------|<+ <<< on entry to | Saved r28-r31 4*8 | | ffi_call_LINUX64 |--------------------------------------------| | | GPR registers r3-r10 8*8 | | |--------------------------------------------| | | FPR registers f1-f13 (optional) 13*8 | | |--------------------------------------------| | | Parameter save area | | |--------------------------------------------| | | TOC save area 8 | | |--------------------------------------------| | stack | | Linker doubleword 8 | | grows | |--------------------------------------------| | down V | Compiler doubleword 8 | | |--------------------------------------------| | lower addresses | Space for callee's LR 8 | | |--------------------------------------------| | | CR save area 8 | | |--------------------------------------------| | stack pointer here | Current backchain pointer 8 |-/ during |--------------------------------------------| <<< ffi_call_LINUX64 */ void FFI_HIDDEN ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack) { const unsigned long bytes = ecif->cif->bytes; const unsigned long flags = ecif->cif->flags; typedef union { char *c; unsigned long *ul; float *f; double *d; size_t p; } valp; /* 'stacktop' points at the previous backchain pointer. */ valp stacktop; /* 'next_arg' points at the space for gpr3, and grows upwards as we use GPR registers, then continues at rest. */ valp gpr_base; valp gpr_end; valp rest; valp next_arg; /* 'fpr_base' points at the space for fpr3, and grows upwards as we use FPR registers. */ valp fpr_base; unsigned int fparg_count; unsigned int i, words, nargs, nfixedargs; ffi_type **ptr; double double_tmp; union { void **v; char **c; signed char **sc; unsigned char **uc; signed short **ss; unsigned short **us; signed int **si; unsigned int **ui; unsigned long **ul; float **f; double **d; } p_argv; unsigned long gprvalue; #ifdef __STRUCT_PARM_ALIGN__ unsigned long align; #endif stacktop.c = (char *) stack + bytes; gpr_base.ul = stacktop.ul - ASM_NEEDS_REGISTERS64 - NUM_GPR_ARG_REGISTERS64; gpr_end.ul = gpr_base.ul + NUM_GPR_ARG_REGISTERS64; #if _CALL_ELF == 2 rest.ul = stack + 4 + NUM_GPR_ARG_REGISTERS64; #else rest.ul = stack + 6 + NUM_GPR_ARG_REGISTERS64; #endif fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS64; fparg_count = 0; next_arg.ul = gpr_base.ul; /* Check that everything starts aligned properly. */ FFI_ASSERT (((unsigned long) (char *) stack & 0xF) == 0); FFI_ASSERT (((unsigned long) stacktop.c & 0xF) == 0); FFI_ASSERT ((bytes & 0xF) == 0); /* Deal with return values that are actually pass-by-reference. */ if (flags & FLAG_RETVAL_REFERENCE) *next_arg.ul++ = (unsigned long) (char *) ecif->rvalue; /* Now for the arguments. */ p_argv.v = ecif->avalue; nargs = ecif->cif->nargs; nfixedargs = ecif->cif->nfixedargs; for (ptr = ecif->cif->arg_types, i = 0; i < nargs; i++, ptr++, p_argv.v++) { unsigned int elt, elnum; switch ((*ptr)->type) { case FFI_TYPE_FLOAT: double_tmp = **p_argv.f; if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs) *fpr_base.d++ = double_tmp; else *next_arg.f = (float) double_tmp; if (++next_arg.ul == gpr_end.ul) next_arg.ul = rest.ul; fparg_count++; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; case FFI_TYPE_DOUBLE: double_tmp = **p_argv.d; if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs) *fpr_base.d++ = double_tmp; else *next_arg.d = double_tmp; if (++next_arg.ul == gpr_end.ul) next_arg.ul = rest.ul; fparg_count++; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: double_tmp = (*p_argv.d)[0]; if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs) *fpr_base.d++ = double_tmp; else *next_arg.d = double_tmp; if (++next_arg.ul == gpr_end.ul) next_arg.ul = rest.ul; fparg_count++; double_tmp = (*p_argv.d)[1]; if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs) *fpr_base.d++ = double_tmp; else *next_arg.d = double_tmp; if (++next_arg.ul == gpr_end.ul) next_arg.ul = rest.ul; fparg_count++; FFI_ASSERT (__LDBL_MANT_DIG__ == 106); FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; #endif case FFI_TYPE_STRUCT: #ifdef __STRUCT_PARM_ALIGN__ align = (*ptr)->alignment; if (align > __STRUCT_PARM_ALIGN__) align = __STRUCT_PARM_ALIGN__; if (align > 1) next_arg.p = ALIGN (next_arg.p, align); #endif elt = 0; #if _CALL_ELF == 2 elt = discover_homogeneous_aggregate (*ptr, &elnum); #endif if (elt) { union { void *v; float *f; double *d; } arg; arg.v = *p_argv.v; if (elt == FFI_TYPE_FLOAT) { do { double_tmp = *arg.f++; if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs) *fpr_base.d++ = double_tmp; else *next_arg.f = (float) double_tmp; if (++next_arg.f == gpr_end.f) next_arg.f = rest.f; fparg_count++; } while (--elnum != 0); if ((next_arg.p & 3) != 0) { if (++next_arg.f == gpr_end.f) next_arg.f = rest.f; } } else do { double_tmp = *arg.d++; if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs) *fpr_base.d++ = double_tmp; else *next_arg.d = double_tmp; if (++next_arg.d == gpr_end.d) next_arg.d = rest.d; fparg_count++; } while (--elnum != 0); } else { words = ((*ptr)->size + 7) / 8; if (next_arg.ul >= gpr_base.ul && next_arg.ul + words > gpr_end.ul) { size_t first = gpr_end.c - next_arg.c; memcpy (next_arg.c, *p_argv.c, first); memcpy (rest.c, *p_argv.c + first, (*ptr)->size - first); next_arg.c = rest.c + words * 8 - first; } else { char *where = next_arg.c; #ifndef __LITTLE_ENDIAN__ /* Structures with size less than eight bytes are passed left-padded. */ if ((*ptr)->size < 8) where += 8 - (*ptr)->size; #endif memcpy (where, *p_argv.c, (*ptr)->size); next_arg.ul += words; if (next_arg.ul == gpr_end.ul) next_arg.ul = rest.ul; } } break; case FFI_TYPE_UINT8: gprvalue = **p_argv.uc; goto putgpr; case FFI_TYPE_SINT8: gprvalue = **p_argv.sc; goto putgpr; case FFI_TYPE_UINT16: gprvalue = **p_argv.us; goto putgpr; case FFI_TYPE_SINT16: gprvalue = **p_argv.ss; goto putgpr; case FFI_TYPE_UINT32: gprvalue = **p_argv.ui; goto putgpr; case FFI_TYPE_INT: case FFI_TYPE_SINT32: gprvalue = **p_argv.si; goto putgpr; case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: case FFI_TYPE_POINTER: gprvalue = **p_argv.ul; putgpr: *next_arg.ul++ = gprvalue; if (next_arg.ul == gpr_end.ul) next_arg.ul = rest.ul; break; } } FFI_ASSERT (flags & FLAG_4_GPR_ARGUMENTS || (next_arg.ul >= gpr_base.ul && next_arg.ul <= gpr_base.ul + 4)); } /* Perform machine dependent cif processing */ static ffi_status ffi_prep_cif_machdep_core (ffi_cif *cif) { /* All this is for the SYSV and LINUX64 ABI. */ ffi_type **ptr; unsigned bytes; unsigned i, fparg_count = 0, intarg_count = 0; unsigned flags = cif->flags; unsigned struct_copy_size = 0; unsigned type = cif->rtype->type; unsigned size = cif->rtype->size; /* The machine-independent calculation of cif->bytes doesn't work for us. Redo the calculation. */ if (cif->abi != FFI_LINUX64) { /* Space for the frame pointer, callee's LR, and the asm's temp regs. */ bytes = (2 + ASM_NEEDS_REGISTERS) * sizeof (int); /* Space for the GPR registers. */ bytes += NUM_GPR_ARG_REGISTERS * sizeof (int); } else { /* 64-bit ABI. */ #if _CALL_ELF == 2 /* Space for backchain, CR, LR, TOC and the asm's temp regs. */ bytes = (4 + ASM_NEEDS_REGISTERS64) * sizeof (long); /* Space for the general registers. */ bytes += NUM_GPR_ARG_REGISTERS64 * sizeof (long); #else /* Space for backchain, CR, LR, cc/ld doubleword, TOC and the asm's temp regs. */ bytes = (6 + ASM_NEEDS_REGISTERS64) * sizeof (long); /* Space for the mandatory parm save area and general registers. */ bytes += 2 * NUM_GPR_ARG_REGISTERS64 * sizeof (long); #endif } /* Return value handling. The rules for SYSV are as follows: - 32-bit (or less) integer values are returned in gpr3; - Structures of size <= 4 bytes also returned in gpr3; - 64-bit integer values and structures between 5 and 8 bytes are returned in gpr3 and gpr4; - Single/double FP values are returned in fpr1; - Larger structures are allocated space and a pointer is passed as the first argument. - long doubles (if not equivalent to double) are returned in fpr1,fpr2 for Linux and as for large structs for SysV. For LINUX64: - integer values in gpr3; - Structures/Unions by reference; - Single/double FP values in fpr1, long double in fpr1,fpr2. - soft-float float/doubles are treated as UINT32/UINT64 respectivley. - soft-float long doubles are returned in gpr3-gpr6. */ /* First translate for softfloat/nonlinux */ if (cif->abi == FFI_LINUX_SOFT_FLOAT) { if (type == FFI_TYPE_FLOAT) type = FFI_TYPE_UINT32; if (type == FFI_TYPE_DOUBLE) type = FFI_TYPE_UINT64; if (type == FFI_TYPE_LONGDOUBLE) type = FFI_TYPE_UINT128; } else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE if (type == FFI_TYPE_LONGDOUBLE) type = FFI_TYPE_STRUCT; #endif } switch (type) { #ifndef __NO_FPRS__ #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: flags |= FLAG_RETURNS_128BITS; /* Fall through. */ #endif case FFI_TYPE_DOUBLE: flags |= FLAG_RETURNS_64BITS; /* Fall through. */ case FFI_TYPE_FLOAT: flags |= FLAG_RETURNS_FP; break; #endif case FFI_TYPE_UINT128: flags |= FLAG_RETURNS_128BITS; /* Fall through. */ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: flags |= FLAG_RETURNS_64BITS; break; case FFI_TYPE_STRUCT: /* * The final SYSV ABI says that structures smaller or equal 8 bytes * are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them * in memory. * * NOTE: The assembly code can safely assume that it just needs to * store both r3 and r4 into a 8-byte word-aligned buffer, as * we allocate a temporary buffer in ffi_call() if this flag is * set. */ if (cif->abi == FFI_SYSV && size <= 8) { flags |= FLAG_RETURNS_SMST; break; } #if _CALL_ELF == 2 if (cif->abi == FFI_LINUX64) { unsigned int elt, elnum; elt = discover_homogeneous_aggregate (cif->rtype, &elnum); if (elt) { if (elt == FFI_TYPE_DOUBLE) flags |= FLAG_RETURNS_64BITS; flags |= FLAG_RETURNS_FP | FLAG_RETURNS_SMST; break; } if (size <= 16) { flags |= FLAG_RETURNS_SMST; break; } } #endif intarg_count++; flags |= FLAG_RETVAL_REFERENCE; /* Fall through. */ case FFI_TYPE_VOID: flags |= FLAG_RETURNS_NOTHING; break; default: /* Returns 32-bit integer, or similar. Nothing to do here. */ break; } if (cif->abi != FFI_LINUX64) /* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest goes on the stack. Structures and long doubles (if not equivalent to double) are passed as a pointer to a copy of the structure. Stuff on the stack needs to keep proper alignment. */ for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) { unsigned short typenum = (*ptr)->type; /* We may need to handle some values depending on ABI */ if (cif->abi == FFI_LINUX_SOFT_FLOAT) { if (typenum == FFI_TYPE_FLOAT) typenum = FFI_TYPE_UINT32; if (typenum == FFI_TYPE_DOUBLE) typenum = FFI_TYPE_UINT64; if (typenum == FFI_TYPE_LONGDOUBLE) typenum = FFI_TYPE_UINT128; } else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE if (typenum == FFI_TYPE_LONGDOUBLE) typenum = FFI_TYPE_STRUCT; #endif } switch (typenum) { #ifndef __NO_FPRS__ case FFI_TYPE_FLOAT: fparg_count++; /* floating singles are not 8-aligned on stack */ break; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: fparg_count++; /* Fall thru */ #endif case FFI_TYPE_DOUBLE: fparg_count++; /* If this FP arg is going on the stack, it must be 8-byte-aligned. */ if (fparg_count > NUM_FPR_ARG_REGISTERS && intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count % 2 != 0) intarg_count++; break; #endif case FFI_TYPE_UINT128: /* * A long double in FFI_LINUX_SOFT_FLOAT can use only a set * of four consecutive gprs. If we do not have enough, we * have to adjust the intarg_count value. */ if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3 && intarg_count < NUM_GPR_ARG_REGISTERS) intarg_count = NUM_GPR_ARG_REGISTERS; intarg_count += 4; break; case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: /* 'long long' arguments are passed as two words, but either both words must fit in registers or both go on the stack. If they go on the stack, they must be 8-byte-aligned. Also, only certain register pairs can be used for passing long long int -- specifically (r3,r4), (r5,r6), (r7,r8), (r9,r10). */ if (intarg_count == NUM_GPR_ARG_REGISTERS-1 || intarg_count % 2 != 0) intarg_count++; intarg_count += 2; break; case FFI_TYPE_STRUCT: /* We must allocate space for a copy of these to enforce pass-by-value. Pad the space up to a multiple of 16 bytes (the maximum alignment required for anything under the SYSV ABI). */ struct_copy_size += ((*ptr)->size + 15) & ~0xF; /* Fall through (allocate space for the pointer). */ case FFI_TYPE_POINTER: case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_UINT16: case FFI_TYPE_SINT16: case FFI_TYPE_UINT8: case FFI_TYPE_SINT8: /* Everything else is passed as a 4-byte word in a GPR, either the object itself or a pointer to it. */ intarg_count++; break; default: FFI_ASSERT (0); } } else for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) { unsigned int elt, elnum; #ifdef __STRUCT_PARM_ALIGN__ unsigned int align; #endif switch ((*ptr)->type) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: fparg_count += 2; intarg_count += 2; if (fparg_count > NUM_FPR_ARG_REGISTERS) flags |= FLAG_ARG_NEEDS_PSAVE; break; #endif case FFI_TYPE_FLOAT: case FFI_TYPE_DOUBLE: fparg_count++; intarg_count++; if (fparg_count > NUM_FPR_ARG_REGISTERS) flags |= FLAG_ARG_NEEDS_PSAVE; break; case FFI_TYPE_STRUCT: #ifdef __STRUCT_PARM_ALIGN__ align = (*ptr)->alignment; if (align > __STRUCT_PARM_ALIGN__) align = __STRUCT_PARM_ALIGN__; align = align / 8; if (align > 1) intarg_count = ALIGN (intarg_count, align); #endif intarg_count += ((*ptr)->size + 7) / 8; elt = 0; #if _CALL_ELF == 2 elt = discover_homogeneous_aggregate (*ptr, &elnum); #endif if (elt) { fparg_count += elnum; if (fparg_count > NUM_FPR_ARG_REGISTERS) flags |= FLAG_ARG_NEEDS_PSAVE; } else { if (intarg_count > NUM_GPR_ARG_REGISTERS) flags |= FLAG_ARG_NEEDS_PSAVE; } break; case FFI_TYPE_POINTER: case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_UINT16: case FFI_TYPE_SINT16: case FFI_TYPE_UINT8: case FFI_TYPE_SINT8: /* Everything else is passed as a 8-byte word in a GPR, either the object itself or a pointer to it. */ intarg_count++; if (intarg_count > NUM_GPR_ARG_REGISTERS) flags |= FLAG_ARG_NEEDS_PSAVE; break; default: FFI_ASSERT (0); } } #ifndef __NO_FPRS__ if (fparg_count != 0) flags |= FLAG_FP_ARGUMENTS; #endif if (intarg_count > 4) flags |= FLAG_4_GPR_ARGUMENTS; if (struct_copy_size != 0) flags |= FLAG_ARG_NEEDS_COPY; if (cif->abi != FFI_LINUX64) { #ifndef __NO_FPRS__ /* Space for the FPR registers, if needed. */ if (fparg_count != 0) bytes += NUM_FPR_ARG_REGISTERS * sizeof (double); #endif /* Stack space. */ if (intarg_count > NUM_GPR_ARG_REGISTERS) bytes += (intarg_count - NUM_GPR_ARG_REGISTERS) * sizeof (int); #ifndef __NO_FPRS__ if (fparg_count > NUM_FPR_ARG_REGISTERS) bytes += (fparg_count - NUM_FPR_ARG_REGISTERS) * sizeof (double); #endif } else { #ifndef __NO_FPRS__ /* Space for the FPR registers, if needed. */ if (fparg_count != 0) bytes += NUM_FPR_ARG_REGISTERS64 * sizeof (double); #endif /* Stack space. */ #if _CALL_ELF == 2 if ((flags & FLAG_ARG_NEEDS_PSAVE) != 0) bytes += intarg_count * sizeof (long); #else if (intarg_count > NUM_GPR_ARG_REGISTERS64) bytes += (intarg_count - NUM_GPR_ARG_REGISTERS64) * sizeof (long); #endif } /* The stack space allocated needs to be a multiple of 16 bytes. */ bytes = (bytes + 15) & ~0xF; /* Add in the space for the copied structures. */ bytes += struct_copy_size; cif->flags = flags; cif->bytes = bytes; return FFI_OK; } ffi_status ffi_prep_cif_machdep (ffi_cif *cif) { cif->nfixedargs = cif->nargs; return ffi_prep_cif_machdep_core (cif); } ffi_status ffi_prep_cif_machdep_var (ffi_cif *cif, unsigned int nfixedargs, unsigned int ntotalargs MAYBE_UNUSED) { cif->nfixedargs = nfixedargs; #if _CALL_ELF == 2 if (cif->abi == FFI_LINUX64) cif->flags |= FLAG_ARG_NEEDS_PSAVE; #endif return ffi_prep_cif_machdep_core (cif); } extern void ffi_call_SYSV(extended_cif *, unsigned, unsigned, unsigned *, void (*fn)(void)); extern void FFI_HIDDEN ffi_call_LINUX64(extended_cif *, unsigned long, unsigned long, unsigned long *, void (*fn)(void)); void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) { /* * The final SYSV ABI says that structures smaller or equal 8 bytes * are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them * in memory. * * We bounce-buffer SYSV small struct return values so that sysv.S * can write r3 and r4 to memory without worrying about struct size. * * For ELFv2 ABI, use a bounce buffer for homogeneous structs too, * for similar reasons. */ unsigned long smst_buffer[8]; extended_cif ecif; ecif.cif = cif; ecif.avalue = avalue; ecif.rvalue = rvalue; if ((cif->flags & FLAG_RETURNS_SMST) != 0) ecif.rvalue = smst_buffer; /* Ensure that we have a valid struct return value. FIXME: Isn't this just papering over a user problem? */ else if (!rvalue && cif->rtype->type == FFI_TYPE_STRUCT) ecif.rvalue = alloca (cif->rtype->size); switch (cif->abi) { #ifndef POWERPC64 # ifndef __NO_FPRS__ case FFI_SYSV: case FFI_GCC_SYSV: case FFI_LINUX: # endif case FFI_LINUX_SOFT_FLOAT: ffi_call_SYSV (&ecif, -cif->bytes, cif->flags, ecif.rvalue, fn); break; #else case FFI_LINUX64: ffi_call_LINUX64 (&ecif, -(long) cif->bytes, cif->flags, ecif.rvalue, fn); break; #endif default: FFI_ASSERT (0); break; } /* Check for a bounce-buffered return value */ if (rvalue && ecif.rvalue == smst_buffer) { unsigned int rsize = cif->rtype->size; #ifndef __LITTLE_ENDIAN__ /* The SYSV ABI returns a structure of up to 4 bytes in size left-padded in r3. */ if (cif->abi == FFI_SYSV && rsize <= 4) memcpy (rvalue, (char *) smst_buffer + 4 - rsize, rsize); /* The SYSV ABI returns a structure of up to 8 bytes in size left-padded in r3/r4, and the ELFv2 ABI similarly returns a structure of up to 8 bytes in size left-padded in r3. */ else if (rsize <= 8) memcpy (rvalue, (char *) smst_buffer + 8 - rsize, rsize); else #endif memcpy (rvalue, smst_buffer, rsize); } } #if !defined POWERPC64 || _CALL_ELF == 2 #define MIN_CACHE_LINE_SIZE 8 static void flush_icache (char *wraddr, char *xaddr, int size) { int i; for (i = 0; i < size; i += MIN_CACHE_LINE_SIZE) __asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;" : : "r" (xaddr + i), "r" (wraddr + i) : "memory"); __asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;" "sync;" "isync;" : : "r"(xaddr + size - 1), "r"(wraddr + size - 1) : "memory"); } #endif ffi_status ffi_prep_closure_loc (ffi_closure *closure, ffi_cif *cif, void (*fun) (ffi_cif *, void *, void **, void *), void *user_data, void *codeloc) { #ifdef POWERPC64 # if _CALL_ELF == 2 unsigned int *tramp = (unsigned int *) &closure->tramp[0]; if (cif->abi != FFI_LINUX64) return FFI_BAD_ABI; tramp[0] = 0xe96c0018; /* 0: ld 11,2f-0b(12) */ tramp[1] = 0xe98c0010; /* ld 12,1f-0b(12) */ tramp[2] = 0x7d8903a6; /* mtctr 12 */ tramp[3] = 0x4e800420; /* bctr */ /* 1: .quad function_addr */ /* 2: .quad context */ *(void **) &tramp[4] = (void *) ffi_closure_LINUX64; *(void **) &tramp[6] = codeloc; flush_icache ((char *)tramp, (char *)codeloc, FFI_TRAMPOLINE_SIZE); # else void **tramp = (void **) &closure->tramp[0]; if (cif->abi != FFI_LINUX64) return FFI_BAD_ABI; /* Copy function address and TOC from ffi_closure_LINUX64. */ memcpy (tramp, (char *) ffi_closure_LINUX64, 16); tramp[2] = codeloc; # endif #else unsigned int *tramp; if (! (cif->abi == FFI_GCC_SYSV || cif->abi == FFI_SYSV || cif->abi == FFI_LINUX || cif->abi == FFI_LINUX_SOFT_FLOAT)) return FFI_BAD_ABI; tramp = (unsigned int *) &closure->tramp[0]; tramp[0] = 0x7c0802a6; /* mflr r0 */ tramp[1] = 0x4800000d; /* bl 10 */ tramp[4] = 0x7d6802a6; /* mflr r11 */ tramp[5] = 0x7c0803a6; /* mtlr r0 */ tramp[6] = 0x800b0000; /* lwz r0,0(r11) */ tramp[7] = 0x816b0004; /* lwz r11,4(r11) */ tramp[8] = 0x7c0903a6; /* mtctr r0 */ tramp[9] = 0x4e800420; /* bctr */ *(void **) &tramp[2] = (void *) ffi_closure_SYSV; /* function */ *(void **) &tramp[3] = codeloc; /* context */ /* Flush the icache. */ flush_icache ((char *)tramp, (char *)codeloc, FFI_TRAMPOLINE_SIZE); #endif closure->cif = cif; closure->fun = fun; closure->user_data = user_data; return FFI_OK; } typedef union { float f; double d; } ffi_dblfl; int ffi_closure_helper_SYSV (ffi_closure *, void *, unsigned long *, ffi_dblfl *, unsigned long *); /* Basically the trampoline invokes ffi_closure_SYSV, and on * entry, r11 holds the address of the closure. * After storing the registers that could possibly contain * parameters to be passed into the stack frame and setting * up space for a return value, ffi_closure_SYSV invokes the * following helper function to do most of the work */ int ffi_closure_helper_SYSV (ffi_closure *closure, void *rvalue, unsigned long *pgr, ffi_dblfl *pfr, unsigned long *pst) { /* rvalue is the pointer to space for return value in closure assembly */ /* pgr is the pointer to where r3-r10 are stored in ffi_closure_SYSV */ /* pfr is the pointer to where f1-f8 are stored in ffi_closure_SYSV */ /* pst is the pointer to outgoing parameter stack in original caller */ void ** avalue; ffi_type ** arg_types; long i, avn; #ifndef __NO_FPRS__ long nf = 0; /* number of floating registers already used */ #endif long ng = 0; /* number of general registers already used */ ffi_cif *cif = closure->cif; unsigned size = cif->rtype->size; unsigned short rtypenum = cif->rtype->type; avalue = alloca (cif->nargs * sizeof (void *)); /* First translate for softfloat/nonlinux */ if (cif->abi == FFI_LINUX_SOFT_FLOAT) { if (rtypenum == FFI_TYPE_FLOAT) rtypenum = FFI_TYPE_UINT32; if (rtypenum == FFI_TYPE_DOUBLE) rtypenum = FFI_TYPE_UINT64; if (rtypenum == FFI_TYPE_LONGDOUBLE) rtypenum = FFI_TYPE_UINT128; } else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE if (rtypenum == FFI_TYPE_LONGDOUBLE) rtypenum = FFI_TYPE_STRUCT; #endif } /* Copy the caller's structure return value address so that the closure returns the data directly to the caller. For FFI_SYSV the result is passed in r3/r4 if the struct size is less or equal 8 bytes. */ if (rtypenum == FFI_TYPE_STRUCT && ((cif->abi != FFI_SYSV) || (size > 8))) { rvalue = (void *) *pgr; ng++; pgr++; } i = 0; avn = cif->nargs; arg_types = cif->arg_types; /* Grab the addresses of the arguments from the stack frame. */ while (i < avn) { unsigned short typenum = arg_types[i]->type; /* We may need to handle some values depending on ABI */ if (cif->abi == FFI_LINUX_SOFT_FLOAT) { if (typenum == FFI_TYPE_FLOAT) typenum = FFI_TYPE_UINT32; if (typenum == FFI_TYPE_DOUBLE) typenum = FFI_TYPE_UINT64; if (typenum == FFI_TYPE_LONGDOUBLE) typenum = FFI_TYPE_UINT128; } else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE if (typenum == FFI_TYPE_LONGDOUBLE) typenum = FFI_TYPE_STRUCT; #endif } switch (typenum) { #ifndef __NO_FPRS__ case FFI_TYPE_FLOAT: /* unfortunately float values are stored as doubles * in the ffi_closure_SYSV code (since we don't check * the type in that routine). */ /* there are 8 64bit floating point registers */ if (nf < 8) { double temp = pfr->d; pfr->f = (float) temp; avalue[i] = pfr; nf++; pfr++; } else { /* FIXME? here we are really changing the values * stored in the original calling routines outgoing * parameter stack. This is probably a really * naughty thing to do but... */ avalue[i] = pst; pst += 1; } break; case FFI_TYPE_DOUBLE: /* On the outgoing stack all values are aligned to 8 */ /* there are 8 64bit floating point registers */ if (nf < 8) { avalue[i] = pfr; nf++; pfr++; } else { if (((long) pst) & 4) pst++; avalue[i] = pst; pst += 2; } break; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: if (nf < 7) { avalue[i] = pfr; pfr += 2; nf += 2; } else { if (((long) pst) & 4) pst++; avalue[i] = pst; pst += 4; nf = 8; } break; #endif #endif /* have FPRS */ case FFI_TYPE_UINT128: /* * Test if for the whole long double, 4 gprs are available. * otherwise the stuff ends up on the stack. */ if (ng < 5) { avalue[i] = pgr; pgr += 4; ng += 4; } else { avalue[i] = pst; pst += 4; ng = 8+4; } break; case FFI_TYPE_SINT8: case FFI_TYPE_UINT8: #ifndef __LITTLE_ENDIAN__ /* there are 8 gpr registers used to pass values */ if (ng < 8) { avalue[i] = (char *) pgr + 3; ng++; pgr++; } else { avalue[i] = (char *) pst + 3; pst++; } break; #endif case FFI_TYPE_SINT16: case FFI_TYPE_UINT16: #ifndef __LITTLE_ENDIAN__ /* there are 8 gpr registers used to pass values */ if (ng < 8) { avalue[i] = (char *) pgr + 2; ng++; pgr++; } else { avalue[i] = (char *) pst + 2; pst++; } break; #endif case FFI_TYPE_SINT32: case FFI_TYPE_UINT32: case FFI_TYPE_POINTER: /* there are 8 gpr registers used to pass values */ if (ng < 8) { avalue[i] = pgr; ng++; pgr++; } else { avalue[i] = pst; pst++; } break; case FFI_TYPE_STRUCT: /* Structs are passed by reference. The address will appear in a gpr if it is one of the first 8 arguments. */ if (ng < 8) { avalue[i] = (void *) *pgr; ng++; pgr++; } else { avalue[i] = (void *) *pst; pst++; } break; case FFI_TYPE_SINT64: case FFI_TYPE_UINT64: /* passing long long ints are complex, they must * be passed in suitable register pairs such as * (r3,r4) or (r5,r6) or (r6,r7), or (r7,r8) or (r9,r10) * and if the entire pair aren't available then the outgoing * parameter stack is used for both but an alignment of 8 * must will be kept. So we must either look in pgr * or pst to find the correct address for this type * of parameter. */ if (ng < 7) { if (ng & 0x01) { /* skip r4, r6, r8 as starting points */ ng++; pgr++; } avalue[i] = pgr; ng += 2; pgr += 2; } else { if (((long) pst) & 4) pst++; avalue[i] = pst; pst += 2; ng = 8; } break; default: FFI_ASSERT (0); } i++; } (closure->fun) (cif, rvalue, avalue, closure->user_data); /* Tell ffi_closure_SYSV how to perform return type promotions. Because the FFI_SYSV ABI returns the structures <= 8 bytes in r3/r4 we have to tell ffi_closure_SYSV how to treat them. We combine the base type FFI_SYSV_TYPE_SMALL_STRUCT - 1 with the size of the struct. So a one byte struct gets the return type 16. Return type 1 to 15 are already used and we never have a struct with size zero. That is the reason for the subtraction of 1. See the comment in ffitarget.h about ordering. */ if (cif->abi == FFI_SYSV && rtypenum == FFI_TYPE_STRUCT && size <= 8) return (FFI_SYSV_TYPE_SMALL_STRUCT - 1) + size; return rtypenum; } int FFI_HIDDEN ffi_closure_helper_LINUX64 (ffi_closure *, void *, unsigned long *, ffi_dblfl *); int FFI_HIDDEN ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue, unsigned long *pst, ffi_dblfl *pfr) { /* rvalue is the pointer to space for return value in closure assembly */ /* pst is the pointer to parameter save area (r3-r10 are stored into its first 8 slots by ffi_closure_LINUX64) */ /* pfr is the pointer to where f1-f13 are stored in ffi_closure_LINUX64 */ void **avalue; ffi_type **arg_types; unsigned long i, avn, nfixedargs; ffi_cif *cif; ffi_dblfl *end_pfr = pfr + NUM_FPR_ARG_REGISTERS64; #ifdef __STRUCT_PARM_ALIGN__ unsigned long align; #endif cif = closure->cif; avalue = alloca (cif->nargs * sizeof (void *)); /* Copy the caller's structure return value address so that the closure returns the data directly to the caller. */ if (cif->rtype->type == FFI_TYPE_STRUCT && (cif->flags & FLAG_RETURNS_SMST) == 0) { rvalue = (void *) *pst; pst++; } i = 0; avn = cif->nargs; nfixedargs = cif->nfixedargs; arg_types = cif->arg_types; /* Grab the addresses of the arguments from the stack frame. */ while (i < avn) { unsigned int elt, elnum; switch (arg_types[i]->type) { case FFI_TYPE_SINT8: case FFI_TYPE_UINT8: #ifndef __LITTLE_ENDIAN__ avalue[i] = (char *) pst + 7; pst++; break; #endif case FFI_TYPE_SINT16: case FFI_TYPE_UINT16: #ifndef __LITTLE_ENDIAN__ avalue[i] = (char *) pst + 6; pst++; break; #endif case FFI_TYPE_SINT32: case FFI_TYPE_UINT32: #ifndef __LITTLE_ENDIAN__ avalue[i] = (char *) pst + 4; pst++; break; #endif case FFI_TYPE_SINT64: case FFI_TYPE_UINT64: case FFI_TYPE_POINTER: avalue[i] = pst; pst++; break; case FFI_TYPE_STRUCT: #ifdef __STRUCT_PARM_ALIGN__ align = arg_types[i]->alignment; if (align > __STRUCT_PARM_ALIGN__) align = __STRUCT_PARM_ALIGN__; if (align > 1) pst = (unsigned long *) ALIGN ((size_t) pst, align); #endif elt = 0; #if _CALL_ELF == 2 elt = discover_homogeneous_aggregate (arg_types[i], &elnum); #endif if (elt) { union { void *v; unsigned long *ul; float *f; double *d; size_t p; } to, from; /* Repackage the aggregate from its parts. The aggregate size is not greater than the space taken by the registers so store back to the register/parameter save arrays. */ if (pfr + elnum <= end_pfr) to.v = pfr; else to.v = pst; avalue[i] = to.v; from.ul = pst; if (elt == FFI_TYPE_FLOAT) { do { if (pfr < end_pfr && i < nfixedargs) { *to.f = (float) pfr->d; pfr++; } else *to.f = *from.f; to.f++; from.f++; } while (--elnum != 0); } else { do { if (pfr < end_pfr && i < nfixedargs) { *to.d = pfr->d; pfr++; } else *to.d = *from.d; to.d++; from.d++; } while (--elnum != 0); } } else { #ifndef __LITTLE_ENDIAN__ /* Structures with size less than eight bytes are passed left-padded. */ if (arg_types[i]->size < 8) avalue[i] = (char *) pst + 8 - arg_types[i]->size; else #endif avalue[i] = pst; } pst += (arg_types[i]->size + 7) / 8; break; case FFI_TYPE_FLOAT: /* unfortunately float values are stored as doubles * in the ffi_closure_LINUX64 code (since we don't check * the type in that routine). */ /* there are 13 64bit floating point registers */ if (pfr < end_pfr && i < nfixedargs) { double temp = pfr->d; pfr->f = (float) temp; avalue[i] = pfr; pfr++; } else avalue[i] = pst; pst++; break; case FFI_TYPE_DOUBLE: /* On the outgoing stack all values are aligned to 8 */ /* there are 13 64bit floating point registers */ if (pfr < end_pfr && i < nfixedargs) { avalue[i] = pfr; pfr++; } else avalue[i] = pst; pst++; break; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: if (pfr + 1 < end_pfr && i + 1 < nfixedargs) { avalue[i] = pfr; pfr += 2; } else { if (pfr < end_pfr && i < nfixedargs) { /* Passed partly in f13 and partly on the stack. Move it all to the stack. */ *pst = *(unsigned long *) pfr; pfr++; } avalue[i] = pst; } pst += 2; break; #endif default: FFI_ASSERT (0); } i++; } (closure->fun) (cif, rvalue, avalue, closure->user_data); /* Tell ffi_closure_LINUX64 how to perform return type promotions. */ if ((cif->flags & FLAG_RETURNS_SMST) != 0) { if ((cif->flags & FLAG_RETURNS_FP) == 0) return FFI_V2_TYPE_SMALL_STRUCT + cif->rtype->size - 1; else if ((cif->flags & FLAG_RETURNS_64BITS) != 0) return FFI_V2_TYPE_DOUBLE_HOMOG; else return FFI_V2_TYPE_FLOAT_HOMOG; } return cif->rtype->type; }