/* Copyright (C) 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "bid_internal.h" /* * Takes a BID32 as input and converts it to a BID64 and returns it. */ TYPE0_FUNCTION_ARGTYPE1_NORND (UINT64, bid32_to_bid64, UINT32, x) UINT64 res; UINT32 sign_x; int exponent_x; UINT32 coefficient_x; if (!unpack_BID32 (&sign_x, &exponent_x, &coefficient_x, x)) { // Inf, NaN, 0 if (((x) & 0x78000000) == 0x78000000) { if (((x) & 0x7e000000) == 0x7e000000) { // sNaN #ifdef SET_STATUS_FLAGS __set_status_flags (pfpsf, INVALID_EXCEPTION); #endif } res = (coefficient_x & 0x000fffff); res *= 1000000000; res |= ((((UINT64) coefficient_x) << 32) & 0xfc00000000000000ull); BID_RETURN (res); } } res = very_fast_get_BID64_small_mantissa (((UINT64) sign_x) << 32, exponent_x + DECIMAL_EXPONENT_BIAS - DECIMAL_EXPONENT_BIAS_32, (UINT64) coefficient_x); BID_RETURN (res); } // convert_bid32_to_bid64 /* * Takes a BID64 as input and converts it to a BID32 and returns it. */ #if DECIMAL_CALL_BY_REFERENCE void bid64_to_bid32 (UINT32 * pres, UINT64 * px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x; #else UINT32 bid64_to_bid32 (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif UINT128 Q; UINT64 sign_x, coefficient_x, remainder_h, carry, Stemp; UINT32 res; int_float tempx; int exponent_x, bin_expon_cx, extra_digits, rmode = 0, amount; unsigned status = 0; #if DECIMAL_CALL_BY_REFERENCE #if !DECIMAL_GLOBAL_ROUNDING _IDEC_round rnd_mode = *prnd_mode; #endif x = *px; #endif // unpack arguments, check for NaN or Infinity, 0 if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) { if (((x) & 0x7800000000000000ull) == 0x7800000000000000ull) { res = (coefficient_x & 0x0003ffffffffffffull); res /= 1000000000ull; res |= ((coefficient_x >> 32) & 0xfc000000); #ifdef SET_STATUS_FLAGS if ((x & SNAN_MASK64) == SNAN_MASK64) // sNaN __set_status_flags (pfpsf, INVALID_EXCEPTION); #endif BID_RETURN (res); } exponent_x = exponent_x - DECIMAL_EXPONENT_BIAS + DECIMAL_EXPONENT_BIAS_32; if (exponent_x < 0) exponent_x = 0; if (exponent_x > DECIMAL_MAX_EXPON_32) exponent_x = DECIMAL_MAX_EXPON_32; res = (sign_x >> 32) | (exponent_x << 23); BID_RETURN (res); } exponent_x = exponent_x - DECIMAL_EXPONENT_BIAS + DECIMAL_EXPONENT_BIAS_32; // check number of digits if (coefficient_x >= 10000000) { tempx.d = (float) coefficient_x; bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f; extra_digits = estimate_decimal_digits[bin_expon_cx] - 7; // add test for range if (coefficient_x >= power10_index_binexp[bin_expon_cx]) extra_digits++; #ifndef IEEE_ROUND_NEAREST_TIES_AWAY #ifndef IEEE_ROUND_NEAREST rmode = rnd_mode; if (sign_x && (unsigned) (rmode - 1) < 2) rmode = 3 - rmode; #else rmode = 0; #endif #else rmode = 0; #endif exponent_x += extra_digits; if ((exponent_x < 0) && (exponent_x + MAX_FORMAT_DIGITS_32 >= 0)) { status = UNDERFLOW_EXCEPTION; if (exponent_x == -1) if (coefficient_x + round_const_table[rmode][extra_digits] >= power10_table_128[extra_digits + 7].w[0]) status = 0; extra_digits -= exponent_x; exponent_x = 0; } coefficient_x += round_const_table[rmode][extra_digits]; __mul_64x64_to_128 (Q, coefficient_x, reciprocals10_64[extra_digits]); // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128 amount = short_recip_scale[extra_digits]; coefficient_x = Q.w[1] >> amount; #ifndef IEEE_ROUND_NEAREST_TIES_AWAY #ifndef IEEE_ROUND_NEAREST if (rmode == 0) //ROUNDING_TO_NEAREST #endif if (coefficient_x & 1) { // check whether fractional part of initial_P/10^extra_digits // is exactly .5 // get remainder remainder_h = Q.w[1] << (64 - amount); if (!remainder_h && (Q.w[0] < reciprocals10_64[extra_digits])) coefficient_x--; } #endif #ifdef SET_STATUS_FLAGS { status |= INEXACT_EXCEPTION; // get remainder remainder_h = Q.w[1] << (64 - amount); switch (rmode) { case ROUNDING_TO_NEAREST: case ROUNDING_TIES_AWAY: // test whether fractional part is 0 if (remainder_h == 0x8000000000000000ull && (Q.w[0] < reciprocals10_64[extra_digits])) status = EXACT_STATUS; break; case ROUNDING_DOWN: case ROUNDING_TO_ZERO: if (!remainder_h && (Q.w[0] < reciprocals10_64[extra_digits])) status = EXACT_STATUS; break; default: // round up __add_carry_out (Stemp, carry, Q.w[0], reciprocals10_64[extra_digits]); if ((remainder_h >> (64 - amount)) + carry >= (((UINT64) 1) << amount)) status = EXACT_STATUS; } if (status != EXACT_STATUS) __set_status_flags (pfpsf, status); } #endif } res = get_BID32 ((UINT32) (sign_x >> 32), exponent_x, coefficient_x, rnd_mode, pfpsf); BID_RETURN (res); }