/* Complex exponential functions Copyright 2002, 2004 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "libgfortran.h" /* z = a + ib */ /* Absolute value. */ GFC_REAL_4 cabsf (GFC_COMPLEX_4 z) { return hypotf (REALPART (z), IMAGPART (z)); } /* Complex argument. The angle made with the +ve real axis. Range -pi-pi. */ GFC_REAL_4 cargf (GFC_COMPLEX_4 z) { GFC_REAL_4 arg; return atan2f (IMAGPART (z), REALPART (z)); } /* exp(z) = exp(a)*(cos(b) + isin(b)) */ GFC_COMPLEX_4 cexpf (GFC_COMPLEX_4 z) { GFC_REAL_4 a; GFC_REAL_4 b; GFC_COMPLEX_4 v; a = REALPART (z); b = IMAGPART (z); COMPLEX_ASSIGN (v, cosf (b), sinf (b)); return expf (a) * v; } /* log(z) = log (cabs(z)) + i*carg(z) */ GFC_COMPLEX_4 clogf (GFC_COMPLEX_4 z) { GFC_COMPLEX_4 v; COMPLEX_ASSIGN (v, logf (cabsf (z)), cargf (z)); return v; } /* log10(z) = log10 (cabs(z)) + i*carg(z) */ GFC_COMPLEX_4 clog10f (GFC_COMPLEX_4 z) { GFC_COMPLEX_4 v; COMPLEX_ASSIGN (v, log10f (cabsf (z)), cargf (z)); return v; } /* pow(base, power) = cexp (power * clog (base)) */ GFC_COMPLEX_4 cpowf (GFC_COMPLEX_4 base, GFC_COMPLEX_4 power) { return cexpf (power * clogf (base)); } /* sqrt(z). Algorithm pulled from glibc. */ GFC_COMPLEX_4 csqrtf (GFC_COMPLEX_4 z) { GFC_REAL_4 re; GFC_REAL_4 im; GFC_COMPLEX_4 v; re = REALPART (z); im = IMAGPART (z); if (im == 0.0) { if (re < 0.0) { COMPLEX_ASSIGN (v, 0.0, copysignf (sqrtf (-re), im)); } else { COMPLEX_ASSIGN (v, fabsf (sqrtf (re)), copysignf (0.0, im)); } } else if (re == 0.0) { GFC_REAL_4 r; r = sqrtf (0.5 * fabsf (im)); COMPLEX_ASSIGN (v, copysignf (r, im), r); } else { GFC_REAL_4 d, r, s; d = hypotf (re, im); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (re > 0) { r = sqrtf (0.5 * d + 0.5 * re); s = (0.5 * im) / r; } else { s = sqrtf (0.5 * d - 0.5 * re); r = fabsf ((0.5 * im) / s); } COMPLEX_ASSIGN (v, r, copysignf (s, im)); } return v; }