/* Implementation of the MINLOC intrinsic Copyright (C) 2017-2021 Free Software Foundation, Inc. Contributed by Thomas Koenig This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include #include #if defined (HAVE_GFC_UINTEGER_1) && defined (HAVE_GFC_INTEGER_16) #define HAVE_BACK_ARG 1 static inline int compare_fcn (const GFC_UINTEGER_1 *a, const GFC_UINTEGER_1 *b, gfc_charlen_type n) { if (sizeof (GFC_UINTEGER_1) == 1) return memcmp (a, b, n); else return memcmp_char4 (a, b, n); } extern void minloc0_16_s1 (gfc_array_i16 * const restrict retarray, gfc_array_s1 * const restrict array, GFC_LOGICAL_4 back, gfc_charlen_type len); export_proto(minloc0_16_s1); void minloc0_16_s1 (gfc_array_i16 * const restrict retarray, gfc_array_s1 * const restrict array, GFC_LOGICAL_4 back, gfc_charlen_type len) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride; const GFC_UINTEGER_1 *base; GFC_INTEGER_16 * restrict dest; index_type rank; index_type n; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); retarray->dtype.rank = 1; retarray->offset = 0; retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_16)); } else { if (unlikely (compile_options.bounds_check)) bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "MINLOC"); } dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->base_addr; /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 1; { const GFC_UINTEGER_1 *minval; minval = NULL; while (base) { do { /* Implementation start. */ if (minval == NULL || (back ? compare_fcn (base, minval, len) <= 0 : compare_fcn (base, minval, len) < 0)) { minval = base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ /* Advance to the next element. */ base += sstride[0]; } while (++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; n++; if (n >= rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; } } while (count[n] == extent[n]); } } } extern void mminloc0_16_s1 (gfc_array_i16 * const restrict, gfc_array_s1 * const restrict, gfc_array_l1 * const restrict , GFC_LOGICAL_4 back, gfc_charlen_type len); export_proto(mminloc0_16_s1); void mminloc0_16_s1 (gfc_array_i16 * const restrict retarray, gfc_array_s1 * const restrict array, gfc_array_l1 * const restrict mask, GFC_LOGICAL_4 back, gfc_charlen_type len) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; index_type dstride; GFC_INTEGER_16 *dest; const GFC_UINTEGER_1 *base; GFC_LOGICAL_1 *mbase; int rank; index_type n; int mask_kind; if (mask == NULL) { #ifdef HAVE_BACK_ARG minloc0_16_s1 (retarray, array, back, len); #else minloc0_16_s1 (retarray, array, len); #endif return; } rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1); retarray->dtype.rank = 1; retarray->offset = 0; retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_16)); } else { if (unlikely (compile_options.bounds_check)) { bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "MINLOC"); bounds_equal_extents ((array_t *) mask, (array_t *) array, "MASK argument", "MINLOC"); } } mask_kind = GFC_DESCRIPTOR_SIZE (mask); mbase = mask->base_addr; if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else runtime_error ("Funny sized logical array"); dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->base_addr; /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; { const GFC_UINTEGER_1 *minval; minval = NULL; while (base) { do { /* Implementation start. */ if (*mbase && (minval == NULL || (back ? compare_fcn (base, minval, len) <= 0 : compare_fcn (base, minval, len) < 0))) { minval = base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ /* Advance to the next element. */ base += sstride[0]; mbase += mstride[0]; } while (++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; n++; if (n >= rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; } } while (count[n] == extent[n]); } } } extern void sminloc0_16_s1 (gfc_array_i16 * const restrict, gfc_array_s1 * const restrict, GFC_LOGICAL_4 *, GFC_LOGICAL_4 back, gfc_charlen_type len); export_proto(sminloc0_16_s1); void sminloc0_16_s1 (gfc_array_i16 * const restrict retarray, gfc_array_s1 * const restrict array, GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back, gfc_charlen_type len) { index_type rank; index_type dstride; index_type n; GFC_INTEGER_16 *dest; if (mask == NULL || *mask) { #ifdef HAVE_BACK_ARG minloc0_16_s1 (retarray, array, back, len); #else minloc0_16_s1 (retarray, array, len); #endif return; } rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); retarray->dtype.rank = 1; retarray->offset = 0; retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_16)); } else if (unlikely (compile_options.bounds_check)) { bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "MINLOC"); } dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; for (n = 0; n