/* Implementation of the MINLOC intrinsic Copyright 2002 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include #include #include "libgfortran.h" extern void minloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array); export_proto(minloc0_4_i4); void minloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride; GFC_INTEGER_4 *base; GFC_INTEGER_4 *dest; index_type rank; index_type n; rank = GFC_DESCRIPTOR_RANK (array); assert (rank > 0); assert (GFC_DESCRIPTOR_RANK (retarray) == 1); assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank); if (array->dim[0].stride == 0) array->dim[0].stride = 1; if (retarray->dim[0].stride == 0) retarray->dim[0].stride = 1; dstride = retarray->dim[0].stride; dest = retarray->data; for (n = 0; n < rank; n++) { sstride[n] = array->dim[n].stride; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->data; /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 1; { GFC_INTEGER_4 minval; minval = GFC_INTEGER_4_HUGE; while (base) { { /* Implementation start. */ if (*base < minval) { minval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ } /* Advance to the next element. */ count[0]++; base += sstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so proabably not worth it. */ base -= sstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; } } } } } extern void mminloc0_4_i4 (gfc_array_i4 *, gfc_array_i4 *, gfc_array_l4 *); export_proto(mminloc0_4_i4); void mminloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array, gfc_array_l4 * mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; index_type dstride; GFC_INTEGER_4 *dest; GFC_INTEGER_4 *base; GFC_LOGICAL_4 *mbase; int rank; index_type n; rank = GFC_DESCRIPTOR_RANK (array); assert (rank > 0); assert (GFC_DESCRIPTOR_RANK (retarray) == 1); assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank); assert (GFC_DESCRIPTOR_RANK (mask) == rank); if (array->dim[0].stride == 0) array->dim[0].stride = 1; if (retarray->dim[0].stride == 0) retarray->dim[0].stride = 1; if (retarray->dim[0].stride == 0) retarray->dim[0].stride = 1; dstride = retarray->dim[0].stride; dest = retarray->data; for (n = 0; n < rank; n++) { sstride[n] = array->dim[n].stride; mstride[n] = mask->dim[n].stride; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->data; mbase = mask->data; if (GFC_DESCRIPTOR_SIZE (mask) != 4) { /* This allows the same loop to be used for all logical types. */ assert (GFC_DESCRIPTOR_SIZE (mask) == 8); for (n = 0; n < rank; n++) mstride[n] <<= 1; mbase = (GFOR_POINTER_L8_TO_L4 (mbase)); } /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 1; { GFC_INTEGER_4 minval; minval = GFC_INTEGER_4_HUGE; while (base) { { /* Implementation start. */ if (*mbase && *base < minval) { minval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ } /* Advance to the next element. */ count[0]++; base += sstride[0]; mbase += mstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so proabably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; } } } } }