// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Implementation of runtime/debug.WriteHeapDump. Writes all // objects in the heap plus additional info (roots, threads, // finalizers, etc.) to a file. // The format of the dumped file is described at // https://golang.org/s/go15heapdump. package runtime import ( "runtime/internal/sys" "unsafe" ) //go:linkname runtime_debug_WriteHeapDump runtime_1debug.WriteHeapDump func runtime_debug_WriteHeapDump(fd uintptr) { stopTheWorld("write heap dump") // Keep m on this G's stack instead of the system stack. // Both readmemstats_m and writeheapdump_m have pretty large // peak stack depths and we risk blowing the system stack. // This is safe because the world is stopped, so we don't // need to worry about anyone shrinking and therefore moving // our stack. var m MemStats systemstack(func() { // Call readmemstats_m here instead of deeper in // writeheapdump_m because we might blow the system stack // otherwise. readmemstats_m(&m) writeheapdump_m(fd, &m) }) startTheWorld() } const ( fieldKindEol = 0 fieldKindPtr = 1 fieldKindIface = 2 fieldKindEface = 3 tagEOF = 0 tagObject = 1 tagOtherRoot = 2 tagType = 3 tagGoroutine = 4 tagStackFrame = 5 tagParams = 6 tagFinalizer = 7 tagItab = 8 tagOSThread = 9 tagMemStats = 10 tagQueuedFinalizer = 11 tagData = 12 tagBSS = 13 tagDefer = 14 tagPanic = 15 tagMemProf = 16 tagAllocSample = 17 ) var dumpfd uintptr // fd to write the dump to. var tmpbuf []byte // buffer of pending write data const ( bufSize = 4096 ) var buf [bufSize]byte var nbuf uintptr func dwrite(data unsafe.Pointer, len uintptr) { if len == 0 { return } if nbuf+len <= bufSize { copy(buf[nbuf:], (*[bufSize]byte)(data)[:len]) nbuf += len return } write(dumpfd, unsafe.Pointer(&buf), int32(nbuf)) if len >= bufSize { write(dumpfd, data, int32(len)) nbuf = 0 } else { copy(buf[:], (*[bufSize]byte)(data)[:len]) nbuf = len } } func dwritebyte(b byte) { dwrite(unsafe.Pointer(&b), 1) } func flush() { write(dumpfd, unsafe.Pointer(&buf), int32(nbuf)) nbuf = 0 } // Cache of types that have been serialized already. // We use a type's hash field to pick a bucket. // Inside a bucket, we keep a list of types that // have been serialized so far, most recently used first. // Note: when a bucket overflows we may end up // serializing a type more than once. That's ok. const ( typeCacheBuckets = 256 typeCacheAssoc = 4 ) type typeCacheBucket struct { t [typeCacheAssoc]*_type } var typecache [typeCacheBuckets]typeCacheBucket // dump a uint64 in a varint format parseable by encoding/binary func dumpint(v uint64) { var buf [10]byte var n int for v >= 0x80 { buf[n] = byte(v | 0x80) n++ v >>= 7 } buf[n] = byte(v) n++ dwrite(unsafe.Pointer(&buf), uintptr(n)) } func dumpbool(b bool) { if b { dumpint(1) } else { dumpint(0) } } // dump varint uint64 length followed by memory contents func dumpmemrange(data unsafe.Pointer, len uintptr) { dumpint(uint64(len)) dwrite(data, len) } func dumpslice(b []byte) { dumpint(uint64(len(b))) if len(b) > 0 { dwrite(unsafe.Pointer(&b[0]), uintptr(len(b))) } } func dumpstr(s string) { sp := stringStructOf(&s) dumpmemrange(sp.str, uintptr(sp.len)) } // dump information for a type func dumptype(t *_type) { if t == nil { return } // If we've definitely serialized the type before, // no need to do it again. b := &typecache[t.hash&(typeCacheBuckets-1)] if t == b.t[0] { return } for i := 1; i < typeCacheAssoc; i++ { if t == b.t[i] { // Move-to-front for j := i; j > 0; j-- { b.t[j] = b.t[j-1] } b.t[0] = t return } } // Might not have been dumped yet. Dump it and // remember we did so. for j := typeCacheAssoc - 1; j > 0; j-- { b.t[j] = b.t[j-1] } b.t[0] = t // dump the type dumpint(tagType) dumpint(uint64(uintptr(unsafe.Pointer(t)))) dumpint(uint64(t.size)) if x := t.uncommontype; x == nil || t.pkgPath == nil || *t.pkgPath == "" { dumpstr(t.string()) } else { pkgpathstr := *t.pkgPath pkgpath := stringStructOf(&pkgpathstr) namestr := *t.name name := stringStructOf(&namestr) dumpint(uint64(uintptr(pkgpath.len) + 1 + uintptr(name.len))) dwrite(pkgpath.str, uintptr(pkgpath.len)) dwritebyte('.') dwrite(name.str, uintptr(name.len)) } dumpbool(t.kind&kindDirectIface == 0 || t.ptrdata != 0) } // dump an object func dumpobj(obj unsafe.Pointer, size uintptr, bv bitvector) { dumpint(tagObject) dumpint(uint64(uintptr(obj))) dumpmemrange(obj, size) dumpfields(bv) } func dumpotherroot(description string, to unsafe.Pointer) { dumpint(tagOtherRoot) dumpstr(description) dumpint(uint64(uintptr(to))) } func dumpfinalizer(obj unsafe.Pointer, fn *funcval, ft *functype, ot *ptrtype) { dumpint(tagFinalizer) dumpint(uint64(uintptr(obj))) dumpint(uint64(uintptr(unsafe.Pointer(fn)))) dumpint(uint64(uintptr(unsafe.Pointer(fn.fn)))) dumpint(uint64(uintptr(unsafe.Pointer(ft)))) dumpint(uint64(uintptr(unsafe.Pointer(ot)))) } type childInfo struct { // Information passed up from the callee frame about // the layout of the outargs region. argoff uintptr // where the arguments start in the frame arglen uintptr // size of args region args bitvector // if args.n >= 0, pointer map of args region sp *uint8 // callee sp depth uintptr // depth in call stack (0 == most recent) } // dump kinds & offsets of interesting fields in bv func dumpbv(cbv *bitvector, offset uintptr) { for i := uintptr(0); i < uintptr(cbv.n); i++ { if cbv.ptrbit(i) == 1 { dumpint(fieldKindPtr) dumpint(uint64(offset + i*sys.PtrSize)) } } } func dumpgoroutine(gp *g) { sp := gp.syscallsp dumpint(tagGoroutine) dumpint(uint64(uintptr(unsafe.Pointer(gp)))) dumpint(uint64(sp)) dumpint(uint64(gp.goid)) dumpint(uint64(gp.gopc)) dumpint(uint64(readgstatus(gp))) dumpbool(isSystemGoroutine(gp, false)) dumpbool(false) // isbackground dumpint(uint64(gp.waitsince)) dumpstr(gp.waitreason.String()) dumpint(0) dumpint(uint64(uintptr(unsafe.Pointer(gp.m)))) dumpint(uint64(uintptr(unsafe.Pointer(gp._defer)))) dumpint(uint64(uintptr(unsafe.Pointer(gp._panic)))) // dump defer & panic records for d := gp._defer; d != nil; d = d.link { dumpint(tagDefer) dumpint(uint64(uintptr(unsafe.Pointer(d)))) dumpint(uint64(uintptr(unsafe.Pointer(gp)))) dumpint(0) dumpint(0) dumpint(uint64(uintptr(unsafe.Pointer(d.pfn)))) dumpint(0) dumpint(uint64(uintptr(unsafe.Pointer(d.link)))) } for p := gp._panic; p != nil; p = p.link { dumpint(tagPanic) dumpint(uint64(uintptr(unsafe.Pointer(p)))) dumpint(uint64(uintptr(unsafe.Pointer(gp)))) eface := efaceOf(&p.arg) dumpint(uint64(uintptr(unsafe.Pointer(eface._type)))) dumpint(uint64(uintptr(unsafe.Pointer(eface.data)))) dumpint(0) // was p->defer, no longer recorded dumpint(uint64(uintptr(unsafe.Pointer(p.link)))) } } func dumpgs() { assertWorldStopped() // goroutines & stacks forEachG(func(gp *g) { status := readgstatus(gp) // The world is stopped so gp will not be in a scan state. switch status { default: print("runtime: unexpected G.status ", hex(status), "\n") throw("dumpgs in STW - bad status") case _Gdead: // ok case _Grunnable, _Gsyscall, _Gwaiting: dumpgoroutine(gp) } }) } func finq_callback(fn *funcval, obj unsafe.Pointer, ft *functype, ot *ptrtype) { dumpint(tagQueuedFinalizer) dumpint(uint64(uintptr(obj))) dumpint(uint64(uintptr(unsafe.Pointer(fn)))) dumpint(uint64(uintptr(unsafe.Pointer(fn.fn)))) dumpint(uint64(uintptr(unsafe.Pointer(ft)))) dumpint(uint64(uintptr(unsafe.Pointer(ot)))) } func dumproots() { // To protect mheap_.allspans. assertWorldStopped() // mspan.types for _, s := range mheap_.allspans { if s.state.get() == mSpanInUse { // Finalizers for sp := s.specials; sp != nil; sp = sp.next { if sp.kind != _KindSpecialFinalizer { continue } spf := (*specialfinalizer)(unsafe.Pointer(sp)) p := unsafe.Pointer(s.base() + uintptr(spf.special.offset)) dumpfinalizer(p, spf.fn, spf.ft, spf.ot) } } } // Finalizer queue iterate_finq(finq_callback) } // Bit vector of free marks. // Needs to be as big as the largest number of objects per span. var freemark [_PageSize / 8]bool func dumpobjs() { // To protect mheap_.allspans. assertWorldStopped() for _, s := range mheap_.allspans { if s.state.get() != mSpanInUse { continue } p := s.base() size := s.elemsize n := (s.npages << _PageShift) / size if n > uintptr(len(freemark)) { throw("freemark array doesn't have enough entries") } for freeIndex := uintptr(0); freeIndex < s.nelems; freeIndex++ { if s.isFree(freeIndex) { freemark[freeIndex] = true } } for j := uintptr(0); j < n; j, p = j+1, p+size { if freemark[j] { freemark[j] = false continue } dumpobj(unsafe.Pointer(p), size, makeheapobjbv(p, size)) } } } func dumpparams() { dumpint(tagParams) x := uintptr(1) if *(*byte)(unsafe.Pointer(&x)) == 1 { dumpbool(false) // little-endian ptrs } else { dumpbool(true) // big-endian ptrs } dumpint(sys.PtrSize) var arenaStart, arenaEnd uintptr for i1 := range mheap_.arenas { if mheap_.arenas[i1] == nil { continue } for i, ha := range mheap_.arenas[i1] { if ha == nil { continue } base := arenaBase(arenaIdx(i1)< arenaEnd { arenaEnd = base + heapArenaBytes } } } dumpint(uint64(arenaStart)) dumpint(uint64(arenaEnd)) dumpstr(sys.GOARCH) dumpstr(buildVersion) dumpint(uint64(ncpu)) } func dumpms() { for mp := allm; mp != nil; mp = mp.alllink { dumpint(tagOSThread) dumpint(uint64(uintptr(unsafe.Pointer(mp)))) dumpint(uint64(mp.id)) dumpint(mp.procid) } } //go:systemstack func dumpmemstats(m *MemStats) { assertWorldStopped() // These ints should be identical to the exported // MemStats structure and should be ordered the same // way too. dumpint(tagMemStats) dumpint(m.Alloc) dumpint(m.TotalAlloc) dumpint(m.Sys) dumpint(m.Lookups) dumpint(m.Mallocs) dumpint(m.Frees) dumpint(m.HeapAlloc) dumpint(m.HeapSys) dumpint(m.HeapIdle) dumpint(m.HeapInuse) dumpint(m.HeapReleased) dumpint(m.HeapObjects) dumpint(m.StackInuse) dumpint(m.StackSys) dumpint(m.MSpanInuse) dumpint(m.MSpanSys) dumpint(m.MCacheInuse) dumpint(m.MCacheSys) dumpint(m.BuckHashSys) dumpint(m.GCSys) dumpint(m.OtherSys) dumpint(m.NextGC) dumpint(m.LastGC) dumpint(m.PauseTotalNs) for i := 0; i < 256; i++ { dumpint(m.PauseNs[i]) } dumpint(uint64(m.NumGC)) } func dumpmemprof_callback(b *bucket, nstk uintptr, pstk *uintptr, size, allocs, frees uintptr) { stk := (*[100000]uintptr)(unsafe.Pointer(pstk)) dumpint(tagMemProf) dumpint(uint64(uintptr(unsafe.Pointer(b)))) dumpint(uint64(size)) dumpint(uint64(nstk)) for i := uintptr(0); i < nstk; i++ { pc := stk[i] fn, file, line, _ := funcfileline(pc, -1, false) if fn == "" { var buf [64]byte n := len(buf) n-- buf[n] = ')' if pc == 0 { n-- buf[n] = '0' } else { for pc > 0 { n-- buf[n] = "0123456789abcdef"[pc&15] pc >>= 4 } } n-- buf[n] = 'x' n-- buf[n] = '0' n-- buf[n] = '(' dumpslice(buf[n:]) dumpstr("?") dumpint(0) } else { dumpstr(fn) dumpstr(file) dumpint(uint64(line)) } } dumpint(uint64(allocs)) dumpint(uint64(frees)) } func dumpmemprof() { // To protect mheap_.allspans. assertWorldStopped() iterate_memprof(dumpmemprof_callback) for _, s := range mheap_.allspans { if s.state.get() != mSpanInUse { continue } for sp := s.specials; sp != nil; sp = sp.next { if sp.kind != _KindSpecialProfile { continue } spp := (*specialprofile)(unsafe.Pointer(sp)) p := s.base() + uintptr(spp.special.offset) dumpint(tagAllocSample) dumpint(uint64(p)) dumpint(uint64(uintptr(unsafe.Pointer(spp.b)))) } } } var dumphdr = []byte("go1.7 heap dump\n") func mdump(m *MemStats) { assertWorldStopped() // make sure we're done sweeping for _, s := range mheap_.allspans { if s.state.get() == mSpanInUse { s.ensureSwept() } } memclrNoHeapPointers(unsafe.Pointer(&typecache), unsafe.Sizeof(typecache)) dwrite(unsafe.Pointer(&dumphdr[0]), uintptr(len(dumphdr))) dumpparams() dumpobjs() dumpgs() dumpms() dumproots() dumpmemstats(m) dumpmemprof() dumpint(tagEOF) flush() } func writeheapdump_m(fd uintptr, m *MemStats) { assertWorldStopped() _g_ := getg() casgstatus(_g_.m.curg, _Grunning, _Gwaiting) _g_.waitreason = waitReasonDumpingHeap // Update stats so we can dump them. // As a side effect, flushes all the mcaches so the mspan.freelist // lists contain all the free objects. updatememstats() // Set dump file. dumpfd = fd // Call dump routine. mdump(m) // Reset dump file. dumpfd = 0 if tmpbuf != nil { sysFree(unsafe.Pointer(&tmpbuf[0]), uintptr(len(tmpbuf)), &memstats.other_sys) tmpbuf = nil } casgstatus(_g_.m.curg, _Gwaiting, _Grunning) } // dumpint() the kind & offset of each field in an object. func dumpfields(bv bitvector) { dumpbv(&bv, 0) dumpint(fieldKindEol) } func makeheapobjbv(p uintptr, size uintptr) bitvector { // Extend the temp buffer if necessary. nptr := size / sys.PtrSize if uintptr(len(tmpbuf)) < nptr/8+1 { if tmpbuf != nil { sysFree(unsafe.Pointer(&tmpbuf[0]), uintptr(len(tmpbuf)), &memstats.other_sys) } n := nptr/8 + 1 p := sysAlloc(n, &memstats.other_sys) if p == nil { throw("heapdump: out of memory") } tmpbuf = (*[1 << 30]byte)(p)[:n] } // Convert heap bitmap to pointer bitmap. for i := uintptr(0); i < nptr/8+1; i++ { tmpbuf[i] = 0 } i := uintptr(0) hbits := heapBitsForAddr(p) for ; i < nptr; i++ { if !hbits.morePointers() { break // end of object } if hbits.isPointer() { tmpbuf[i/8] |= 1 << (i % 8) } hbits = hbits.next() } return bitvector{int32(i), &tmpbuf[0]} } type gobitvector struct { n uintptr bytedata []uint8 } func gobv(bv bitvector) gobitvector { return gobitvector{ uintptr(bv.n), (*[1 << 30]byte)(unsafe.Pointer(bv.bytedata))[:(bv.n+7)/8], } }