/* DeflateTransformer.java -- Copyright (C) 2003, 2006 Free Software Foundation, Inc. This file is a part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package gnu.javax.crypto.assembly; import java.util.Map; import java.util.zip.DataFormatException; import java.util.zip.Deflater; import java.util.zip.Inflater; /** *
A {@link Transformer} Adapter allowing inclusion of a DEFLATE compression * algorithm in an {@link Assembly} chain. The {@link Direction#FORWARD} * transformation is a compression (deflate) of input data, while the * {@link Direction#REVERSED} one is a decompression (inflate) that restores * the original data.
* *This {@link Transformer} uses a {@link Deflater} instance to carry on the * compression, and an {@link Inflater} to do the decompression.
* *When using such a {@link Transformer}, in an {@link Assembly}, there must * be at least one element behind this instance in the constructed chain; * otherwise, a {@link TransformerException} is thrown at initialisation time.
* * @version Revision: $ */ class DeflateTransformer extends Transformer { // Constants and variables // ------------------------------------------------------------------------- private Deflater compressor; private Inflater decompressor; private int outputBlockSize = 512; // default zlib buffer size private byte[] zlibBuffer; // Constructor(s) // ------------------------------------------------------------------------- DeflateTransformer() { super(); } // Class methods // ------------------------------------------------------------------------- // Instance methods // ------------------------------------------------------------------------- void initDelegate(Map attributes) throws TransformerException { if (tail == null) { throw new TransformerException( "initDelegate()", new IllegalStateException( "Compression transformer missing its tail!")); } outputBlockSize = tail.currentBlockSize(); zlibBuffer = new byte[outputBlockSize]; Direction flow = (Direction) attributes.get(DIRECTION); if (flow == Direction.FORWARD) { compressor = new Deflater(); } else { decompressor = new Inflater(); } } int delegateBlockSize() { // return outputBlockSize; return 1; } void resetDelegate() { compressor = null; decompressor = null; outputBlockSize = 1; zlibBuffer = null; } byte[] updateDelegate(byte[] in, int offset, int length) throws TransformerException { byte[] result; if (wired == Direction.FORWARD) { compressor.setInput(in, offset, length); while (!compressor.needsInput()) { compress(); } } else { // decompression: inflate first and then update tail decompress(in, offset, length); } result = inBuffer.toByteArray(); inBuffer.reset(); return result; } // byte[] lastUpdateDelegate(byte[] in, int offset, int length) // throws TransformerException { // // process multiples of blocksize as much as possible // byte[] result = this.updateDelegate(in, offset, length); // inBuffer.write(result, 0, result.length); // if (wired == Direction.FORWARD) { // compressing // if (!compressor.finished()) { // compressor.finish(); // while (!compressor.finished()) { // compress(); // } // } // } else { // decompressing // if (!decompressor.finished()) { // throw new TransformerException("lastUpdateDelegate()", // new IllegalStateException("Compression transformer, after last " // +"update, must be finished but isn't")); // } // } // // result = inBuffer.toByteArray(); // inBuffer.reset(); // return result; // } byte[] lastUpdateDelegate() throws TransformerException { // process multiples of blocksize as much as possible if (wired == Direction.FORWARD) { // compressing if (!compressor.finished()) { compressor.finish(); while (!compressor.finished()) { compress(); } } } else { // decompressing if (!decompressor.finished()) { throw new TransformerException( "lastUpdateDelegate()", new IllegalStateException( "Compression transformer, after last " + "update, must be finished but isn't")); } } byte[] result = inBuffer.toByteArray(); inBuffer.reset(); return result; } private void compress() { int len = compressor.deflate(zlibBuffer); if (len > 0) { inBuffer.write(zlibBuffer, 0, len); } } private void decompress(byte[] in, int offset, int length) throws TransformerException { decompressor.setInput(in, offset, length); int len = 1; while (len > 0) { try { len = decompressor.inflate(zlibBuffer); } catch (DataFormatException x) { throw new TransformerException("decompress()", x); } if (len > 0) { inBuffer.write(zlibBuffer, 0, len); } } } }