// Written in the D programming language. /** This is a submodule of $(MREF std, math). It contains classical algebraic functions like `abs`, `sqrt`, and `poly`. Copyright: Copyright The D Language Foundation 2000 - 2011. License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston, Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger Source: $(PHOBOSSRC std/math/algebraic.d) Macros: TABLE_SV = $0
Special Values
NAN = $(RED NAN) POWER = $1$2 SUB = $1$2 PLUSMN = ± INFIN = ∞ PLUSMNINF = ±∞ LT = < */ module std.math.algebraic; static import core.math; static import core.stdc.math; import std.traits : CommonType, isFloatingPoint, isIntegral, isSigned, Unqual; /*********************************** * Calculates the absolute value of a number. * * Params: * Num = (template parameter) type of number * x = real number value * * Returns: * The absolute value of the number. If floating-point or integral, * the return type will be the same as the input. * * Limitations: * Does not work correctly for signed intergal types and value `Num`.min. */ auto abs(Num)(Num x) @nogc pure nothrow if ((is(immutable Num == immutable short) || is(immutable Num == immutable byte)) || (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)))) { static if (isFloatingPoint!(Num)) return fabs(x); else { static if (is(immutable Num == immutable short) || is(immutable Num == immutable byte)) return x >= 0 ? x : cast(Num) -int(x); else return x >= 0 ? x : -x; } } /// ditto @safe pure nothrow @nogc unittest { import std.math.traits : isIdentical, isNaN; assert(isIdentical(abs(-0.0L), 0.0L)); assert(isNaN(abs(real.nan))); assert(abs(-real.infinity) == real.infinity); assert(abs(-56) == 56); assert(abs(2321312L) == 2321312L); } @safe pure nothrow @nogc unittest { short s = -8; byte b = -8; assert(abs(s) == 8); assert(abs(b) == 8); immutable(byte) c = -8; assert(abs(c) == 8); } @safe pure nothrow @nogc unittest { import std.meta : AliasSeq; static foreach (T; AliasSeq!(float, double, real)) {{ T f = 3; assert(abs(f) == f); assert(abs(-f) == f); }} } // see https://issues.dlang.org/show_bug.cgi?id=20205 // to avoid falling into the trap again @safe pure nothrow @nogc unittest { assert(50 - abs(-100) == -50); } // https://issues.dlang.org/show_bug.cgi?id=19162 @safe unittest { struct Vector(T, int size) { T x, y, z; } static auto abs(T, int size)(auto ref const Vector!(T, size) v) { return v; } Vector!(int, 3) v; assert(abs(v) == v); } /******************************* * Returns |x| * * $(TABLE_SV * $(TR $(TH x) $(TH fabs(x))) * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) ) * ) */ pragma(inline, true) real fabs(real x) @safe pure nothrow @nogc { return core.math.fabs(x); } ///ditto pragma(inline, true) double fabs(double x) @safe pure nothrow @nogc { return core.math.fabs(x); } ///ditto pragma(inline, true) float fabs(float x) @safe pure nothrow @nogc { return core.math.fabs(x); } /// @safe unittest { import std.math.traits : isIdentical; assert(isIdentical(fabs(0.0f), 0.0f)); assert(isIdentical(fabs(-0.0f), 0.0f)); assert(fabs(-10.0f) == 10.0f); assert(isIdentical(fabs(0.0), 0.0)); assert(isIdentical(fabs(-0.0), 0.0)); assert(fabs(-10.0) == 10.0); assert(isIdentical(fabs(0.0L), 0.0L)); assert(isIdentical(fabs(-0.0L), 0.0L)); assert(fabs(-10.0L) == 10.0L); } @safe unittest { real function(real) pfabs = &fabs; assert(pfabs != null); } @safe pure nothrow @nogc unittest { float f = fabs(-2.0f); assert(f == 2); double d = fabs(-2.0); assert(d == 2); real r = fabs(-2.0L); assert(r == 2); } /*************************************** * Compute square root of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) * $(TR $(TD -0.0) $(TD -0.0) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) * ) */ pragma(inline, true) float sqrt(float x) @nogc @safe pure nothrow { return core.math.sqrt(x); } /// ditto pragma(inline, true) double sqrt(double x) @nogc @safe pure nothrow { return core.math.sqrt(x); } /// ditto pragma(inline, true) real sqrt(real x) @nogc @safe pure nothrow { return core.math.sqrt(x); } /// @safe pure nothrow @nogc unittest { import std.math.operations : feqrel; import std.math.traits : isNaN; assert(sqrt(2.0).feqrel(1.4142) > 16); assert(sqrt(9.0).feqrel(3.0) > 16); assert(isNaN(sqrt(-1.0f))); assert(isNaN(sqrt(-1.0))); assert(isNaN(sqrt(-1.0L))); } @safe unittest { // https://issues.dlang.org/show_bug.cgi?id=5305 float function(float) psqrtf = &sqrt; assert(psqrtf != null); double function(double) psqrtd = &sqrt; assert(psqrtd != null); real function(real) psqrtr = &sqrt; assert(psqrtr != null); //ctfe enum ZX80 = sqrt(7.0f); enum ZX81 = sqrt(7.0); enum ZX82 = sqrt(7.0L); } @safe pure nothrow @nogc unittest { float f = sqrt(2.0f); assert(fabs(f * f - 2.0f) < .00001); double d = sqrt(2.0); assert(fabs(d * d - 2.0) < .00001); real r = sqrt(2.0L); assert(fabs(r * r - 2.0) < .00001); } /*************** * Calculates the cube root of x. * * $(TABLE_SV * $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) ) * ) */ real cbrt(real x) @trusted nothrow @nogc { version (CRuntime_Microsoft) { import std.math.traits : copysign; import std.math.exponential : exp2; version (INLINE_YL2X) return copysign(exp2(core.math.yl2x(fabs(x), 1.0L/3.0L)), x); else return core.stdc.math.cbrtl(x); } else return core.stdc.math.cbrtl(x); } /// @safe unittest { import std.math.operations : feqrel; assert(cbrt(1.0).feqrel(1.0) > 16); assert(cbrt(27.0).feqrel(3.0) > 16); assert(cbrt(15.625).feqrel(2.5) > 16); } /*********************************************************************** * Calculates the length of the * hypotenuse of a right-angled triangle with sides of length x and y. * The hypotenuse is the value of the square root of * the sums of the squares of x and y: * * sqrt($(POWER x, 2) + $(POWER y, 2)) * * Note that hypot(x, y), hypot(y, x) and * hypot(x, -y) are equivalent. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?)) * $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no)) * ) */ T hypot(T)(const T x, const T y) @safe pure nothrow @nogc if (isFloatingPoint!T) { // Scale x and y to avoid underflow and overflow. // If one is huge and the other tiny, return the larger. // If both are huge, avoid overflow by scaling by 2^^-N. // If both are tiny, avoid underflow by scaling by 2^^N. import core.math : fabs, sqrt; import std.math : floatTraits, RealFormat; alias F = floatTraits!T; T u = fabs(x); T v = fabs(y); if (!(u >= v)) // check for NaN as well. { v = u; u = fabs(y); if (u == T.infinity) return u; // hypot(inf, nan) == inf if (v == T.infinity) return v; // hypot(nan, inf) == inf } static if (F.realFormat == RealFormat.ieeeSingle) { enum SQRTMIN = 0x1p-60f; enum SQRTMAX = 0x1p+60f; enum SCALE_UNDERFLOW = 0x1p+90f; enum SCALE_OVERFLOW = 0x1p-90f; } else static if (F.realFormat == RealFormat.ieeeDouble || F.realFormat == RealFormat.ieeeExtended53 || F.realFormat == RealFormat.ibmExtended) { enum SQRTMIN = 0x1p-450L; enum SQRTMAX = 0x1p+500L; enum SCALE_UNDERFLOW = 0x1p+600L; enum SCALE_OVERFLOW = 0x1p-600L; } else static if (F.realFormat == RealFormat.ieeeExtended || F.realFormat == RealFormat.ieeeQuadruple) { enum SQRTMIN = 0x1p-8000L; enum SQRTMAX = 0x1p+8000L; enum SCALE_UNDERFLOW = 0x1p+10000L; enum SCALE_OVERFLOW = 0x1p-10000L; } else assert(0, "hypot not implemented"); // Now u >= v, or else one is NaN. T ratio = 1.0; if (v >= SQRTMAX) { // hypot(huge, huge) -- avoid overflow ratio = SCALE_UNDERFLOW; u *= SCALE_OVERFLOW; v *= SCALE_OVERFLOW; } else if (u <= SQRTMIN) { // hypot (tiny, tiny) -- avoid underflow // This is only necessary to avoid setting the underflow // flag. ratio = SCALE_OVERFLOW; u *= SCALE_UNDERFLOW; v *= SCALE_UNDERFLOW; } if (u * T.epsilon > v) { // hypot (huge, tiny) = huge return u; } // both are in the normal range return ratio * sqrt(u*u + v*v); } /// @safe unittest { import std.math.operations : feqrel; assert(hypot(1.0, 1.0).feqrel(1.4142) > 16); assert(hypot(3.0, 4.0).feqrel(5.0) > 16); assert(hypot(real.infinity, 1.0L) == real.infinity); assert(hypot(real.infinity, real.nan) == real.infinity); } @safe unittest { import std.math.operations : feqrel; assert(hypot(1.0f, 1.0f).feqrel(1.4142f) > 16); assert(hypot(3.0f, 4.0f).feqrel(5.0f) > 16); assert(hypot(float.infinity, 1.0f) == float.infinity); assert(hypot(float.infinity, float.nan) == float.infinity); assert(hypot(1.0L, 1.0L).feqrel(1.4142L) > 16); assert(hypot(3.0L, 4.0L).feqrel(5.0L) > 16); assert(hypot(double.infinity, 1.0) == double.infinity); assert(hypot(double.infinity, double.nan) == double.infinity); } @safe unittest { import std.math.operations : feqrel; import std.math.traits : isIdentical; import std.meta : AliasSeq; static foreach (T; AliasSeq!(float, double, real)) {{ static T[3][] vals = // x,y,hypot [ [ 0.0, 0.0, 0.0], [ 0.0, -0.0, 0.0], [ -0.0, -0.0, 0.0], [ 3.0, 4.0, 5.0], [ -300, -400, 500], [0.0, 7.0, 7.0], [9.0, 9*T.epsilon, 9.0], [88/(64*sqrt(T.min_normal)), 105/(64*sqrt(T.min_normal)), 137/(64*sqrt(T.min_normal))], [88/(128*sqrt(T.min_normal)), 105/(128*sqrt(T.min_normal)), 137/(128*sqrt(T.min_normal))], [3*T.min_normal*T.epsilon, 4*T.min_normal*T.epsilon, 5*T.min_normal*T.epsilon], [ T.min_normal, T.min_normal, sqrt(2.0L)*T.min_normal], [ T.max/sqrt(2.0L), T.max/sqrt(2.0L), T.max], [ T.infinity, T.nan, T.infinity], [ T.nan, T.infinity, T.infinity], [ T.nan, T.nan, T.nan], [ T.nan, T.max, T.nan], [ T.max, T.nan, T.nan], ]; for (int i = 0; i < vals.length; i++) { T x = vals[i][0]; T y = vals[i][1]; T z = vals[i][2]; T h = hypot(x, y); assert(isIdentical(z,h) || feqrel(z, h) >= T.mant_dig - 1); } }} } /*********************************************************************** * Calculates the distance of the point (x, y, z) from the origin (0, 0, 0) * in three-dimensional space. * The distance is the value of the square root of the sums of the squares * of x, y, and z: * * sqrt($(POWER x, 2) + $(POWER y, 2) + $(POWER z, 2)) * * Note that the distance between two points (x1, y1, z1) and (x2, y2, z2) * in three-dimensional space can be calculated as hypot(x2-x1, y2-y1, z2-z1). * * Params: * x = floating point value * y = floating point value * z = floating point value * * Returns: * The square root of the sum of the squares of the given arguments. */ T hypot(T)(const T x, const T y, const T z) @safe pure nothrow @nogc if (isFloatingPoint!T) { import core.math : fabs, sqrt; import std.math.operations : fmax; const absx = fabs(x); const absy = fabs(y); const absz = fabs(z); // Scale all parameters to avoid overflow. const ratio = fmax(absx, fmax(absy, absz)); if (ratio == 0.0) return ratio; return ratio * sqrt((absx / ratio) * (absx / ratio) + (absy / ratio) * (absy / ratio) + (absz / ratio) * (absz / ratio)); } /// @safe unittest { import std.math.operations : isClose; assert(isClose(hypot(1.0, 2.0, 2.0), 3.0)); assert(isClose(hypot(2.0, 3.0, 6.0), 7.0)); assert(isClose(hypot(1.0, 4.0, 8.0), 9.0)); } @safe unittest { import std.meta : AliasSeq; import std.math.traits : isIdentical; import std.math.operations : isClose; static foreach (T; AliasSeq!(float, double, real)) {{ static T[4][] vals = [ [ 0.0L, 0.0L, 0.0L, 0.0L ], [ 0.0L, 1.0L, 1.0L, sqrt(2.0L) ], [ 1.0L, 1.0L, 1.0L, sqrt(3.0L) ], [ 1.0L, 2.0L, 2.0L, 3.0L ], [ 2.0L, 3.0L, 6.0L, 7.0L ], [ 1.0L, 4.0L, 8.0L, 9.0L ], [ 4.0L, 4.0L, 7.0L, 9.0L ], [ 12.0L, 16.0L, 21.0L, 29.0L ], [ 1e+8L, 1.0L, 1e-8L, 1e+8L ], [ 1.0L, 1e+8L, 1e-8L, 1e+8L ], [ 1e-8L, 1.0L, 1e+8L, 1e+8L ], [ 1e-2L, 1e-4L, 1e-4L, 0.010000999950004999375L ], [ 2147483647.0L, 2147483647.0L, 2147483647.0L, 3719550785.027307813987L ] ]; for (int i = 0; i < vals.length; i++) { T x = vals[i][0]; T y = vals[i][1]; T z = vals[i][2]; T r = vals[i][3]; T a = hypot(x, y, z); assert(isIdentical(r, a) || isClose(r, a)); } }} } /*********************************** * Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2) + * $(SUB a,3)$(POWER x,3); ... * * Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2) + * x($(SUB a, 3) + ...))) * Params: * x = the value to evaluate. * A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc. */ Unqual!(CommonType!(T1, T2)) poly(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc if (isFloatingPoint!T1 && isFloatingPoint!T2) in { assert(A.length > 0); } do { static if (is(immutable T2 == immutable real)) { return polyImpl(x, A); } else { return polyImplBase(x, A); } } /// ditto Unqual!(CommonType!(T1, T2)) poly(T1, T2, int N)(T1 x, ref const T2[N] A) @safe pure nothrow @nogc if (isFloatingPoint!T1 && isFloatingPoint!T2 && N > 0 && N <= 10) { // statically unrolled version for up to 10 coefficients typeof(return) r = A[N - 1]; static foreach (i; 1 .. N) { r *= x; r += A[N - 1 - i]; } return r; } /// @safe nothrow @nogc unittest { real x = 3.1L; static real[] pp = [56.1L, 32.7L, 6]; assert(poly(x, pp) == (56.1L + (32.7L + 6.0L * x) * x)); } @safe nothrow @nogc unittest { double x = 3.1; static double[] pp = [56.1, 32.7, 6]; double y = x; y *= 6.0; y += 32.7; y *= x; y += 56.1; assert(poly(x, pp) == y); } @safe unittest { static assert(poly(3.0, [1.0, 2.0, 3.0]) == 34); } private Unqual!(CommonType!(T1, T2)) polyImplBase(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc if (isFloatingPoint!T1 && isFloatingPoint!T2) { ptrdiff_t i = A.length - 1; typeof(return) r = A[i]; while (--i >= 0) { r *= x; r += A[i]; } return r; } private real polyImpl(real x, in real[] A) @trusted pure nothrow @nogc { version (D_InlineAsm_X86) { if (__ctfe) { return polyImplBase(x, A); } version (Windows) { // BUG: This code assumes a frame pointer in EBP. asm pure nothrow @nogc // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX][ECX*8] ; add EDX,ECX ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -10[EDX] ; sub EDX,10 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; } } else version (linux) { asm pure nothrow @nogc // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; } } else version (OSX) { asm pure nothrow @nogc // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; add EDX,EDX ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -16[EDX] ; sub EDX,16 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; } } else version (FreeBSD) { asm pure nothrow @nogc // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; } } else version (Solaris) { asm pure nothrow @nogc // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; } } else version (DragonFlyBSD) { asm pure nothrow @nogc // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; } } else { static assert(0); } } else { return polyImplBase(x, A); } } /** * Gives the next power of two after `val`. `T` can be any built-in * numerical type. * * If the operation would lead to an over/underflow, this function will * return `0`. * * Params: * val = any number * * Returns: * the next power of two after `val` */ T nextPow2(T)(const T val) if (isIntegral!T) { return powIntegralImpl!(PowType.ceil)(val); } /// ditto T nextPow2(T)(const T val) if (isFloatingPoint!T) { return powFloatingPointImpl!(PowType.ceil)(val); } /// @safe @nogc pure nothrow unittest { assert(nextPow2(2) == 4); assert(nextPow2(10) == 16); assert(nextPow2(4000) == 4096); assert(nextPow2(-2) == -4); assert(nextPow2(-10) == -16); assert(nextPow2(uint.max) == 0); assert(nextPow2(uint.min) == 0); assert(nextPow2(size_t.max) == 0); assert(nextPow2(size_t.min) == 0); assert(nextPow2(int.max) == 0); assert(nextPow2(int.min) == 0); assert(nextPow2(long.max) == 0); assert(nextPow2(long.min) == 0); } /// @safe @nogc pure nothrow unittest { assert(nextPow2(2.1) == 4.0); assert(nextPow2(-2.0) == -4.0); assert(nextPow2(0.25) == 0.5); assert(nextPow2(-4.0) == -8.0); assert(nextPow2(double.max) == 0.0); assert(nextPow2(double.infinity) == double.infinity); } @safe @nogc pure nothrow unittest { assert(nextPow2(ubyte(2)) == 4); assert(nextPow2(ubyte(10)) == 16); assert(nextPow2(byte(2)) == 4); assert(nextPow2(byte(10)) == 16); assert(nextPow2(short(2)) == 4); assert(nextPow2(short(10)) == 16); assert(nextPow2(short(4000)) == 4096); assert(nextPow2(ushort(2)) == 4); assert(nextPow2(ushort(10)) == 16); assert(nextPow2(ushort(4000)) == 4096); } @safe @nogc pure nothrow unittest { foreach (ulong i; 1 .. 62) { assert(nextPow2(1UL << i) == 2UL << i); assert(nextPow2((1UL << i) - 1) == 1UL << i); assert(nextPow2((1UL << i) + 1) == 2UL << i); assert(nextPow2((1UL << i) + (1UL<<(i-1))) == 2UL << i); } } @safe @nogc pure nothrow unittest { import std.math.traits : isNaN; import std.meta : AliasSeq; static foreach (T; AliasSeq!(float, double, real)) {{ enum T subNormal = T.min_normal / 2; static if (subNormal) assert(nextPow2(subNormal) == T.min_normal); assert(nextPow2(T(0.0)) == 0.0); assert(nextPow2(T(2.0)) == 4.0); assert(nextPow2(T(2.1)) == 4.0); assert(nextPow2(T(3.1)) == 4.0); assert(nextPow2(T(4.0)) == 8.0); assert(nextPow2(T(0.25)) == 0.5); assert(nextPow2(T(-2.0)) == -4.0); assert(nextPow2(T(-2.1)) == -4.0); assert(nextPow2(T(-3.1)) == -4.0); assert(nextPow2(T(-4.0)) == -8.0); assert(nextPow2(T(-0.25)) == -0.5); assert(nextPow2(T.max) == 0); assert(nextPow2(-T.max) == 0); assert(nextPow2(T.infinity) == T.infinity); assert(nextPow2(T.init).isNaN); }} } // https://issues.dlang.org/show_bug.cgi?id=15973 @safe @nogc pure nothrow unittest { assert(nextPow2(uint.max / 2) == uint.max / 2 + 1); assert(nextPow2(uint.max / 2 + 2) == 0); assert(nextPow2(int.max / 2) == int.max / 2 + 1); assert(nextPow2(int.max / 2 + 2) == 0); assert(nextPow2(int.min + 1) == int.min); } /** * Gives the last power of two before `val`. $(T) can be any built-in * numerical type. * * Params: * val = any number * * Returns: * the last power of two before `val` */ T truncPow2(T)(const T val) if (isIntegral!T) { return powIntegralImpl!(PowType.floor)(val); } /// ditto T truncPow2(T)(const T val) if (isFloatingPoint!T) { return powFloatingPointImpl!(PowType.floor)(val); } /// @safe @nogc pure nothrow unittest { assert(truncPow2(3) == 2); assert(truncPow2(4) == 4); assert(truncPow2(10) == 8); assert(truncPow2(4000) == 2048); assert(truncPow2(-5) == -4); assert(truncPow2(-20) == -16); assert(truncPow2(uint.max) == int.max + 1); assert(truncPow2(uint.min) == 0); assert(truncPow2(ulong.max) == long.max + 1); assert(truncPow2(ulong.min) == 0); assert(truncPow2(int.max) == (int.max / 2) + 1); assert(truncPow2(int.min) == int.min); assert(truncPow2(long.max) == (long.max / 2) + 1); assert(truncPow2(long.min) == long.min); } /// @safe @nogc pure nothrow unittest { assert(truncPow2(2.1) == 2.0); assert(truncPow2(7.0) == 4.0); assert(truncPow2(-1.9) == -1.0); assert(truncPow2(0.24) == 0.125); assert(truncPow2(-7.0) == -4.0); assert(truncPow2(double.infinity) == double.infinity); } @safe @nogc pure nothrow unittest { assert(truncPow2(ubyte(3)) == 2); assert(truncPow2(ubyte(4)) == 4); assert(truncPow2(ubyte(10)) == 8); assert(truncPow2(byte(3)) == 2); assert(truncPow2(byte(4)) == 4); assert(truncPow2(byte(10)) == 8); assert(truncPow2(ushort(3)) == 2); assert(truncPow2(ushort(4)) == 4); assert(truncPow2(ushort(10)) == 8); assert(truncPow2(ushort(4000)) == 2048); assert(truncPow2(short(3)) == 2); assert(truncPow2(short(4)) == 4); assert(truncPow2(short(10)) == 8); assert(truncPow2(short(4000)) == 2048); } @safe @nogc pure nothrow unittest { foreach (ulong i; 1 .. 62) { assert(truncPow2(2UL << i) == 2UL << i); assert(truncPow2((2UL << i) + 1) == 2UL << i); assert(truncPow2((2UL << i) - 1) == 1UL << i); assert(truncPow2((2UL << i) - (2UL<<(i-1))) == 1UL << i); } } @safe @nogc pure nothrow unittest { import std.math.traits : isNaN; import std.meta : AliasSeq; static foreach (T; AliasSeq!(float, double, real)) { assert(truncPow2(T(0.0)) == 0.0); assert(truncPow2(T(4.0)) == 4.0); assert(truncPow2(T(2.1)) == 2.0); assert(truncPow2(T(3.5)) == 2.0); assert(truncPow2(T(7.0)) == 4.0); assert(truncPow2(T(0.24)) == 0.125); assert(truncPow2(T(-2.0)) == -2.0); assert(truncPow2(T(-2.1)) == -2.0); assert(truncPow2(T(-3.1)) == -2.0); assert(truncPow2(T(-7.0)) == -4.0); assert(truncPow2(T(-0.24)) == -0.125); assert(truncPow2(T.infinity) == T.infinity); assert(truncPow2(T.init).isNaN); } } private enum PowType { floor, ceil } pragma(inline, true) private T powIntegralImpl(PowType type, T)(T val) { import core.bitop : bsr; if (val == 0 || (type == PowType.ceil && (val > T.max / 2 || val == T.min))) return 0; else { static if (isSigned!T) return cast(Unqual!T) (val < 0 ? -(T(1) << bsr(0 - val) + type) : T(1) << bsr(val) + type); else return cast(Unqual!T) (T(1) << bsr(val) + type); } } private T powFloatingPointImpl(PowType type, T)(T x) { import std.math.traits : copysign, isFinite; import std.math.exponential : frexp; if (!x.isFinite) return x; if (!x) return x; int exp; auto y = frexp(x, exp); static if (type == PowType.ceil) y = core.math.ldexp(cast(T) 0.5, exp + 1); else y = core.math.ldexp(cast(T) 0.5, exp); if (!y.isFinite) return cast(T) 0.0; y = copysign(y, x); return y; }