//===-- sanitizer_mac.cc --------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements mac-specific functions from // sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_MAC // Use 64-bit inodes in file operations. ASan does not support OS X 10.5, so // the clients will most certainly use 64-bit ones as well. #ifndef _DARWIN_USE_64_BIT_INODE #define _DARWIN_USE_64_BIT_INODE 1 #endif #include #include "sanitizer_common.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" #include // for _NSGetEnviron #include #include #include #include #include #include #include #include #include #include #include #include namespace __sanitizer { #include "sanitizer_syscall_generic.inc" // ---------------------- sanitizer_libc.h uptr internal_mmap(void *addr, size_t length, int prot, int flags, int fd, u64 offset) { return (uptr)mmap(addr, length, prot, flags, fd, offset); } uptr internal_munmap(void *addr, uptr length) { return munmap(addr, length); } uptr internal_close(fd_t fd) { return close(fd); } uptr internal_open(const char *filename, int flags) { return open(filename, flags); } uptr internal_open(const char *filename, int flags, u32 mode) { return open(filename, flags, mode); } uptr OpenFile(const char *filename, bool write) { return internal_open(filename, write ? O_WRONLY | O_CREAT : O_RDONLY, 0660); } uptr internal_read(fd_t fd, void *buf, uptr count) { return read(fd, buf, count); } uptr internal_write(fd_t fd, const void *buf, uptr count) { return write(fd, buf, count); } uptr internal_stat(const char *path, void *buf) { return stat(path, (struct stat *)buf); } uptr internal_lstat(const char *path, void *buf) { return lstat(path, (struct stat *)buf); } uptr internal_fstat(fd_t fd, void *buf) { return fstat(fd, (struct stat *)buf); } uptr internal_filesize(fd_t fd) { struct stat st; if (internal_fstat(fd, &st)) return -1; return (uptr)st.st_size; } uptr internal_dup2(int oldfd, int newfd) { return dup2(oldfd, newfd); } uptr internal_readlink(const char *path, char *buf, uptr bufsize) { return readlink(path, buf, bufsize); } uptr internal_sched_yield() { return sched_yield(); } void internal__exit(int exitcode) { _exit(exitcode); } uptr internal_getpid() { return getpid(); } // ----------------- sanitizer_common.h bool FileExists(const char *filename) { struct stat st; if (stat(filename, &st)) return false; // Sanity check: filename is a regular file. return S_ISREG(st.st_mode); } uptr GetTid() { return reinterpret_cast(pthread_self()); } void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom) { CHECK(stack_top); CHECK(stack_bottom); uptr stacksize = pthread_get_stacksize_np(pthread_self()); void *stackaddr = pthread_get_stackaddr_np(pthread_self()); *stack_top = (uptr)stackaddr; *stack_bottom = *stack_top - stacksize; } const char *GetEnv(const char *name) { char ***env_ptr = _NSGetEnviron(); CHECK(env_ptr); char **environ = *env_ptr; CHECK(environ); uptr name_len = internal_strlen(name); while (*environ != 0) { uptr len = internal_strlen(*environ); if (len > name_len) { const char *p = *environ; if (!internal_memcmp(p, name, name_len) && p[name_len] == '=') { // Match. return *environ + name_len + 1; // String starting after =. } } environ++; } return 0; } void ReExec() { UNIMPLEMENTED(); } void PrepareForSandboxing() { // Nothing here for now. } uptr GetPageSize() { return sysconf(_SC_PAGESIZE); } // ----------------- sanitizer_procmaps.h MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) { Reset(); } MemoryMappingLayout::~MemoryMappingLayout() { } // More information about Mach-O headers can be found in mach-o/loader.h // Each Mach-O image has a header (mach_header or mach_header_64) starting with // a magic number, and a list of linker load commands directly following the // header. // A load command is at least two 32-bit words: the command type and the // command size in bytes. We're interested only in segment load commands // (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped // into the task's address space. // The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or // segment_command_64 correspond to the memory address, memory size and the // file offset of the current memory segment. // Because these fields are taken from the images as is, one needs to add // _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime. void MemoryMappingLayout::Reset() { // Count down from the top. // TODO(glider): as per man 3 dyld, iterating over the headers with // _dyld_image_count is thread-unsafe. We need to register callbacks for // adding and removing images which will invalidate the MemoryMappingLayout // state. current_image_ = _dyld_image_count(); current_load_cmd_count_ = -1; current_load_cmd_addr_ = 0; current_magic_ = 0; current_filetype_ = 0; } // static void MemoryMappingLayout::CacheMemoryMappings() { // No-op on Mac for now. } void MemoryMappingLayout::LoadFromCache() { // No-op on Mac for now. } // Next and NextSegmentLoad were inspired by base/sysinfo.cc in // Google Perftools, http://code.google.com/p/google-perftools. // NextSegmentLoad scans the current image for the next segment load command // and returns the start and end addresses and file offset of the corresponding // segment. // Note that the segment addresses are not necessarily sorted. template bool MemoryMappingLayout::NextSegmentLoad( uptr *start, uptr *end, uptr *offset, char filename[], uptr filename_size, uptr *protection) { if (protection) UNIMPLEMENTED(); const char* lc = current_load_cmd_addr_; current_load_cmd_addr_ += ((const load_command *)lc)->cmdsize; if (((const load_command *)lc)->cmd == kLCSegment) { const sptr dlloff = _dyld_get_image_vmaddr_slide(current_image_); const SegmentCommand* sc = (const SegmentCommand *)lc; if (start) *start = sc->vmaddr + dlloff; if (end) *end = sc->vmaddr + sc->vmsize + dlloff; if (offset) { if (current_filetype_ == /*MH_EXECUTE*/ 0x2) { *offset = sc->vmaddr; } else { *offset = sc->fileoff; } } if (filename) { internal_strncpy(filename, _dyld_get_image_name(current_image_), filename_size); } return true; } return false; } bool MemoryMappingLayout::Next(uptr *start, uptr *end, uptr *offset, char filename[], uptr filename_size, uptr *protection) { for (; current_image_ >= 0; current_image_--) { const mach_header* hdr = _dyld_get_image_header(current_image_); if (!hdr) continue; if (current_load_cmd_count_ < 0) { // Set up for this image; current_load_cmd_count_ = hdr->ncmds; current_magic_ = hdr->magic; current_filetype_ = hdr->filetype; switch (current_magic_) { #ifdef MH_MAGIC_64 case MH_MAGIC_64: { current_load_cmd_addr_ = (char*)hdr + sizeof(mach_header_64); break; } #endif case MH_MAGIC: { current_load_cmd_addr_ = (char*)hdr + sizeof(mach_header); break; } default: { continue; } } } for (; current_load_cmd_count_ >= 0; current_load_cmd_count_--) { switch (current_magic_) { // current_magic_ may be only one of MH_MAGIC, MH_MAGIC_64. #ifdef MH_MAGIC_64 case MH_MAGIC_64: { if (NextSegmentLoad( start, end, offset, filename, filename_size, protection)) return true; break; } #endif case MH_MAGIC: { if (NextSegmentLoad( start, end, offset, filename, filename_size, protection)) return true; break; } } } // If we get here, no more load_cmd's in this image talk about // segments. Go on to the next image. } return false; } bool MemoryMappingLayout::GetObjectNameAndOffset(uptr addr, uptr *offset, char filename[], uptr filename_size, uptr *protection) { return IterateForObjectNameAndOffset(addr, offset, filename, filename_size, protection); } BlockingMutex::BlockingMutex(LinkerInitialized) { // We assume that OS_SPINLOCK_INIT is zero } BlockingMutex::BlockingMutex() { internal_memset(this, 0, sizeof(*this)); } void BlockingMutex::Lock() { CHECK(sizeof(OSSpinLock) <= sizeof(opaque_storage_)); CHECK_EQ(OS_SPINLOCK_INIT, 0); CHECK_NE(owner_, (uptr)pthread_self()); OSSpinLockLock((OSSpinLock*)&opaque_storage_); CHECK(!owner_); owner_ = (uptr)pthread_self(); } void BlockingMutex::Unlock() { CHECK(owner_ == (uptr)pthread_self()); owner_ = 0; OSSpinLockUnlock((OSSpinLock*)&opaque_storage_); } void BlockingMutex::CheckLocked() { CHECK_EQ((uptr)pthread_self(), owner_); } u64 NanoTime() { return 0; } uptr GetTlsSize() { return 0; } void InitTlsSize() { } void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { #ifndef SANITIZER_GO uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; *tls_addr = 0; *tls_size = 0; #else *stk_addr = 0; *stk_size = 0; *tls_addr = 0; *tls_size = 0; #endif } uptr GetListOfModules(LoadedModule *modules, uptr max_modules, string_predicate_t filter) { MemoryMappingLayout memory_mapping(false); memory_mapping.Reset(); uptr cur_beg, cur_end, cur_offset; InternalScopedBuffer module_name(kMaxPathLength); uptr n_modules = 0; for (uptr i = 0; n_modules < max_modules && memory_mapping.Next(&cur_beg, &cur_end, &cur_offset, module_name.data(), module_name.size(), 0); i++) { const char *cur_name = module_name.data(); if (cur_name[0] == '\0') continue; if (filter && !filter(cur_name)) continue; LoadedModule *cur_module = 0; if (n_modules > 0 && 0 == internal_strcmp(cur_name, modules[n_modules - 1].full_name())) { cur_module = &modules[n_modules - 1]; } else { void *mem = &modules[n_modules]; cur_module = new(mem) LoadedModule(cur_name, cur_beg); n_modules++; } cur_module->addAddressRange(cur_beg, cur_end); } return n_modules; } } // namespace __sanitizer #endif // SANITIZER_MAC