// class template regex -*- C++ -*-
// Copyright (C) 2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/**
* @file bits/regex_executor.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{regex}
*/
// TODO: convert comments to doxygen format.
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template
class basic_regex;
template
class sub_match;
template
class match_results;
_GLIBCXX_END_NAMESPACE_VERSION
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @addtogroup regex-detail
* @{
*/
template
class _Executor
{
public:
typedef match_results<_BiIter, _Alloc> _ResultsT;
typedef std::vector, _Alloc> _ResultsVec;
typedef regex_constants::match_flag_type _FlagT;
virtual
~_Executor()
{ }
// Set matched when string exactly match the pattern.
virtual void
_M_match() = 0;
// Set matched when some prefix of the string matches the pattern.
virtual void
_M_search_from_first() = 0;
protected:
typedef typename _NFA<_CharT, _TraitsT>::_SizeT _SizeT;
_Executor(_BiIter __begin,
_BiIter __end,
_ResultsT& __results,
_FlagT __flags,
_SizeT __size)
: _M_current(__begin), _M_end(__end), _M_results(__results),
_M_flags(__flags)
{
__size += 2;
_M_results.resize(__size);
for (auto __i = 0; __i < __size; __i++)
_M_results[__i].matched = false;
}
_BiIter _M_current;
_BiIter _M_end;
_ResultsVec& _M_results;
_FlagT _M_flags;
};
// A _DFSExecutor perform a DFS on given NFA and input string. At the very
// beginning the executor stands in the start state, then it try every
// possible state transition in current state recursively. Some state
// transitions consume input string, say, a single-char-matcher or a
// back-reference matcher; some not, like assertion or other anchor nodes.
// When the input is exhausted and the current state is an accepting state,
// the whole executor return true.
//
// TODO: This approach is exponentially slow for certain input.
// Try to compile the NFA to a DFA.
//
// Time complexity: exponential
// Space complexity: O(__end - __begin)
template
class _DFSExecutor
: public _Executor<_BiIter, _Alloc, _CharT, _TraitsT>
{
public:
typedef _Executor<_BiIter, _Alloc, _CharT, _TraitsT> _BaseT;
typedef _NFA<_CharT, _TraitsT> _RegexT;
typedef typename _BaseT::_ResultsT _ResultsT;
typedef typename _BaseT::_ResultsVec _ResultsVec;
typedef regex_constants::match_flag_type _FlagT;
_DFSExecutor(_BiIter __begin,
_BiIter __end,
_ResultsT& __results,
const _RegexT& __nfa,
const _TraitsT& __traits,
_FlagT __flags)
: _BaseT(__begin, __end, __results, __flags, __nfa._M_sub_count()),
_M_traits(__traits), _M_nfa(__nfa), _M_results_ret(this->_M_results)
{ }
void
_M_match()
{ _M_dfs(_M_nfa._M_start()); }
void
_M_search_from_first()
{ _M_dfs(_M_nfa._M_start()); }
private:
template
bool
_M_dfs(_StateIdT __i);
_ResultsVec _M_results_ret;
const _TraitsT& _M_traits;
const _RegexT& _M_nfa;
};
// Like the DFS approach, it try every possible state transition; Unlike DFS,
// it uses a queue instead of a stack to store matching states. It's a BFS
// approach.
//
// Russ Cox's article(http://swtch.com/~rsc/regexp/regexp1.html) explained
// this algorithm clearly.
//
// Every entry of _M_covered saves the solution(grouping status) for every
// matching head. When states transit, solutions will be compared and
// deduplicated(based on which greedy mode we have).
//
// Time complexity: O((__end - __begin) * _M_nfa.size())
// Space complexity: O(_M_nfa.size() * _M_nfa.mark_count())
template
class _BFSExecutor
: public _Executor<_BiIter, _Alloc, _CharT, _TraitsT>
{
public:
typedef _Executor<_BiIter, _Alloc, _CharT, _TraitsT> _BaseT;
typedef _NFA<_CharT, _TraitsT> _RegexT;
typedef typename _BaseT::_ResultsT _ResultsT;
typedef typename _BaseT::_ResultsVec _ResultsVec;
typedef std::unique_ptr<_ResultsVec> _ResultsPtr;
typedef regex_constants::match_flag_type _FlagT;
_BFSExecutor(_BiIter __begin,
_BiIter __end,
_ResultsT& __results,
const _RegexT& __nfa,
_FlagT __flags)
: _BaseT(__begin, __end, __results, __flags, __nfa._M_sub_count()),
_M_nfa(__nfa)
{
if (_M_nfa._M_start() != _S_invalid_state_id)
_M_covered[_M_nfa._M_start()] =
_ResultsPtr(new _ResultsVec(this->_M_results));
_M_e_closure();
}
void
_M_match()
{ _M_main_loop(); }
void
_M_search_from_first()
{ _M_main_loop(); }
private:
template
void
_M_main_loop();
void
_M_e_closure();
void
_M_move();
bool
_M_match_less_than(const _ResultsVec& __u, const _ResultsVec& __v) const;
bool
_M_includes_some() const;
std::map<_StateIdT, _ResultsPtr> _M_covered;
const _RegexT& _M_nfa;
};
//@} regex-detail
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
} // namespace std
#include