summaryrefslogtreecommitdiff
path: root/gcc/ada/5htaprop.adb
blob: c5ed60924443065b903ba86da388383d78e4acc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
------------------------------------------------------------------------------
--                                                                          --
--                GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS               --
--                                                                          --
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
--                                                                          --
--                                  B o d y                                 --
--                                                                          --
--                                                                          --
--         Copyright (C) 1992-2001, Free Software Foundation, Inc.          --
--                                                                          --
-- GNARL is free software; you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNARL; see file COPYING.  If not, write --
-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
-- MA 02111-1307, USA.                                                      --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies, Inc. (http://www.gnat.com).     --
--                                                                          --
------------------------------------------------------------------------------

--  This is a HP-UX DCE threads version of this package

--  This package contains all the GNULL primitives that interface directly
--  with the underlying OS.

pragma Polling (Off);
--  Turn off polling, we do not want ATC polling to take place during
--  tasking operations. It causes infinite loops and other problems.

with System.Tasking.Debug;
--  used for Known_Tasks

with Interfaces.C;
--  used for int
--           size_t

with System.Interrupt_Management;
--  used for Keep_Unmasked
--           Abort_Task_Interrupt
--           Interrupt_ID

with System.Interrupt_Management.Operations;
--  used for Set_Interrupt_Mask
--           All_Tasks_Mask
pragma Elaborate_All (System.Interrupt_Management.Operations);

with System.Parameters;
--  used for Size_Type

with System.Task_Primitives.Interrupt_Operations;
--  used for Get_Interrupt_ID

with System.Tasking;
--  used for Ada_Task_Control_Block
--           Task_ID

with System.Soft_Links;
--  used for Defer/Undefer_Abort

--  Note that we do not use System.Tasking.Initialization directly since
--  this is a higher level package that we shouldn't depend on. For example
--  when using the restricted run time, it is replaced by
--  System.Tasking.Restricted.Initialization

with System.OS_Primitives;
--  used for Delay_Modes

with Unchecked_Conversion;
with Unchecked_Deallocation;

package body System.Task_Primitives.Operations is

   use System.Tasking.Debug;
   use System.Tasking;
   use Interfaces.C;
   use System.OS_Interface;
   use System.Parameters;
   use System.OS_Primitives;

   package PIO renames System.Task_Primitives.Interrupt_Operations;
   package SSL renames System.Soft_Links;

   ------------------
   --  Local Data  --
   ------------------

   --  The followings are logically constants, but need to be initialized
   --  at run time.

   ATCB_Key : aliased pthread_key_t;
   --  Key used to find the Ada Task_ID associated with a thread

   Single_RTS_Lock : aliased RTS_Lock;
   --  This is a lock to allow only one thread of control in the RTS at
   --  a time; it is used to execute in mutual exclusion from all other tasks.
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List

   Environment_Task_ID : Task_ID;
   --  A variable to hold Task_ID for the environment task.

   Unblocked_Signal_Mask : aliased sigset_t;
   --  The set of signals that should unblocked in all tasks

   Time_Slice_Val : Integer;
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");

   Locking_Policy : Character;
   pragma Import (C, Locking_Policy, "__gl_locking_policy");

   Dispatching_Policy : Character;
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");

   FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F';
   --  Indicates whether FIFO_Within_Priorities is set.

   --  The followings are internal configuration constants needed.

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Abort_Handler (Sig : Signal);

   function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID);

   function To_Address is new Unchecked_Conversion (Task_ID, System.Address);

   -------------------
   -- Abort_Handler --
   -------------------

   procedure Abort_Handler (Sig : Signal) is
      Self_Id : constant Task_ID := Self;
      Result  : Interfaces.C.int;
      Old_Set : aliased sigset_t;

   begin
      if Self_Id.Deferral_Level = 0
        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level and then
        not Self_Id.Aborting
      then
         Self_Id.Aborting := True;

         --  Make sure signals used for RTS internal purpose are unmasked

         Result := pthread_sigmask (SIG_UNBLOCK,
           Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
         pragma Assert (Result = 0);

         raise Standard'Abort_Signal;
      end if;
   end Abort_Handler;

   -----------------
   -- Stack_Guard --
   -----------------

   --  The underlying thread system sets a guard page at the
   --  bottom of a thread stack, so nothing is needed.
   --  ??? Check the comment above

   procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is
   begin
      null;
   end Stack_Guard;

   -------------------
   -- Get_Thread_Id --
   -------------------

   function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is
   begin
      return T.Common.LL.Thread;
   end Get_Thread_Id;

   ----------
   -- Self --
   ----------

   function Self return Task_ID is
      Result : System.Address;
   begin
      Result := pthread_getspecific (ATCB_Key);
      pragma Assert (Result /= System.Null_Address);
      return To_Task_ID (Result);
   end Self;

   ---------------------
   -- Initialize_Lock --
   ---------------------

   --  Note: mutexes and cond_variables needed per-task basis are
   --        initialized in Initialize_TCB and the Storage_Error is
   --        handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
   --        used in RTS is initialized before any status change of RTS.
   --        Therefore rasing Storage_Error in the following routines
   --        should be able to be handled safely.

   procedure Initialize_Lock
     (Prio : System.Any_Priority;
      L    : access Lock)
   is
      Attributes : aliased pthread_mutexattr_t;
      Result     : Interfaces.C.int;

   begin
      Result := pthread_mutexattr_init (Attributes'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = ENOMEM then
         raise Storage_Error;
      end if;

      L.Priority := Prio;

      Result := pthread_mutex_init (L.L'Access, Attributes'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = ENOMEM then
         raise Storage_Error;
      end if;

      Result := pthread_mutexattr_destroy (Attributes'Access);
      pragma Assert (Result = 0);
   end Initialize_Lock;

   procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
      Attributes : aliased pthread_mutexattr_t;
      Result     : Interfaces.C.int;

   begin
      Result := pthread_mutexattr_init (Attributes'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = ENOMEM then
         raise Storage_Error;
      end if;

      Result := pthread_mutex_init (L, Attributes'Access);

      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = ENOMEM then
         raise Storage_Error;
      end if;

      Result := pthread_mutexattr_destroy (Attributes'Access);
      pragma Assert (Result = 0);
   end Initialize_Lock;

   -------------------
   -- Finalize_Lock --
   -------------------

   procedure Finalize_Lock (L : access Lock) is
      Result : Interfaces.C.int;
   begin
      Result := pthread_mutex_destroy (L.L'Access);
      pragma Assert (Result = 0);
   end Finalize_Lock;

   procedure Finalize_Lock (L : access RTS_Lock) is
      Result : Interfaces.C.int;
   begin
      Result := pthread_mutex_destroy (L);
      pragma Assert (Result = 0);
   end Finalize_Lock;

   ----------------
   -- Write_Lock --
   ----------------

   procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
      Result : Interfaces.C.int;
   begin
      L.Owner_Priority := Get_Priority (Self);

      if L.Priority < L.Owner_Priority then
         Ceiling_Violation := True;
         return;
      end if;

      Result := pthread_mutex_lock (L.L'Access);
      pragma Assert (Result = 0);
      Ceiling_Violation := False;
   end Write_Lock;

   procedure Write_Lock
     (L : access RTS_Lock; Global_Lock : Boolean := False)
   is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock or else Global_Lock then
         Result := pthread_mutex_lock (L);
         pragma Assert (Result = 0);
      end if;
   end Write_Lock;

   procedure Write_Lock (T : Task_ID) is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock then
         Result := pthread_mutex_lock (T.Common.LL.L'Access);
         pragma Assert (Result = 0);
      end if;
   end Write_Lock;

   ---------------
   -- Read_Lock --
   ---------------

   procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
   begin
      Write_Lock (L, Ceiling_Violation);
   end Read_Lock;

   ------------
   -- Unlock --
   ------------

   procedure Unlock (L : access Lock) is
      Result : Interfaces.C.int;
   begin
      Result := pthread_mutex_unlock (L.L'Access);
      pragma Assert (Result = 0);
   end Unlock;

   procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock or else Global_Lock then
         Result := pthread_mutex_unlock (L);
         pragma Assert (Result = 0);
      end if;
   end Unlock;

   procedure Unlock (T : Task_ID) is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock then
         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
         pragma Assert (Result = 0);
      end if;
   end Unlock;

   -----------
   -- Sleep --
   -----------

   procedure Sleep
     (Self_ID : Task_ID;
      Reason  : System.Tasking.Task_States)
   is
      Result : Interfaces.C.int;
   begin
      if Single_Lock then
         Result := pthread_cond_wait
           (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
      else
         Result := pthread_cond_wait
           (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
      end if;

      --  EINTR is not considered a failure.
      pragma Assert (Result = 0 or else Result = EINTR);
   end Sleep;

   -----------------
   -- Timed_Sleep --
   -----------------

   procedure Timed_Sleep
     (Self_ID  : Task_ID;
      Time     : Duration;
      Mode     : ST.Delay_Modes;
      Reason   : System.Tasking.Task_States;
      Timedout : out Boolean;
      Yielded  : out Boolean)
   is
      Check_Time : constant Duration := Monotonic_Clock;
      Abs_Time   : Duration;
      Request    : aliased timespec;
      Result     : Interfaces.C.int;

   begin
      Timedout := True;
      Yielded := False;

      if Mode = Relative then
         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
      else
         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
      end if;

      if Abs_Time > Check_Time then
         Request := To_Timespec (Abs_Time);

         loop
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
              or else Self_ID.Pending_Priority_Change;

            if Single_Lock then
               Result := pthread_cond_timedwait
                 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
                  Request'Access);

            else
               Result := pthread_cond_timedwait
                 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
                  Request'Access);
            end if;

            exit when Abs_Time <= Monotonic_Clock;

            if Result = 0 or Result = EINTR then
               --  somebody may have called Wakeup for us
               Timedout := False;
               exit;
            end if;

            pragma Assert (Result = ETIMEDOUT);
         end loop;
      end if;
   end Timed_Sleep;

   -----------------
   -- Timed_Delay --
   -----------------

   procedure Timed_Delay
     (Self_ID  : Task_ID;
      Time     : Duration;
      Mode     : ST.Delay_Modes)
   is
      Check_Time : constant Duration := Monotonic_Clock;
      Abs_Time   : Duration;
      Request    : aliased timespec;
      Result     : Interfaces.C.int;

   begin
      --  Only the little window between deferring abort and
      --  locking Self_ID is the reason we need to
      --  check for pending abort and priority change below! :(

      SSL.Abort_Defer.all;

      if Single_Lock then
         Lock_RTS;
      end if;

      Write_Lock (Self_ID);

      if Mode = Relative then
         Abs_Time := Time + Check_Time;
      else
         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
      end if;

      if Abs_Time > Check_Time then
         Request := To_Timespec (Abs_Time);
         Self_ID.Common.State := Delay_Sleep;

         loop
            if Self_ID.Pending_Priority_Change then
               Self_ID.Pending_Priority_Change := False;
               Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
               Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
            end if;

            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;

            if Single_Lock then
               Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
                 Single_RTS_Lock'Access, Request'Access);
            else
               Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
                 Self_ID.Common.LL.L'Access, Request'Access);
            end if;

            exit when Abs_Time <= Monotonic_Clock;

            pragma Assert (Result = 0 or else
              Result = ETIMEDOUT or else
              Result = EINTR);
         end loop;

         Self_ID.Common.State := Runnable;
      end if;

      Unlock (Self_ID);

      if Single_Lock then
         Unlock_RTS;
      end if;

      Result := sched_yield;
      SSL.Abort_Undefer.all;
   end Timed_Delay;

   ---------------------
   -- Monotonic_Clock --
   ---------------------

   function Monotonic_Clock return Duration is
      TS     : aliased timespec;
      Result : Interfaces.C.int;

   begin
      Result := Clock_Gettime (CLOCK_REALTIME, TS'Unchecked_Access);
      pragma Assert (Result = 0);
      return To_Duration (TS);
   end Monotonic_Clock;

   -------------------
   -- RT_Resolution --
   -------------------

   function RT_Resolution return Duration is
   begin
      return 10#1.0#E-6;
   end RT_Resolution;

   ------------
   -- Wakeup --
   ------------

   procedure Wakeup (T : Task_ID; Reason : System.Tasking.Task_States) is
      Result : Interfaces.C.int;
   begin
      Result := pthread_cond_signal (T.Common.LL.CV'Access);
      pragma Assert (Result = 0);
   end Wakeup;

   -----------
   -- Yield --
   -----------

   procedure Yield (Do_Yield : Boolean := True) is
      Result : Interfaces.C.int;
   begin
      if Do_Yield then
         Result := sched_yield;
      end if;
   end Yield;

   ------------------
   -- Set_Priority --
   ------------------

   type Prio_Array_Type is array (System.Any_Priority) of Integer;
   pragma Atomic_Components (Prio_Array_Type);

   Prio_Array : Prio_Array_Type;
   --  Global array containing the id of the currently running task for
   --  each priority.
   --
   --  Note: we assume that we are on a single processor with run-til-blocked
   --  scheduling.

   procedure Set_Priority
     (T : Task_ID;
      Prio : System.Any_Priority;
      Loss_Of_Inheritance : Boolean := False)
   is
      Result     : Interfaces.C.int;
      Array_Item : Integer;
      Param      : aliased struct_sched_param;

   begin
      Param.sched_priority  := Interfaces.C.int (Underlying_Priorities (Prio));

      if Time_Slice_Val > 0 then
         Result := pthread_setschedparam
           (T.Common.LL.Thread, SCHED_RR, Param'Access);

      elsif FIFO_Within_Priorities or else Time_Slice_Val = 0 then
         Result := pthread_setschedparam
           (T.Common.LL.Thread, SCHED_FIFO, Param'Access);

      else
         Result := pthread_setschedparam
           (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
      end if;

      pragma Assert (Result = 0);

      if FIFO_Within_Priorities then

         --  Annex D requirement [RM D.2.2 par. 9]:
         --    If the task drops its priority due to the loss of inherited
         --    priority, it is added at the head of the ready queue for its
         --    new active priority.

         if Loss_Of_Inheritance
           and then Prio < T.Common.Current_Priority
         then
            Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
            Prio_Array (T.Common.Base_Priority) := Array_Item;

            loop
               --  Let some processes a chance to arrive

               Yield;

               --  Then wait for our turn to proceed

               exit when Array_Item = Prio_Array (T.Common.Base_Priority)
                 or else Prio_Array (T.Common.Base_Priority) = 1;
            end loop;

            Prio_Array (T.Common.Base_Priority) :=
              Prio_Array (T.Common.Base_Priority) - 1;
         end if;
      end if;

      T.Common.Current_Priority := Prio;
   end Set_Priority;

   ------------------
   -- Get_Priority --
   ------------------

   function Get_Priority (T : Task_ID) return System.Any_Priority is
   begin
      return T.Common.Current_Priority;
   end Get_Priority;

   ----------------
   -- Enter_Task --
   ----------------

   procedure Enter_Task (Self_ID : Task_ID) is
      Result  : Interfaces.C.int;

   begin
      Self_ID.Common.LL.Thread := pthread_self;

      Result := pthread_setspecific (ATCB_Key, To_Address (Self_ID));
      pragma Assert (Result = 0);

      Lock_RTS;

      for J in Known_Tasks'Range loop
         if Known_Tasks (J) = null then
            Known_Tasks (J) := Self_ID;
            Self_ID.Known_Tasks_Index := J;
            exit;
         end if;
      end loop;

      Unlock_RTS;
   end Enter_Task;

   --------------
   -- New_ATCB --
   --------------

   function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is
   begin
      return new Ada_Task_Control_Block (Entry_Num);
   end New_ATCB;

   --------------------
   -- Initialize_TCB --
   --------------------

   procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is
      Mutex_Attr : aliased pthread_mutexattr_t;
      Result     : Interfaces.C.int;
      Cond_Attr  : aliased pthread_condattr_t;

   begin
      if not Single_Lock then
         Result := pthread_mutexattr_init (Mutex_Attr'Access);
         pragma Assert (Result = 0 or else Result = ENOMEM);

         if Result = 0 then
            Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
              Mutex_Attr'Access);
            pragma Assert (Result = 0 or else Result = ENOMEM);
         end if;

         if Result /= 0 then
            Succeeded := False;
            return;
         end if;

         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
         pragma Assert (Result = 0);
      end if;

      Result := pthread_condattr_init (Cond_Attr'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = 0 then
         Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
           Cond_Attr'Access);
         pragma Assert (Result = 0 or else Result = ENOMEM);
      end if;

      if Result = 0 then
         Succeeded := True;
      else
         if not Single_Lock then
            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
            pragma Assert (Result = 0);
         end if;

         Succeeded := False;
      end if;

      Result := pthread_condattr_destroy (Cond_Attr'Access);
      pragma Assert (Result = 0);
   end Initialize_TCB;

   -----------------
   -- Create_Task --
   -----------------

   procedure Create_Task
     (T          : Task_ID;
      Wrapper    : System.Address;
      Stack_Size : System.Parameters.Size_Type;
      Priority   : System.Any_Priority;
      Succeeded  : out Boolean)
   is
      Attributes          : aliased pthread_attr_t;
      Adjusted_Stack_Size : Interfaces.C.size_t;
      Result              : Interfaces.C.int;

      function Thread_Body_Access is new
        Unchecked_Conversion (System.Address, Thread_Body);

   begin
      if Stack_Size = Unspecified_Size then
         Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size);

      elsif Stack_Size < Minimum_Stack_Size then
         Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size);

      else
         Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
      end if;

      Result := pthread_attr_init (Attributes'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result /= 0 then
         Succeeded := False;
         return;
      end if;

      Result := pthread_attr_setstacksize
        (Attributes'Access, Adjusted_Stack_Size);
      pragma Assert (Result = 0);

      --  Since the initial signal mask of a thread is inherited from the
      --  creator, and the Environment task has all its signals masked, we
      --  do not need to manipulate caller's signal mask at this point.
      --  All tasks in RTS will have All_Tasks_Mask initially.

      Result := pthread_create
        (T.Common.LL.Thread'Access,
         Attributes'Access,
         Thread_Body_Access (Wrapper),
         To_Address (T));
      pragma Assert (Result = 0 or else Result = EAGAIN);

      Succeeded := Result = 0;

      pthread_detach (T.Common.LL.Thread'Access);
      --  Detach the thread using pthread_detach, sinc DCE threads do not have
      --  pthread_attr_set_detachstate.

      Result := pthread_attr_destroy (Attributes'Access);
      pragma Assert (Result = 0);

      Set_Priority (T, Priority);
   end Create_Task;

   ------------------
   -- Finalize_TCB --
   ------------------

   procedure Finalize_TCB (T : Task_ID) is
      Result : Interfaces.C.int;
      Tmp    : Task_ID := T;

      procedure Free is new
        Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID);

   begin
      if not Single_Lock then
         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
         pragma Assert (Result = 0);
      end if;

      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
      pragma Assert (Result = 0);

      if T.Known_Tasks_Index /= -1 then
         Known_Tasks (T.Known_Tasks_Index) := null;
      end if;

      Free (Tmp);
   end Finalize_TCB;

   ---------------
   -- Exit_Task --
   ---------------

   procedure Exit_Task is
   begin
      pthread_exit (System.Null_Address);
   end Exit_Task;

   ----------------
   -- Abort_Task --
   ----------------

   procedure Abort_Task (T : Task_ID) is
   begin
      --
      --  Interrupt Server_Tasks may be waiting on an "event" flag (signal)
      --
      if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
         System.Interrupt_Management.Operations.Interrupt_Self_Process
           (System.Interrupt_Management.Interrupt_ID
             (PIO.Get_Interrupt_ID (T)));
      end if;
   end Abort_Task;

   ----------------
   -- Check_Exit --
   ----------------

   --  Dummy versions.  The only currently working versions is for solaris
   --  (native).

   function Check_Exit (Self_ID : ST.Task_ID) return Boolean is
   begin
      return True;
   end Check_Exit;

   --------------------
   -- Check_No_Locks --
   --------------------

   function Check_No_Locks (Self_ID : ST.Task_ID) return Boolean is
   begin
      return True;
   end Check_No_Locks;

   ----------------------
   -- Environment_Task --
   ----------------------

   function Environment_Task return Task_ID is
   begin
      return Environment_Task_ID;
   end Environment_Task;

   --------------
   -- Lock_RTS --
   --------------

   procedure Lock_RTS is
   begin
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
   end Lock_RTS;

   ----------------
   -- Unlock_RTS --
   ----------------

   procedure Unlock_RTS is
   begin
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
   end Unlock_RTS;

   ------------------
   -- Suspend_Task --
   ------------------

   function Suspend_Task
     (T           : ST.Task_ID;
      Thread_Self : Thread_Id) return Boolean is
   begin
      return False;
   end Suspend_Task;

   -----------------
   -- Resume_Task --
   -----------------

   function Resume_Task
     (T           : ST.Task_ID;
      Thread_Self : Thread_Id) return Boolean is
   begin
      return False;
   end Resume_Task;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize (Environment_Task : Task_ID) is
      act       : aliased struct_sigaction;
      old_act   : aliased struct_sigaction;
      Tmp_Set   : aliased sigset_t;
      Result    : Interfaces.C.int;

   begin

      Environment_Task_ID := Environment_Task;

      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
      --  Initialize the lock used to synchronize chain of all ATCBs.

      Enter_Task (Environment_Task);

      --  Install the abort-signal handler

      act.sa_flags := 0;
      act.sa_handler := Abort_Handler'Address;

      Result := sigemptyset (Tmp_Set'Access);
      pragma Assert (Result = 0);
      act.sa_mask := Tmp_Set;

      Result :=
        sigaction (
          Signal (System.Interrupt_Management.Abort_Task_Interrupt),
          act'Unchecked_Access,
          old_act'Unchecked_Access);
      pragma Assert (Result = 0);
   end Initialize;

   procedure do_nothing (arg : System.Address);

   procedure do_nothing (arg : System.Address) is
   begin
      null;
   end do_nothing;

begin
   declare
      Result : Interfaces.C.int;
   begin
      --  NOTE: Unlike other pthread implementations, we do *not* mask all
      --  signals here since we handle signals using the process-wide primitive
      --  signal, rather than using sigthreadmask and sigwait. The reason of
      --  this difference is that sigwait doesn't work when some critical
      --  signals (SIGABRT, SIGPIPE) are masked.

      Result := pthread_key_create (ATCB_Key'Access, do_nothing'Access);
      pragma Assert (Result = 0);
   end;
end System.Task_Primitives.Operations;