summaryrefslogtreecommitdiff
path: root/gcc/ada/5itaprop.adb
blob: 137748c0c92aa89db32e6278b10f774c59c4c7d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
------------------------------------------------------------------------------
--                                                                          --
--                GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS               --
--                                                                          --
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
--                                                                          --
--                                  B o d y                                 --
--                                                                          --
--                                                                          --
--         Copyright (C) 1992-2001, Free Software Foundation, Inc.          --
--                                                                          --
-- GNARL is free software; you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNARL; see file COPYING.  If not, write --
-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
-- MA 02111-1307, USA.                                                      --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies, Inc. (http://www.gnat.com).     --
--                                                                          --
------------------------------------------------------------------------------

--  This is a GNU/Linux (GNU/LinuxThreads) version of this package

--  This package contains all the GNULL primitives that interface directly
--  with the underlying OS.

pragma Polling (Off);
--  Turn off polling, we do not want ATC polling to take place during
--  tasking operations. It causes infinite loops and other problems.

with System.Tasking.Debug;
--  used for Known_Tasks

with Interfaces.C;
--  used for int
--           size_t

with System.Interrupt_Management;
--  used for Keep_Unmasked
--           Abort_Task_Interrupt
--           Interrupt_ID

with System.Interrupt_Management.Operations;
--  used for Set_Interrupt_Mask
--           All_Tasks_Mask
pragma Elaborate_All (System.Interrupt_Management.Operations);

with System.Parameters;
--  used for Size_Type

with System.Tasking;
--  used for Ada_Task_Control_Block
--           Task_ID

with Ada.Exceptions;
--  used for Raise_Exception
--           Raise_From_Signal_Handler
--           Exception_Id

with System.Soft_Links;
--  used for Defer/Undefer_Abort

--  Note that we do not use System.Tasking.Initialization directly since
--  this is a higher level package that we shouldn't depend on. For example
--  when using the restricted run time, it is replaced by
--  System.Tasking.Restricted.Initialization

with System.OS_Primitives;
--  used for Delay_Modes

with System.Soft_Links;
--  used for Get_Machine_State_Addr

with Unchecked_Conversion;
with Unchecked_Deallocation;

package body System.Task_Primitives.Operations is

   use System.Tasking.Debug;
   use System.Tasking;
   use Interfaces.C;
   use System.OS_Interface;
   use System.Parameters;
   use System.OS_Primitives;

   package SSL renames System.Soft_Links;

   ------------------
   --  Local Data  --
   ------------------

   Max_Stack_Size : constant := 2000 * 1024;
   --  GNU/LinuxThreads does not return an error value when requesting
   --  a task stack size which is too large, so we have to check this
   --  ourselves.

   --  The followings are logically constants, but need to be initialized
   --  at run time.

   Single_RTS_Lock : aliased RTS_Lock;
   --  This is a lock to allow only one thread of control in the RTS at
   --  a time; it is used to execute in mutual exclusion from all other tasks.
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List

   Environment_Task_ID : Task_ID;
   --  A variable to hold Task_ID for the environment task.

   Unblocked_Signal_Mask : aliased sigset_t;
   --  The set of signals that should unblocked in all tasks

   --  The followings are internal configuration constants needed.
   Priority_Ceiling_Emulation : constant Boolean := True;

   Next_Serial_Number : Task_Serial_Number := 100;
   --  We start at 100, to reserve some special values for
   --  using in error checking.
   --  The following are internal configuration constants needed.

   Time_Slice_Val : Integer;
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");

   Dispatching_Policy : Character;
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");

   FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F';
   --  Indicates whether FIFO_Within_Priorities is set.

   --  The following are effectively constants, but they need to
   --  be initialized by calling a pthread_ function.

   Mutex_Attr   : aliased pthread_mutexattr_t;
   Cond_Attr    : aliased pthread_condattr_t;

   -----------------------
   -- Local Subprograms --
   -----------------------

   subtype unsigned_short is Interfaces.C.unsigned_short;
   subtype unsigned_long is Interfaces.C.unsigned_long;

   procedure Abort_Handler
     (signo         : Signal;
      gs            : unsigned_short;
      fs            : unsigned_short;
      es            : unsigned_short;
      ds            : unsigned_short;
      edi           : unsigned_long;
      esi           : unsigned_long;
      ebp           : unsigned_long;
      esp           : unsigned_long;
      ebx           : unsigned_long;
      edx           : unsigned_long;
      ecx           : unsigned_long;
      eax           : unsigned_long;
      trapno        : unsigned_long;
      err           : unsigned_long;
      eip           : unsigned_long;
      cs            : unsigned_short;
      eflags        : unsigned_long;
      esp_at_signal : unsigned_long;
      ss            : unsigned_short;
      fpstate       : System.Address;
      oldmask       : unsigned_long;
      cr2           : unsigned_long);

   function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID);

   function To_Address is new Unchecked_Conversion (Task_ID, System.Address);

   function To_pthread_t is new Unchecked_Conversion
     (Integer, System.OS_Interface.pthread_t);

   --------------------
   -- Local Packages --
   --------------------

   package Specific is

      procedure Initialize (Environment_Task : Task_ID);
      pragma Inline (Initialize);
      --  Initialize various data needed by this package.

      procedure Set (Self_Id : Task_ID);
      pragma Inline (Set);
      --  Set the self id for the current task.

      function Self return Task_ID;
      pragma Inline (Self);
      --  Return a pointer to the Ada Task Control Block of the calling task.

   end Specific;

   package body Specific is separate;
   --  The body of this package is target specific.

   -------------------
   -- Abort_Handler --
   -------------------

   --  Target-dependent binding of inter-thread Abort signal to
   --  the raising of the Abort_Signal exception.

   --  The technical issues and alternatives here are essentially
   --  the same as for raising exceptions in response to other
   --  signals (e.g. Storage_Error).  See code and comments in
   --  the package body System.Interrupt_Management.

   --  Some implementations may not allow an exception to be propagated
   --  out of a handler, and others might leave the signal or
   --  interrupt that invoked this handler masked after the exceptional
   --  return to the application code.

   --  GNAT exceptions are originally implemented using setjmp()/longjmp().
   --  On most UNIX systems, this will allow transfer out of a signal handler,
   --  which is usually the only mechanism available for implementing
   --  asynchronous handlers of this kind.  However, some
   --  systems do not restore the signal mask on longjmp(), leaving the
   --  abort signal masked.

   --  Alternative solutions include:

   --       1. Change the PC saved in the system-dependent Context
   --          parameter to point to code that raises the exception.
   --          Normal return from this handler will then raise
   --          the exception after the mask and other system state has
   --          been restored (see example below).
   --       2. Use siglongjmp()/sigsetjmp() to implement exceptions.
   --       3. Unmask the signal in the Abortion_Signal exception handler
   --          (in the RTS).

   --  Note that with the new exception mechanism, it is not correct to
   --  simply "raise" an exception from a signal handler, that's why we
   --  use Raise_From_Signal_Handler

   procedure Abort_Handler
     (signo   : Signal;
      gs            : unsigned_short;
      fs            : unsigned_short;
      es            : unsigned_short;
      ds            : unsigned_short;
      edi           : unsigned_long;
      esi           : unsigned_long;
      ebp           : unsigned_long;
      esp           : unsigned_long;
      ebx           : unsigned_long;
      edx           : unsigned_long;
      ecx           : unsigned_long;
      eax           : unsigned_long;
      trapno        : unsigned_long;
      err           : unsigned_long;
      eip           : unsigned_long;
      cs            : unsigned_short;
      eflags        : unsigned_long;
      esp_at_signal : unsigned_long;
      ss            : unsigned_short;
      fpstate       : System.Address;
      oldmask       : unsigned_long;
      cr2           : unsigned_long)
   is
      Self_Id : Task_ID := Self;
      Result  : Interfaces.C.int;
      Old_Set : aliased sigset_t;

      function To_Machine_State_Ptr is new
        Unchecked_Conversion (Address, Machine_State_Ptr);

      --  These are not directly visible

      procedure Raise_From_Signal_Handler
        (E : Ada.Exceptions.Exception_Id;
         M : System.Address);
      pragma Import
        (Ada, Raise_From_Signal_Handler,
         "ada__exceptions__raise_from_signal_handler");
      pragma No_Return (Raise_From_Signal_Handler);

      mstate  : Machine_State_Ptr;
      message : aliased constant String := "" & ASCII.Nul;
      --  a null terminated String.

   begin
      if Self_Id.Deferral_Level = 0
        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
        and then not Self_Id.Aborting
      then
         Self_Id.Aborting := True;

         --  Make sure signals used for RTS internal purpose are unmasked

         Result := pthread_sigmask (SIG_UNBLOCK,
           Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
         pragma Assert (Result = 0);

         mstate := To_Machine_State_Ptr (SSL.Get_Machine_State_Addr.all);
         mstate.eip := eip;
         mstate.ebx := ebx;
         mstate.esp := esp_at_signal;
         mstate.ebp := ebp;
         mstate.esi := esi;
         mstate.edi := edi;

         Raise_From_Signal_Handler
           (Standard'Abort_Signal'Identity, message'Address);
      end if;
   end Abort_Handler;

   --------------
   -- Lock_RTS --
   --------------

   procedure Lock_RTS is
   begin
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
   end Lock_RTS;

   ----------------
   -- Unlock_RTS --
   ----------------

   procedure Unlock_RTS is
   begin
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
   end Unlock_RTS;

   -----------------
   -- Stack_Guard --
   -----------------

   --  The underlying thread system extends the memory (up to 2MB) when
   --  needed.

   procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is
   begin
      null;
   end Stack_Guard;

   --------------------
   -- Get_Thread_Id  --
   --------------------

   function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is
   begin
      return T.Common.LL.Thread;
   end Get_Thread_Id;

   ----------
   -- Self --
   ----------

   function Self return Task_ID renames Specific.Self;

   ---------------------
   -- Initialize_Lock --
   ---------------------

   --  Note: mutexes and cond_variables needed per-task basis are
   --        initialized in Initialize_TCB and the Storage_Error is
   --        handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
   --        used in RTS is initialized before any status change of RTS.
   --        Therefore rasing Storage_Error in the following routines
   --        should be able to be handled safely.

   procedure Initialize_Lock
     (Prio : System.Any_Priority;
      L    : access Lock)
   is
      Result : Interfaces.C.int;
   begin
      if Priority_Ceiling_Emulation then
         L.Ceiling := Prio;
      end if;

      Result := pthread_mutex_init (L.L'Access, Mutex_Attr'Access);

      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = ENOMEM then
         Ada.Exceptions.Raise_Exception (Storage_Error'Identity,
           "Failed to allocate a lock");
      end if;
   end Initialize_Lock;

   procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
      Result : Interfaces.C.int;

   begin
      Result := pthread_mutex_init (L, Mutex_Attr'Access);

      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = ENOMEM then
         raise Storage_Error;
      end if;
   end Initialize_Lock;

   -------------------
   -- Finalize_Lock --
   -------------------

   procedure Finalize_Lock (L : access Lock) is
      Result : Interfaces.C.int;

   begin
      Result := pthread_mutex_destroy (L.L'Access);
      pragma Assert (Result = 0);
   end Finalize_Lock;

   procedure Finalize_Lock (L : access RTS_Lock) is
      Result : Interfaces.C.int;

   begin
      Result := pthread_mutex_destroy (L);
      pragma Assert (Result = 0);
   end Finalize_Lock;

   ----------------
   -- Write_Lock --
   ----------------

   procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
      Result : Interfaces.C.int;
   begin
      if Priority_Ceiling_Emulation then
         declare
            Self_ID : constant Task_ID := Self;
         begin
            if Self_ID.Common.LL.Active_Priority > L.Ceiling then
               Ceiling_Violation := True;
               return;
            end if;
            L.Saved_Priority := Self_ID.Common.LL.Active_Priority;
            if Self_ID.Common.LL.Active_Priority < L.Ceiling then
               Self_ID.Common.LL.Active_Priority := L.Ceiling;
            end if;
            Result := pthread_mutex_lock (L.L'Access);
            pragma Assert (Result = 0);
            Ceiling_Violation := False;
         end;
      else
         Result := pthread_mutex_lock (L.L'Access);
         Ceiling_Violation := Result = EINVAL;
         --  assumes the cause of EINVAL is a priority ceiling violation
         pragma Assert (Result = 0 or else Result = EINVAL);
      end if;
   end Write_Lock;

   procedure Write_Lock
     (L : access RTS_Lock; Global_Lock : Boolean := False)
   is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock or else Global_Lock then
         Result := pthread_mutex_lock (L);
         pragma Assert (Result = 0);
      end if;
   end Write_Lock;

   procedure Write_Lock (T : Task_ID) is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock then
         Result := pthread_mutex_lock (T.Common.LL.L'Access);
         pragma Assert (Result = 0);
      end if;
   end Write_Lock;

   ---------------
   -- Read_Lock --
   ---------------

   procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
   begin
      Write_Lock (L, Ceiling_Violation);
   end Read_Lock;

   ------------
   -- Unlock --
   ------------

   procedure Unlock (L : access Lock) is
      Result : Interfaces.C.int;
   begin
      if Priority_Ceiling_Emulation then
         declare
            Self_ID : constant Task_ID := Self;
         begin
            Result := pthread_mutex_unlock (L.L'Access);
            pragma Assert (Result = 0);
            if Self_ID.Common.LL.Active_Priority > L.Saved_Priority then
               Self_ID.Common.LL.Active_Priority := L.Saved_Priority;
            end if;
         end;
      else
         Result := pthread_mutex_unlock (L.L'Access);
         pragma Assert (Result = 0);
      end if;
   end Unlock;

   procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock or else Global_Lock then
         Result := pthread_mutex_unlock (L);
         pragma Assert (Result = 0);
      end if;
   end Unlock;

   procedure Unlock (T : Task_ID) is
      Result : Interfaces.C.int;
   begin
      if not Single_Lock then
         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
         pragma Assert (Result = 0);
      end if;
   end Unlock;

   -----------
   -- Sleep --
   -----------

   procedure Sleep
     (Self_ID : Task_ID;
      Reason   : System.Tasking.Task_States)
   is
      Result : Interfaces.C.int;
   begin
      pragma Assert (Self_ID = Self);

      if Single_Lock then
         Result := pthread_cond_wait
           (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
      else
         Result := pthread_cond_wait
           (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
      end if;

      --  EINTR is not considered a failure.
      pragma Assert (Result = 0 or else Result = EINTR);
   end Sleep;

   -----------------
   -- Timed_Sleep --
   -----------------

   --  This is for use within the run-time system, so abort is
   --  assumed to be already deferred, and the caller should be
   --  holding its own ATCB lock.

   procedure Timed_Sleep
     (Self_ID  : Task_ID;
      Time     : Duration;
      Mode     : ST.Delay_Modes;
      Reason   : System.Tasking.Task_States;
      Timedout : out Boolean;
      Yielded  : out Boolean)
   is
      Check_Time : constant Duration := Monotonic_Clock;
      Abs_Time   : Duration;
      Request    : aliased timespec;
      Result     : Interfaces.C.int;
   begin
      Timedout := True;
      Yielded := False;

      if Mode = Relative then
         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
      else
         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
      end if;

      if Abs_Time > Check_Time then
         Request := To_Timespec (Abs_Time);

         loop
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
              or else Self_ID.Pending_Priority_Change;

            if Single_Lock then
               Result := pthread_cond_timedwait
                 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
                  Request'Access);

            else
               Result := pthread_cond_timedwait
                 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
                  Request'Access);
            end if;

            exit when Abs_Time <= Monotonic_Clock;

            if Result = 0 or Result = EINTR then
               --  somebody may have called Wakeup for us
               Timedout := False;
               exit;
            end if;

            pragma Assert (Result = ETIMEDOUT);
         end loop;
      end if;
   end Timed_Sleep;

   -----------------
   -- Timed_Delay --
   -----------------

   --  This is for use in implementing delay statements, so
   --  we assume the caller is abort-deferred but is holding
   --  no locks.

   procedure Timed_Delay
     (Self_ID  : Task_ID;
      Time     : Duration;
      Mode     : ST.Delay_Modes)
   is
      Check_Time : constant Duration := Monotonic_Clock;
      Abs_Time   : Duration;
      Request    : aliased timespec;
      Result     : Interfaces.C.int;
   begin

      --  Only the little window between deferring abort and
      --  locking Self_ID is the reason we need to
      --  check for pending abort and priority change below! :(

      SSL.Abort_Defer.all;

      if Single_Lock then
         Lock_RTS;
      end if;

      Write_Lock (Self_ID);

      if Mode = Relative then
         Abs_Time := Time + Check_Time;
      else
         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
      end if;

      if Abs_Time > Check_Time then
         Request := To_Timespec (Abs_Time);
         Self_ID.Common.State := Delay_Sleep;

         loop
            if Self_ID.Pending_Priority_Change then
               Self_ID.Pending_Priority_Change := False;
               Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
               Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
            end if;

            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;

            if Single_Lock then
               Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
                 Single_RTS_Lock'Access, Request'Access);
            else
               Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
                 Self_ID.Common.LL.L'Access, Request'Access);
            end if;

            exit when Abs_Time <= Monotonic_Clock;

            pragma Assert (Result = 0 or else
              Result = ETIMEDOUT or else
              Result = EINTR);
         end loop;

         Self_ID.Common.State := Runnable;
      end if;

      Unlock (Self_ID);

      if Single_Lock then
         Unlock_RTS;
      end if;

      Result := sched_yield;
      SSL.Abort_Undefer.all;
   end Timed_Delay;

   ---------------------
   -- Monotonic_Clock --
   ---------------------

   function Monotonic_Clock return Duration is
      TV     : aliased struct_timeval;
      Result : Interfaces.C.int;

   begin
      Result := gettimeofday (TV'Access, System.Null_Address);
      pragma Assert (Result = 0);
      return To_Duration (TV);
   end Monotonic_Clock;

   -------------------
   -- RT_Resolution --
   -------------------

   function RT_Resolution return Duration is
   begin
      return 10#1.0#E-6;
   end RT_Resolution;

   ------------
   -- Wakeup --
   ------------

   procedure Wakeup (T : Task_ID; Reason : System.Tasking.Task_States) is
      Result : Interfaces.C.int;

   begin
      Result := pthread_cond_signal (T.Common.LL.CV'Access);
      pragma Assert (Result = 0);
   end Wakeup;

   -----------
   -- Yield --
   -----------

   procedure Yield (Do_Yield : Boolean := True) is
      Result : Interfaces.C.int;

   begin
      if Do_Yield then
         Result := sched_yield;
      end if;
   end Yield;

   ------------------
   -- Set_Priority --
   ------------------

   procedure Set_Priority
     (T : Task_ID;
      Prio : System.Any_Priority;
      Loss_Of_Inheritance : Boolean := False)
   is
      Result : Interfaces.C.int;
      Param  : aliased struct_sched_param;

   begin
      T.Common.Current_Priority := Prio;

      if Priority_Ceiling_Emulation then
         if T.Common.LL.Active_Priority < Prio then
            T.Common.LL.Active_Priority := Prio;
         end if;
      end if;

      --  Priorities are in range 1 .. 99 on GNU/Linux, so we map
      --  map 0 .. 31 to 1 .. 32

      Param.sched_priority := Interfaces.C.int (Prio) + 1;

      if Time_Slice_Val > 0 then
         Result := pthread_setschedparam
           (T.Common.LL.Thread, SCHED_RR, Param'Access);

      elsif FIFO_Within_Priorities or else Time_Slice_Val = 0 then
         Result := pthread_setschedparam
           (T.Common.LL.Thread, SCHED_FIFO, Param'Access);

      else
         Result := pthread_setschedparam
           (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
      end if;

      pragma Assert (Result = 0 or else Result = EPERM);
   end Set_Priority;

   ------------------
   -- Get_Priority --
   ------------------

   function Get_Priority (T : Task_ID) return System.Any_Priority is
   begin
      return T.Common.Current_Priority;
   end Get_Priority;

   ----------------
   -- Enter_Task --
   ----------------

   procedure Enter_Task (Self_ID : Task_ID) is
   begin
      Self_ID.Common.LL.Thread := pthread_self;

      Specific.Set (Self_ID);

      Lock_RTS;

      for J in Known_Tasks'Range loop
         if Known_Tasks (J) = null then
            Known_Tasks (J) := Self_ID;
            Self_ID.Known_Tasks_Index := J;
            exit;
         end if;
      end loop;

      Unlock_RTS;
   end Enter_Task;

   --------------
   -- New_ATCB --
   --------------

   function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is
   begin
      return new Ada_Task_Control_Block (Entry_Num);
   end New_ATCB;

   --------------------
   -- Initialize_TCB --
   --------------------

   procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is
      Result : Interfaces.C.int;

   begin
      --  Give the task a unique serial number.

      Self_ID.Serial_Number := Next_Serial_Number;
      Next_Serial_Number := Next_Serial_Number + 1;
      pragma Assert (Next_Serial_Number /= 0);

      Self_ID.Common.LL.Thread := To_pthread_t (-1);

      if not Single_Lock then
         Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
           Mutex_Attr'Access);
         pragma Assert (Result = 0 or else Result = ENOMEM);

         if Result /= 0 then
            Succeeded := False;
            return;
         end if;
      end if;

      Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
        Cond_Attr'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result = 0 then
         Succeeded := True;
      else
         if not Single_Lock then
            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
            pragma Assert (Result = 0);
         end if;

         Succeeded := False;
      end if;
   end Initialize_TCB;

   -----------------
   -- Create_Task --
   -----------------

   procedure Create_Task
     (T          : Task_ID;
      Wrapper    : System.Address;
      Stack_Size : System.Parameters.Size_Type;
      Priority   : System.Any_Priority;
      Succeeded  : out Boolean)
   is
      Attributes : aliased pthread_attr_t;
      Result     : Interfaces.C.int;

      function Thread_Body_Access is new
        Unchecked_Conversion (System.Address, Thread_Body);

   begin
      Result := pthread_attr_init (Attributes'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      if Result /= 0 or else Stack_Size > Max_Stack_Size then
         Succeeded := False;
         return;
      end if;

      Result := pthread_attr_setdetachstate
        (Attributes'Access, PTHREAD_CREATE_DETACHED);
      pragma Assert (Result = 0);

      --  Since the initial signal mask of a thread is inherited from the
      --  creator, and the Environment task has all its signals masked, we
      --  do not need to manipulate caller's signal mask at this point.
      --  All tasks in RTS will have All_Tasks_Mask initially.

      Result := pthread_create
        (T.Common.LL.Thread'Access,
         Attributes'Access,
         Thread_Body_Access (Wrapper),
         To_Address (T));
      pragma Assert (Result = 0 or else Result = EAGAIN);

      Succeeded := Result = 0;

      Result := pthread_attr_destroy (Attributes'Access);
      pragma Assert (Result = 0);

      Set_Priority (T, Priority);
   end Create_Task;

   ------------------
   -- Finalize_TCB --
   ------------------

   procedure Finalize_TCB (T : Task_ID) is
      Result : Interfaces.C.int;
      Tmp    : Task_ID := T;

      procedure Free is new
        Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID);

   begin
      if not Single_Lock then
         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
         pragma Assert (Result = 0);
      end if;

      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
      pragma Assert (Result = 0);

      if T.Known_Tasks_Index /= -1 then
         Known_Tasks (T.Known_Tasks_Index) := null;
      end if;

      Free (Tmp);
   end Finalize_TCB;

   ---------------
   -- Exit_Task --
   ---------------

   procedure Exit_Task is
   begin
      pthread_exit (System.Null_Address);
   end Exit_Task;

   ----------------
   -- Abort_Task --
   ----------------

   procedure Abort_Task (T : Task_ID) is
      Result : Interfaces.C.int;

   begin
      Result := pthread_kill (T.Common.LL.Thread,
        Signal (System.Interrupt_Management.Abort_Task_Interrupt));
      pragma Assert (Result = 0);
   end Abort_Task;

   ----------------
   -- Check_Exit --
   ----------------

   --  Dummy versions.  The only currently working versions is for solaris
   --  (native).

   function Check_Exit (Self_ID : ST.Task_ID) return Boolean is
   begin
      return True;
   end Check_Exit;

   --------------------
   -- Check_No_Locks --
   --------------------

   function Check_No_Locks (Self_ID : ST.Task_ID) return Boolean is
   begin
      return True;
   end Check_No_Locks;

   ----------------------
   -- Environment_Task --
   ----------------------

   function Environment_Task return Task_ID is
   begin
      return Environment_Task_ID;
   end Environment_Task;

   ------------------
   -- Suspend_Task --
   ------------------

   function Suspend_Task
     (T           : ST.Task_ID;
      Thread_Self : Thread_Id) return Boolean is
   begin
      if T.Common.LL.Thread /= Thread_Self then
         return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0;
      else
         return True;
      end if;
   end Suspend_Task;

   -----------------
   -- Resume_Task --
   -----------------

   function Resume_Task
     (T           : ST.Task_ID;
      Thread_Self : Thread_Id) return Boolean is
   begin
      if T.Common.LL.Thread /= Thread_Self then
         return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0;
      else
         return True;
      end if;
   end Resume_Task;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize (Environment_Task : Task_ID) is
      act       : aliased struct_sigaction;
      old_act   : aliased struct_sigaction;
      Tmp_Set   : aliased sigset_t;
      Result    : Interfaces.C.int;

   begin
      Environment_Task_ID := Environment_Task;

      Result := pthread_mutexattr_init (Mutex_Attr'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      Result := pthread_condattr_init (Cond_Attr'Access);
      pragma Assert (Result = 0 or else Result = ENOMEM);

      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
      --  Initialize the global RTS lock

      Specific.Initialize (Environment_Task);

      Enter_Task (Environment_Task);

      --  Install the abort-signal handler

      act.sa_flags := 0;
      act.sa_handler := Abort_Handler'Address;

      Result := sigemptyset (Tmp_Set'Access);
      pragma Assert (Result = 0);
      act.sa_mask := Tmp_Set;

      Result :=
        sigaction
          (Signal (Interrupt_Management.Abort_Task_Interrupt),
           act'Unchecked_Access,
           old_act'Unchecked_Access);
      pragma Assert (Result = 0);
   end Initialize;

begin
   declare
      Result : Interfaces.C.int;
   begin
      --  Mask Environment task for all signals. The original mask of the
      --  Environment task will be recovered by Interrupt_Server task
      --  during the elaboration of s-interr.adb.

      System.Interrupt_Management.Operations.Set_Interrupt_Mask
        (System.Interrupt_Management.Operations.All_Tasks_Mask'Access);

      --  Prepare the set of signals that should unblocked in all tasks

      Result := sigemptyset (Unblocked_Signal_Mask'Access);
      pragma Assert (Result = 0);

      for J in Interrupt_Management.Interrupt_ID loop
         if System.Interrupt_Management.Keep_Unmasked (J) then
            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
            pragma Assert (Result = 0);
         end if;
      end loop;
   end;
end System.Task_Primitives.Operations;