1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- SYSTEM.MACHINE_STATE_OPERATIONS --
-- --
-- B o d y --
-- (Version for x86) --
-- --
-- --
-- Copyright (C) 1999-2002 Ada Core Technologies, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- Note: it is very important that this unit not generate any exception
-- tables of any kind. Otherwise we get a nasty rtsfind recursion problem.
-- This means no subprograms, including implicitly generated ones.
with Unchecked_Conversion;
with System.Storage_Elements;
with System.Machine_Code; use System.Machine_Code;
with System.Memory;
package body System.Machine_State_Operations is
use System.Exceptions;
type Uns8 is mod 2 ** 8;
type Uns32 is mod 2 ** 32;
type Bits5 is mod 2 ** 5;
type Bits6 is mod 2 ** 6;
function To_Address is new Unchecked_Conversion (Uns32, Address);
type Uns32_Ptr is access all Uns32;
function To_Uns32_Ptr is new Unchecked_Conversion (Uns32, Uns32_Ptr);
-- Note: the type Uns32 has an alignment of 4. However, in some cases
-- values of type Uns32_Ptr will not be aligned (notably in the case
-- where we get the immediate field from an instruction). However this
-- does not matter in practice, since the x86 does not require that
-- operands be aligned.
----------------------
-- General Approach --
----------------------
-- For the x86 version of this unit, the Subprogram_Info_Type values
-- are simply the starting code address for the subprogram. Popping
-- of stack frames works by analyzing the code in the prolog, and
-- deriving from this analysis the necessary information for restoring
-- the registers, including the return point.
---------------------------
-- Description of Prolog --
---------------------------
-- If a frame pointer is present, the prolog looks like
-- pushl %ebp
-- movl %esp,%ebp
-- subl $nnn,%esp omitted if nnn = 0
-- pushl %edi omitted if edi not used
-- pushl %esi omitted if esi not used
-- pushl %ebx omitted if ebx not used
-- If a frame pointer is not present, the prolog looks like
-- subl $nnn,%esp omitted if nnn = 0
-- pushl %ebp omitted if ebp not used
-- pushl %edi omitted if edi not used
-- pushl %esi omitted if esi not used
-- pushl %ebx omitted if ebx not used
-- Note: any or all of the save over call registers may be used and
-- if so, will be saved using pushl as shown above. The order of the
-- pushl instructions will be as shown above for gcc generated code,
-- but the code in this unit does not assume this.
-------------------------
-- Description of Call --
-------------------------
-- A call looks like:
-- pushl ... push parameters
-- pushl ...
-- call ... perform the call
-- addl $nnn,%esp omitted if no parameters
-- Note that we are not absolutely guaranteed that the call is always
-- followed by an addl operation that readjusts %esp for this particular
-- call. There are two reasons for this:
-- 1) The addl can be delayed and combined in the case where more than
-- one call appears in sequence. This can be suppressed by using the
-- switch -fno-defer-pop and for Ada code, we automatically use
-- this switch, but we could still be dealing with C code that was
-- compiled without using this switch.
-- 2) Scheduling may result in moving the addl instruction away from
-- the call. It is not clear if this actually can happen at the
-- current time, but it is certainly conceptually possible.
-- The addl after the call is important, since we need to be able to
-- restore the proper %esp value when we pop the stack. However, we do
-- not try to compensate for either of the above effects. As noted above,
-- case 1 does not occur for Ada code, and it does not appear in practice
-- that case 2 occurs with any significant frequency (we have never seen
-- an example so far for gcc generated code).
-- Furthermore, it is only in the case of -fomit-frame-pointer that we
-- really get into trouble from not properly restoring %esp. If we have
-- a frame pointer, then the worst that happens is that %esp is slightly
-- more depressed than it should be. This could waste a bit of space on
-- the stack, and even in some cases cause a storage leak on the stack,
-- but it will not affect the functional correctness of the processing.
----------------------------------------
-- Definitions of Instruction Formats --
----------------------------------------
type Rcode is (eax, ecx, edx, ebx, esp, ebp, esi, edi);
pragma Warnings (Off, Rcode);
-- Code indicating which register is referenced in an instruction
-- The following define the format of a pushl instruction
Op_pushl : constant Bits5 := 2#01010#;
type Ins_pushl is record
Op : Bits5 := Op_pushl;
Reg : Rcode;
end record;
for Ins_pushl use record
Op at 0 range 3 .. 7;
Reg at 0 range 0 .. 2;
end record;
Ins_pushl_ebp : constant Ins_pushl := (Op_pushl, Reg => ebp);
type Ins_pushl_Ptr is access all Ins_pushl;
-- For the movl %esp,%ebp instruction, we only need to know the length
-- because we simply skip past it when we analyze the prolog.
Ins_movl_length : constant := 2;
-- The following define the format of addl/subl esp instructions
Op_Immed : constant Bits6 := 2#100000#;
Op2_addl_Immed : constant Bits5 := 2#11100#;
pragma Unreferenced (Op2_addl_Immed);
Op2_subl_Immed : constant Bits5 := 2#11101#;
type Word_Byte is (Word, Byte);
pragma Unreferenced (Byte);
type Ins_addl_subl_byte is record
Op : Bits6; -- Set to Op_Immed
w : Word_Byte; -- Word/Byte flag (set to 1 = byte)
s : Boolean; -- Sign extension bit (1 = extend)
Op2 : Bits5; -- Secondary opcode
Reg : Rcode; -- Register
Imm8 : Uns8; -- Immediate operand
end record;
for Ins_addl_subl_byte use record
Op at 0 range 2 .. 7;
w at 0 range 1 .. 1;
s at 0 range 0 .. 0;
Op2 at 1 range 3 .. 7;
Reg at 1 range 0 .. 2;
Imm8 at 2 range 0 .. 7;
end record;
type Ins_addl_subl_word is record
Op : Bits6; -- Set to Op_Immed
w : Word_Byte; -- Word/Byte flag (set to 0 = word)
s : Boolean; -- Sign extension bit (1 = extend)
Op2 : Bits5; -- Secondary opcode
Reg : Rcode; -- Register
Imm32 : Uns32; -- Immediate operand
end record;
for Ins_addl_subl_word use record
Op at 0 range 2 .. 7;
w at 0 range 1 .. 1;
s at 0 range 0 .. 0;
Op2 at 1 range 3 .. 7;
Reg at 1 range 0 .. 2;
Imm32 at 2 range 0 .. 31;
end record;
type Ins_addl_subl_byte_Ptr is access all Ins_addl_subl_byte;
type Ins_addl_subl_word_Ptr is access all Ins_addl_subl_word;
---------------------
-- Prolog Analysis --
---------------------
-- The analysis of the prolog answers the following questions:
-- 1. Is %ebp used as a frame pointer?
-- 2. How far is SP depressed (i.e. what is the stack frame size)
-- 3. Which registers are saved in the prolog, and in what order
-- The following data structure stores the answers to these questions
subtype SOC is Rcode range ebx .. edi;
-- Possible save over call registers
SOC_Max : constant := 4;
-- Max number of SOC registers that can be pushed
type SOC_Push_Regs_Type is array (1 .. 4) of Rcode;
-- Used to hold the register codes of pushed SOC registers
type Prolog_Type is record
Frame_Reg : Boolean;
-- This is set to True if %ebp is used as a frame register, and
-- False otherwise (in the False case, %ebp may be saved in the
-- usual manner along with the other SOC registers).
Frame_Length : Uns32;
-- Amount by which ESP is decremented on entry, includes the effects
-- of push's of save over call registers as indicated above, e.g. if
-- the prolog of a routine is:
--
-- pushl %ebp
-- movl %esp,%ebp
-- subl $424,%esp
-- pushl %edi
-- pushl %esi
-- pushl %ebx
--
-- Then the value of Frame_Length would be 436 (424 + 3 * 4). A
-- precise definition is that it is:
--
-- %esp on entry minus %esp after last SOC push
--
-- That definition applies both in the frame pointer present and
-- the frame pointer absent cases.
Num_SOC_Push : Integer range 0 .. SOC_Max;
-- Number of save over call registers actually saved by pushl
-- instructions (other than the initial pushl to save the frame
-- pointer if a frame pointer is in use).
SOC_Push_Regs : SOC_Push_Regs_Type;
-- The First Num_SOC_Push entries of this array are used to contain
-- the codes for the SOC registers, in the order in which they were
-- pushed. Note that this array excludes %ebp if it is used as a frame
-- register, since although %ebp is still considered an SOC register
-- in this case, it is saved and restored by a separate mechanism.
-- Also we will never see %esp represented in this list. Again, it is
-- true that %esp is saved over call, but it is restored by a separate
-- mechanism.
end record;
procedure Analyze_Prolog (A : Address; Prolog : out Prolog_Type);
-- Given the address of the start of the prolog for a procedure,
-- analyze the instructions of the prolog, and set Prolog to contain
-- the information obtained from this analysis.
----------------------------------
-- Machine_State_Representation --
----------------------------------
-- The type Machine_State is defined in the body of Ada.Exceptions as
-- a Storage_Array of length 1 .. Machine_State_Length. But really it
-- has structure as defined here. We use the structureless declaration
-- in Ada.Exceptions to avoid this unit from being implementation
-- dependent. The actual definition of Machine_State is as follows:
type SOC_Regs_Type is array (SOC) of Uns32;
type MState is record
eip : Uns32;
-- The instruction pointer location (which is the return point
-- value from the next level down in all cases).
Regs : SOC_Regs_Type;
-- Values of the save over call registers
end record;
for MState use record
eip at 0 range 0 .. 31;
Regs at 4 range 0 .. 5 * 32 - 1;
end record;
-- Note: the routines Enter_Handler, and Set_Machine_State reference
-- the fields in this structure non-symbolically.
type MState_Ptr is access all MState;
function To_MState_Ptr is
new Unchecked_Conversion (Machine_State, MState_Ptr);
----------------------------
-- Allocate_Machine_State --
----------------------------
function Allocate_Machine_State return Machine_State is
use System.Storage_Elements;
begin
return Machine_State
(Memory.Alloc (MState'Max_Size_In_Storage_Elements));
end Allocate_Machine_State;
--------------------
-- Analyze_Prolog --
--------------------
procedure Analyze_Prolog (A : Address; Prolog : out Prolog_Type) is
Ptr : Address;
Ppl : Ins_pushl_Ptr;
Pas : Ins_addl_subl_byte_Ptr;
function To_Ins_pushl_Ptr is
new Unchecked_Conversion (Address, Ins_pushl_Ptr);
function To_Ins_addl_subl_byte_Ptr is
new Unchecked_Conversion (Address, Ins_addl_subl_byte_Ptr);
function To_Ins_addl_subl_word_Ptr is
new Unchecked_Conversion (Address, Ins_addl_subl_word_Ptr);
begin
Ptr := A;
Prolog.Frame_Length := 0;
if Ptr = Null_Address then
Prolog.Num_SOC_Push := 0;
Prolog.Frame_Reg := True;
return;
end if;
if To_Ins_pushl_Ptr (Ptr).all = Ins_pushl_ebp then
Ptr := Ptr + 1 + Ins_movl_length;
Prolog.Frame_Reg := True;
else
Prolog.Frame_Reg := False;
end if;
Pas := To_Ins_addl_subl_byte_Ptr (Ptr);
if Pas.Op = Op_Immed
and then Pas.Op2 = Op2_subl_Immed
and then Pas.Reg = esp
then
if Pas.w = Word then
Prolog.Frame_Length := Prolog.Frame_Length +
To_Ins_addl_subl_word_Ptr (Ptr).Imm32;
Ptr := Ptr + 6;
else
Prolog.Frame_Length := Prolog.Frame_Length + Uns32 (Pas.Imm8);
Ptr := Ptr + 3;
-- Note: we ignore sign extension, since a sign extended
-- value that was negative would imply a ludicrous frame size.
end if;
end if;
-- Now scan push instructions for SOC registers
Prolog.Num_SOC_Push := 0;
loop
Ppl := To_Ins_pushl_Ptr (Ptr);
if Ppl.Op = Op_pushl and then Ppl.Reg in SOC then
Prolog.Num_SOC_Push := Prolog.Num_SOC_Push + 1;
Prolog.SOC_Push_Regs (Prolog.Num_SOC_Push) := Ppl.Reg;
Prolog.Frame_Length := Prolog.Frame_Length + 4;
Ptr := Ptr + 1;
else
exit;
end if;
end loop;
end Analyze_Prolog;
-------------------
-- Enter_Handler --
-------------------
procedure Enter_Handler (M : Machine_State; Handler : Handler_Loc) is
begin
Asm ("mov %0,%%edx", Inputs => Machine_State'Asm_Input ("r", M));
Asm ("mov %0,%%eax", Inputs => Handler_Loc'Asm_Input ("r", Handler));
Asm ("mov 4(%%edx),%%ebx"); -- M.Regs (ebx)
Asm ("mov 12(%%edx),%%ebp"); -- M.Regs (ebp)
Asm ("mov 16(%%edx),%%esi"); -- M.Regs (esi)
Asm ("mov 20(%%edx),%%edi"); -- M.Regs (edi)
Asm ("mov 8(%%edx),%%esp"); -- M.Regs (esp)
Asm ("jmp %*%%eax");
end Enter_Handler;
----------------
-- Fetch_Code --
----------------
function Fetch_Code (Loc : Code_Loc) return Code_Loc is
begin
return Loc;
end Fetch_Code;
------------------------
-- Free_Machine_State --
------------------------
procedure Free_Machine_State (M : in out Machine_State) is
begin
Memory.Free (Address (M));
M := Machine_State (Null_Address);
end Free_Machine_State;
------------------
-- Get_Code_Loc --
------------------
function Get_Code_Loc (M : Machine_State) return Code_Loc is
Asm_Call_Size : constant := 2;
-- Minimum size for a call instruction under ix86. Using the minimum
-- size is safe here as the call point computed from the return point
-- will always be inside the call instruction.
MS : constant MState_Ptr := To_MState_Ptr (M);
begin
if MS.eip = 0 then
return To_Address (MS.eip);
else
-- When doing a call the return address is pushed to the stack.
-- We want to return the call point address, so we subtract
-- Asm_Call_Size from the return address. This value is set
-- to 5 as an asm call takes 5 bytes on x86 architectures.
return To_Address (MS.eip - Asm_Call_Size);
end if;
end Get_Code_Loc;
--------------------------
-- Machine_State_Length --
--------------------------
function Machine_State_Length
return System.Storage_Elements.Storage_Offset
is
begin
return MState'Max_Size_In_Storage_Elements;
end Machine_State_Length;
---------------
-- Pop_Frame --
---------------
procedure Pop_Frame
(M : Machine_State;
Info : Subprogram_Info_Type)
is
MS : constant MState_Ptr := To_MState_Ptr (M);
PL : Prolog_Type;
SOC_Ptr : Uns32;
-- Pointer to stack location after last SOC push
Rtn_Ptr : Uns32;
-- Pointer to stack location containing return address
begin
Analyze_Prolog (Info, PL);
-- Case of frame register, use EBP, safer than ESP
if PL.Frame_Reg then
SOC_Ptr := MS.Regs (ebp) - PL.Frame_Length;
Rtn_Ptr := MS.Regs (ebp) + 4;
MS.Regs (ebp) := To_Uns32_Ptr (MS.Regs (ebp)).all;
-- No frame pointer, use ESP, and hope we have it exactly right!
else
SOC_Ptr := MS.Regs (esp);
Rtn_Ptr := SOC_Ptr + PL.Frame_Length;
end if;
-- Get saved values of SOC registers
for J in reverse 1 .. PL.Num_SOC_Push loop
MS.Regs (PL.SOC_Push_Regs (J)) := To_Uns32_Ptr (SOC_Ptr).all;
SOC_Ptr := SOC_Ptr + 4;
end loop;
MS.eip := To_Uns32_Ptr (Rtn_Ptr).all;
MS.Regs (esp) := Rtn_Ptr + 4;
end Pop_Frame;
-----------------------
-- Set_Machine_State --
-----------------------
procedure Set_Machine_State (M : Machine_State) is
N : constant Asm_Output_Operand := No_Output_Operands;
begin
Asm ("mov %0,%%edx", N, Machine_State'Asm_Input ("r", M));
-- At this stage, we have the following situation (note that we
-- are assuming that the -fomit-frame-pointer switch has not been
-- used in compiling this procedure.
-- (value of M)
-- return point
-- old ebp <------ current ebp/esp value
-- The values of registers ebx/esi/edi are unchanged from entry
-- so they have the values we want, and %edx points to the parameter
-- value M, so we can store these values directly.
Asm ("mov %%ebx,4(%%edx)"); -- M.Regs (ebx)
Asm ("mov %%esi,16(%%edx)"); -- M.Regs (esi)
Asm ("mov %%edi,20(%%edx)"); -- M.Regs (edi)
-- The desired value of ebp is the old value
Asm ("mov 0(%%ebp),%%eax");
Asm ("mov %%eax,12(%%edx)"); -- M.Regs (ebp)
-- The return point is the desired eip value
Asm ("mov 4(%%ebp),%%eax");
Asm ("mov %%eax,(%%edx)"); -- M.eip
-- Finally, the desired %esp value is the value at the point of
-- call to this routine *before* pushing the parameter value.
Asm ("lea 12(%%ebp),%%eax");
Asm ("mov %%eax,8(%%edx)"); -- M.Regs (esp)
end Set_Machine_State;
------------------------------
-- Set_Signal_Machine_State --
------------------------------
procedure Set_Signal_Machine_State
(M : Machine_State;
Context : System.Address)
is
pragma Warnings (Off, M);
pragma Warnings (Off, Context);
begin
null;
end Set_Signal_Machine_State;
end System.Machine_State_Operations;
|