summaryrefslogtreecommitdiff
path: root/gcc/ada/a-coinve.adb
blob: 3234f5ec87a034e763342c3d18bd1cfc59e5bcb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--    A D A . C O N T A I N E R S . I N D E F I N I T E _ V E C T O R S     --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2004-2013, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------

with Ada.Containers.Generic_Array_Sort;
with Ada.Unchecked_Deallocation;

with System; use type System.Address;

package body Ada.Containers.Indefinite_Vectors is

   procedure Free is
     new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access);

   procedure Free is
     new Ada.Unchecked_Deallocation (Element_Type, Element_Access);

   ---------
   -- "&" --
   ---------

   function "&" (Left, Right : Vector) return Vector is
      LN   : constant Count_Type := Length (Left);
      RN   : constant Count_Type := Length (Right);
      N    : Count_Type'Base;  -- length of result
      J    : Count_Type'Base;  -- for computing intermediate values
      Last : Index_Type'Base;  -- Last index of result

   begin
      --  We decide that the capacity of the result is the sum of the lengths
      --  of the vector parameters. We could decide to make it larger, but we
      --  have no basis for knowing how much larger, so we just allocate the
      --  minimum amount of storage.

      --  Here we handle the easy cases first, when one of the vector
      --  parameters is empty. (We say "easy" because there's nothing to
      --  compute, that can potentially overflow.)

      if LN = 0 then
         if RN = 0 then
            return Empty_Vector;
         end if;

         declare
            RE : Elements_Array renames
                   Right.Elements.EA (Index_Type'First .. Right.Last);

            Elements : Elements_Access := new Elements_Type (Right.Last);

         begin
            --  Elements of an indefinite vector are allocated, so we cannot
            --  use simple slice assignment to give a value to our result.
            --  Hence we must walk the array of the Right vector, and copy
            --  each source element individually.

            for I in Elements.EA'Range loop
               begin
                  if RE (I) /= null then
                     Elements.EA (I) := new Element_Type'(RE (I).all);
                  end if;

               exception
                  when others =>
                     for J in Index_Type'First .. I - 1 loop
                        Free (Elements.EA (J));
                     end loop;

                     Free (Elements);
                     raise;
               end;
            end loop;

            return (Controlled with Elements, Right.Last, 0, 0);
         end;
      end if;

      if RN = 0 then
         declare
            LE : Elements_Array renames
                   Left.Elements.EA (Index_Type'First .. Left.Last);

            Elements : Elements_Access := new Elements_Type (Left.Last);

         begin
            --  Elements of an indefinite vector are allocated, so we cannot
            --  use simple slice assignment to give a value to our result.
            --  Hence we must walk the array of the Left vector, and copy
            --  each source element individually.

            for I in Elements.EA'Range loop
               begin
                  if LE (I) /= null then
                     Elements.EA (I) := new Element_Type'(LE (I).all);
                  end if;

               exception
                  when others =>
                     for J in Index_Type'First .. I - 1 loop
                        Free (Elements.EA (J));
                     end loop;

                     Free (Elements);
                     raise;
               end;
            end loop;

            return (Controlled with Elements, Left.Last, 0, 0);
         end;
      end if;

      --  Neither of the vector parameters is empty, so we must compute the
      --  length of the result vector and its last index. (This is the harder
      --  case, because our computations must avoid overflow.)

      --  There are two constraints we need to satisfy. The first constraint is
      --  that a container cannot have more than Count_Type'Last elements, so
      --  we must check the sum of the combined lengths. Note that we cannot
      --  simply add the lengths, because of the possibility of overflow.

      if LN > Count_Type'Last - RN then
         raise Constraint_Error with "new length is out of range";
      end if;

      --  It is now safe compute the length of the new vector.

      N := LN + RN;

      --  The second constraint is that the new Last index value cannot
      --  exceed Index_Type'Last. We use the wider of Index_Type'Base and
      --  Count_Type'Base as the type for intermediate values.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then

         --  We perform a two-part test. First we determine whether the
         --  computed Last value lies in the base range of the type, and then
         --  determine whether it lies in the range of the index (sub)type.

         --  Last must satisfy this relation:
         --    First + Length - 1 <= Last
         --  We regroup terms:
         --    First - 1 <= Last - Length
         --  Which can rewrite as:
         --    No_Index <= Last - Length

         if Index_Type'Base'Last - Index_Type'Base (N) < No_Index then
            raise Constraint_Error with "new length is out of range";
         end if;

         --  We now know that the computed value of Last is within the base
         --  range of the type, so it is safe to compute its value:

         Last := No_Index + Index_Type'Base (N);

         --  Finally we test whether the value is within the range of the
         --  generic actual index subtype:

         if Last > Index_Type'Last then
            raise Constraint_Error with "new length is out of range";
         end if;

      elsif Index_Type'First <= 0 then

         --  Here we can compute Last directly, in the normal way. We know that
         --  No_Index is less than 0, so there is no danger of overflow when
         --  adding the (positive) value of length.

         J := Count_Type'Base (No_Index) + N;  -- Last

         if J > Count_Type'Base (Index_Type'Last) then
            raise Constraint_Error with "new length is out of range";
         end if;

         --  We know that the computed value (having type Count_Type) of Last
         --  is within the range of the generic actual index subtype, so it is
         --  safe to convert to Index_Type:

         Last := Index_Type'Base (J);

      else
         --  Here Index_Type'First (and Index_Type'Last) is positive, so we
         --  must test the length indirectly (by working backwards from the
         --  largest possible value of Last), in order to prevent overflow.

         J := Count_Type'Base (Index_Type'Last) - N;  -- No_Index

         if J < Count_Type'Base (No_Index) then
            raise Constraint_Error with "new length is out of range";
         end if;

         --  We have determined that the result length would not create a Last
         --  index value outside of the range of Index_Type, so we can now
         --  safely compute its value.

         Last := Index_Type'Base (Count_Type'Base (No_Index) + N);
      end if;

      declare
         LE : Elements_Array renames
                Left.Elements.EA (Index_Type'First .. Left.Last);
         RE : Elements_Array renames
                Right.Elements.EA (Index_Type'First .. Right.Last);

         Elements : Elements_Access := new Elements_Type (Last);

         I : Index_Type'Base := No_Index;

      begin
         --  Elements of an indefinite vector are allocated, so we cannot use
         --  simple slice assignment to give a value to our result. Hence we
         --  must walk the array of each vector parameter, and copy each source
         --  element individually.

         for LI in LE'Range loop
            I := I + 1;

            begin
               if LE (LI) /= null then
                  Elements.EA (I) := new Element_Type'(LE (LI).all);
               end if;

            exception
               when others =>
                  for J in Index_Type'First .. I - 1 loop
                     Free (Elements.EA (J));
                  end loop;

                  Free (Elements);
                  raise;
            end;
         end loop;

         for RI in RE'Range loop
            I := I + 1;

            begin
               if RE (RI) /= null then
                  Elements.EA (I) := new Element_Type'(RE (RI).all);
               end if;

            exception
               when others =>
                  for J in Index_Type'First .. I - 1 loop
                     Free (Elements.EA (J));
                  end loop;

                  Free (Elements);
                  raise;
            end;
         end loop;

         return (Controlled with Elements, Last, 0, 0);
      end;
   end "&";

   function "&" (Left : Vector; Right : Element_Type) return Vector is
   begin
      --  We decide that the capacity of the result is the sum of the lengths
      --  of the parameters. We could decide to make it larger, but we have no
      --  basis for knowing how much larger, so we just allocate the minimum
      --  amount of storage.

      --  Here we handle the easy case first, when the vector parameter (Left)
      --  is empty.

      if Left.Is_Empty then
         declare
            Elements : Elements_Access := new Elements_Type (Index_Type'First);

         begin
            begin
               Elements.EA (Index_Type'First) := new Element_Type'(Right);
            exception
               when others =>
                  Free (Elements);
                  raise;
            end;

            return (Controlled with Elements, Index_Type'First, 0, 0);
         end;
      end if;

      --  The vector parameter is not empty, so we must compute the length of
      --  the result vector and its last index, but in such a way that overflow
      --  is avoided. We must satisfy two constraints: the new length cannot
      --  exceed Count_Type'Last, and the new Last index cannot exceed
      --  Index_Type'Last.

      if Left.Length = Count_Type'Last then
         raise Constraint_Error with "new length is out of range";
      end if;

      if Left.Last >= Index_Type'Last then
         raise Constraint_Error with "new length is out of range";
      end if;

      declare
         Last : constant Index_Type := Left.Last + 1;

         LE : Elements_Array renames
                 Left.Elements.EA (Index_Type'First .. Left.Last);

         Elements : Elements_Access := new Elements_Type (Last);

      begin
         for I in LE'Range loop
            begin
               if LE (I) /= null then
                  Elements.EA (I) := new Element_Type'(LE (I).all);
               end if;

            exception
               when others =>
                  for J in Index_Type'First .. I - 1 loop
                     Free (Elements.EA (J));
                  end loop;

                  Free (Elements);
                  raise;
            end;
         end loop;

         begin
            Elements.EA (Last) := new Element_Type'(Right);

         exception
            when others =>
               for J in Index_Type'First .. Last - 1 loop
                  Free (Elements.EA (J));
               end loop;

               Free (Elements);
               raise;
         end;

         return (Controlled with Elements, Last, 0, 0);
      end;
   end "&";

   function "&" (Left : Element_Type; Right : Vector) return Vector is
   begin
      --  We decide that the capacity of the result is the sum of the lengths
      --  of the parameters. We could decide to make it larger, but we have no
      --  basis for knowing how much larger, so we just allocate the minimum
      --  amount of storage.

      --  Here we handle the easy case first, when the vector parameter (Right)
      --  is empty.

      if Right.Is_Empty then
         declare
            Elements : Elements_Access := new Elements_Type (Index_Type'First);

         begin
            begin
               Elements.EA (Index_Type'First) := new Element_Type'(Left);
            exception
               when others =>
                  Free (Elements);
                  raise;
            end;

            return (Controlled with Elements, Index_Type'First, 0, 0);
         end;
      end if;

      --  The vector parameter is not empty, so we must compute the length of
      --  the result vector and its last index, but in such a way that overflow
      --  is avoided. We must satisfy two constraints: the new length cannot
      --  exceed Count_Type'Last, and the new Last index cannot exceed
      --  Index_Type'Last.

      if Right.Length = Count_Type'Last then
         raise Constraint_Error with "new length is out of range";
      end if;

      if Right.Last >= Index_Type'Last then
         raise Constraint_Error with "new length is out of range";
      end if;

      declare
         Last : constant Index_Type := Right.Last + 1;

         RE : Elements_Array renames
                Right.Elements.EA (Index_Type'First .. Right.Last);

         Elements : Elements_Access := new Elements_Type (Last);

         I : Index_Type'Base := Index_Type'First;

      begin
         begin
            Elements.EA (I) := new Element_Type'(Left);
         exception
            when others =>
               Free (Elements);
               raise;
         end;

         for RI in RE'Range loop
            I := I + 1;

            begin
               if RE (RI) /= null then
                  Elements.EA (I) := new Element_Type'(RE (RI).all);
               end if;

            exception
               when others =>
                  for J in Index_Type'First .. I - 1 loop
                     Free (Elements.EA (J));
                  end loop;

                  Free (Elements);
                  raise;
            end;
         end loop;

         return (Controlled with Elements, Last, 0, 0);
      end;
   end "&";

   function "&" (Left, Right : Element_Type) return Vector is
   begin
      --  We decide that the capacity of the result is the sum of the lengths
      --  of the parameters. We could decide to make it larger, but we have no
      --  basis for knowing how much larger, so we just allocate the minimum
      --  amount of storage.

      --  We must compute the length of the result vector and its last index,
      --  but in such a way that overflow is avoided. We must satisfy two
      --  constraints: the new length cannot exceed Count_Type'Last (here, we
      --  know that that condition is satisfied), and the new Last index cannot
      --  exceed Index_Type'Last.

      if Index_Type'First >= Index_Type'Last then
         raise Constraint_Error with "new length is out of range";
      end if;

      declare
         Last     : constant Index_Type := Index_Type'First + 1;
         Elements : Elements_Access := new Elements_Type (Last);

      begin
         begin
            Elements.EA (Index_Type'First) := new Element_Type'(Left);
         exception
            when others =>
               Free (Elements);
               raise;
         end;

         begin
            Elements.EA (Last) := new Element_Type'(Right);
         exception
            when others =>
               Free (Elements.EA (Index_Type'First));
               Free (Elements);
               raise;
         end;

         return (Controlled with Elements, Last, 0, 0);
      end;
   end "&";

   ---------
   -- "=" --
   ---------

   overriding function "=" (Left, Right : Vector) return Boolean is
      BL : Natural renames Left'Unrestricted_Access.Busy;
      LL : Natural renames Left'Unrestricted_Access.Lock;

      BR : Natural renames Right'Unrestricted_Access.Busy;
      LR : Natural renames Right'Unrestricted_Access.Lock;

      Result : Boolean;

   begin
      if Left'Address = Right'Address then
         return True;
      end if;

      if Left.Last /= Right.Last then
         return False;
      end if;

      --  Per AI05-0022, the container implementation is required to detect
      --  element tampering by a generic actual subprogram.

      BL := BL + 1;
      LL := LL + 1;

      BR := BR + 1;
      LR := LR + 1;

      Result := True;
      for J in Index_Type'First .. Left.Last loop
         if Left.Elements.EA (J) = null then
            if Right.Elements.EA (J) /= null then
               Result := False;
               exit;
            end if;

         elsif Right.Elements.EA (J) = null then
            Result := False;
            exit;

         elsif Left.Elements.EA (J).all /= Right.Elements.EA (J).all then
            Result := False;
            exit;
         end if;
      end loop;

      BL := BL - 1;
      LL := LL - 1;

      BR := BR - 1;
      LR := LR - 1;

      return Result;

   exception
      when others =>
         BL := BL - 1;
         LL := LL - 1;

         BR := BR - 1;
         LR := LR - 1;

         raise;
   end "=";

   ------------
   -- Adjust --
   ------------

   procedure Adjust (Container : in out Vector) is
   begin
      if Container.Last = No_Index then
         Container.Elements := null;
         return;
      end if;

      declare
         L : constant Index_Type := Container.Last;
         E : Elements_Array renames
               Container.Elements.EA (Index_Type'First .. L);

      begin
         Container.Elements := null;
         Container.Last := No_Index;
         Container.Busy := 0;
         Container.Lock := 0;

         Container.Elements := new Elements_Type (L);

         for J in E'Range loop
            if E (J) /= null then
               Container.Elements.EA (J) := new Element_Type'(E (J).all);
            end if;

            Container.Last := J;
         end loop;
      end;
   end Adjust;

   procedure Adjust (Control : in out Reference_Control_Type) is
   begin
      if Control.Container /= null then
         declare
            C : Vector renames Control.Container.all;
            B : Natural renames C.Busy;
            L : Natural renames C.Lock;
         begin
            B := B + 1;
            L := L + 1;
         end;
      end if;
   end Adjust;

   ------------
   -- Append --
   ------------

   procedure Append (Container : in out Vector; New_Item : Vector) is
   begin
      if Is_Empty (New_Item) then
         return;
      elsif Container.Last = Index_Type'Last then
         raise Constraint_Error with "vector is already at its maximum length";
      else
         Insert (Container, Container.Last + 1, New_Item);
      end if;
   end Append;

   procedure Append
     (Container : in out Vector;
      New_Item  : Element_Type;
      Count     : Count_Type := 1)
   is
   begin
      if Count = 0 then
         return;
      elsif Container.Last = Index_Type'Last then
         raise Constraint_Error with "vector is already at its maximum length";
      else
         Insert (Container, Container.Last + 1, New_Item, Count);
      end if;
   end Append;

   ------------
   -- Assign --
   ------------

   procedure Assign (Target : in out Vector; Source : Vector) is
   begin
      if Target'Address = Source'Address then
         return;
      else
         Target.Clear;
         Target.Append (Source);
      end if;
   end Assign;

   --------------
   -- Capacity --
   --------------

   function Capacity (Container : Vector) return Count_Type is
   begin
      if Container.Elements = null then
         return 0;
      else
         return Container.Elements.EA'Length;
      end if;
   end Capacity;

   -----------
   -- Clear --
   -----------

   procedure Clear (Container : in out Vector) is
   begin
      if Container.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (vector is busy)";

      else
         while Container.Last >= Index_Type'First loop
            declare
               X : Element_Access := Container.Elements.EA (Container.Last);
            begin
               Container.Elements.EA (Container.Last) := null;
               Container.Last := Container.Last - 1;
               Free (X);
            end;
         end loop;
      end if;
   end Clear;

   ------------------------
   -- Constant_Reference --
   ------------------------

   function Constant_Reference
     (Container : aliased Vector;
      Position  : Cursor) return Constant_Reference_Type
   is
      E : Element_Access;

   begin
      if Position.Container = null then
         raise Constraint_Error with "Position cursor has no element";
      end if;

      if Position.Container /= Container'Unrestricted_Access then
         raise Program_Error with "Position cursor denotes wrong container";
      end if;

      if Position.Index > Position.Container.Last then
         raise Constraint_Error with "Position cursor is out of range";
      end if;

      E := Container.Elements.EA (Position.Index);

      if E = null then
         raise Constraint_Error with "element at Position is empty";
      end if;

      declare
         C : Vector renames Container'Unrestricted_Access.all;
         B : Natural renames C.Busy;
         L : Natural renames C.Lock;
      begin
         return R : constant Constant_Reference_Type :=
           (Element => E.all'Access,
            Control => (Controlled with Container'Unrestricted_Access))
         do
            B := B + 1;
            L := L + 1;
         end return;
      end;
   end Constant_Reference;

   function Constant_Reference
     (Container : aliased Vector;
      Index     : Index_Type) return Constant_Reference_Type
   is
      E : Element_Access;

   begin
      if Index > Container.Last then
         raise Constraint_Error with "Index is out of range";
      end if;

      E := Container.Elements.EA (Index);

      if E = null then
         raise Constraint_Error with "element at Index is empty";
      end if;

      declare
         C : Vector renames Container'Unrestricted_Access.all;
         B : Natural renames C.Busy;
         L : Natural renames C.Lock;
      begin
         return R : constant Constant_Reference_Type :=
           (Element => E.all'Access,
            Control => (Controlled with Container'Unrestricted_Access))
         do
            B := B + 1;
            L := L + 1;
         end return;
      end;
   end Constant_Reference;

   --------------
   -- Contains --
   --------------

   function Contains
     (Container : Vector;
      Item      : Element_Type) return Boolean
   is
   begin
      return Find_Index (Container, Item) /= No_Index;
   end Contains;

   ----------
   -- Copy --
   ----------

   function Copy
     (Source   : Vector;
      Capacity : Count_Type := 0) return Vector
   is
      C : Count_Type;

   begin
      if Capacity = 0 then
         C := Source.Length;

      elsif Capacity >= Source.Length then
         C := Capacity;

      else
         raise Capacity_Error
           with "Requested capacity is less than Source length";
      end if;

      return Target : Vector do
         Target.Reserve_Capacity (C);
         Target.Assign (Source);
      end return;
   end Copy;

   ------------
   -- Delete --
   ------------

   procedure Delete
     (Container : in out Vector;
      Index     : Extended_Index;
      Count     : Count_Type := 1)
   is
      Old_Last : constant Index_Type'Base := Container.Last;
      New_Last : Index_Type'Base;
      Count2   : Count_Type'Base;  -- count of items from Index to Old_Last
      J        : Index_Type'Base;  -- first index of items that slide down

   begin
      --  Delete removes items from the vector, the number of which is the
      --  minimum of the specified Count and the items (if any) that exist from
      --  Index to Container.Last. There are no constraints on the specified
      --  value of Count (it can be larger than what's available at this
      --  position in the vector, for example), but there are constraints on
      --  the allowed values of the Index.

      --  As a precondition on the generic actual Index_Type, the base type
      --  must include Index_Type'Pred (Index_Type'First); this is the value
      --  that Container.Last assumes when the vector is empty. However, we do
      --  not allow that as the value for Index when specifying which items
      --  should be deleted, so we must manually check. (That the user is
      --  allowed to specify the value at all here is a consequence of the
      --  declaration of the Extended_Index subtype, which includes the values
      --  in the base range that immediately precede and immediately follow the
      --  values in the Index_Type.)

      if Index < Index_Type'First then
         raise Constraint_Error with "Index is out of range (too small)";
      end if;

      --  We do allow a value greater than Container.Last to be specified as
      --  the Index, but only if it's immediately greater. This allows the
      --  corner case of deleting no items from the back end of the vector to
      --  be treated as a no-op. (It is assumed that specifying an index value
      --  greater than Last + 1 indicates some deeper flaw in the caller's
      --  algorithm, so that case is treated as a proper error.)

      if Index > Old_Last then
         if Index > Old_Last + 1 then
            raise Constraint_Error with "Index is out of range (too large)";
         else
            return;
         end if;
      end if;

      --  Here and elsewhere we treat deleting 0 items from the container as a
      --  no-op, even when the container is busy, so we simply return.

      if Count = 0 then
         return;
      end if;

      --  The internal elements array isn't guaranteed to exist unless we have
      --  elements, so we handle that case here in order to avoid having to
      --  check it later. (Note that an empty vector can never be busy, so
      --  there's no semantic harm in returning early.)

      if Container.Is_Empty then
         return;
      end if;

      --  The tampering bits exist to prevent an item from being deleted (or
      --  otherwise harmfully manipulated) while it is being visited. Query,
      --  Update, and Iterate increment the busy count on entry, and decrement
      --  the count on exit. Delete checks the count to determine whether it is
      --  being called while the associated callback procedure is executing.

      if Container.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (vector is busy)";
      end if;

      --  We first calculate what's available for deletion starting at
      --  Index. Here and elsewhere we use the wider of Index_Type'Base and
      --  Count_Type'Base as the type for intermediate values. (See function
      --  Length for more information.)

      if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
         Count2 := Count_Type'Base (Old_Last) - Count_Type'Base (Index) + 1;

      else
         Count2 := Count_Type'Base (Old_Last - Index + 1);
      end if;

      --  If the number of elements requested (Count) for deletion is equal to
      --  (or greater than) the number of elements available (Count2) for
      --  deletion beginning at Index, then everything from Index to
      --  Container.Last is deleted (this is equivalent to Delete_Last).

      if Count >= Count2 then
         --  Elements in an indefinite vector are allocated, so we must iterate
         --  over the loop and deallocate elements one-at-a-time. We work from
         --  back to front, deleting the last element during each pass, in
         --  order to gracefully handle deallocation failures.

         declare
            EA : Elements_Array renames Container.Elements.EA;

         begin
            while Container.Last >= Index loop
               declare
                  K : constant Index_Type := Container.Last;
                  X : Element_Access := EA (K);

               begin
                  --  We first isolate the element we're deleting, removing it
                  --  from the vector before we attempt to deallocate it, in
                  --  case the deallocation fails.

                  EA (K) := null;
                  Container.Last := K - 1;

                  --  Container invariants have been restored, so it is now
                  --  safe to attempt to deallocate the element.

                  Free (X);
               end;
            end loop;
         end;

         return;
      end if;

      --  There are some elements that aren't being deleted (the requested
      --  count was less than the available count), so we must slide them down
      --  to Index. We first calculate the index values of the respective array
      --  slices, using the wider of Index_Type'Base and Count_Type'Base as the
      --  type for intermediate calculations. For the elements that slide down,
      --  index value New_Last is the last index value of their new home, and
      --  index value J is the first index of their old home.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
         New_Last := Old_Last - Index_Type'Base (Count);
         J := Index + Index_Type'Base (Count);
      else
         New_Last := Index_Type'Base (Count_Type'Base (Old_Last) - Count);
         J := Index_Type'Base (Count_Type'Base (Index) + Count);
      end if;

      --  The internal elements array isn't guaranteed to exist unless we have
      --  elements, but we have that guarantee here because we know we have
      --  elements to slide.  The array index values for each slice have
      --  already been determined, so what remains to be done is to first
      --  deallocate the elements that are being deleted, and then slide down
      --  to Index the elements that aren't being deleted.

      declare
         EA : Elements_Array renames Container.Elements.EA;

      begin
         --  Before we can slide down the elements that aren't being deleted,
         --  we need to deallocate the elements that are being deleted.

         for K in Index .. J - 1 loop
            declare
               X : Element_Access := EA (K);

            begin
               --  First we remove the element we're about to deallocate from
               --  the vector, in case the deallocation fails, in order to
               --  preserve representation invariants.

               EA (K) := null;

               --  The element has been removed from the vector, so it is now
               --  safe to attempt to deallocate it.

               Free (X);
            end;
         end loop;

         EA (Index .. New_Last) := EA (J .. Old_Last);
         Container.Last := New_Last;
      end;
   end Delete;

   procedure Delete
     (Container : in out Vector;
      Position  : in out Cursor;
      Count     : Count_Type := 1)
   is
      pragma Warnings (Off, Position);

   begin
      if Position.Container = null then
         raise Constraint_Error with "Position cursor has no element";

      elsif Position.Container /= Container'Unrestricted_Access then
         raise Program_Error with "Position cursor denotes wrong container";

      elsif Position.Index > Container.Last then
         raise Program_Error with "Position index is out of range";

      else
         Delete (Container, Position.Index, Count);
         Position := No_Element;
      end if;
   end Delete;

   ------------------
   -- Delete_First --
   ------------------

   procedure Delete_First
     (Container : in out Vector;
      Count     : Count_Type := 1)
   is
   begin
      if Count = 0 then
         return;

      elsif Count >= Length (Container) then
         Clear (Container);
         return;

      else
         Delete (Container, Index_Type'First, Count);
      end if;
   end Delete_First;

   -----------------
   -- Delete_Last --
   -----------------

   procedure Delete_Last
     (Container : in out Vector;
      Count     : Count_Type := 1)
   is
   begin
      --  It is not permitted to delete items while the container is busy (for
      --  example, we're in the middle of a passive iteration). However, we
      --  always treat deleting 0 items as a no-op, even when we're busy, so we
      --  simply return without checking.

      if Count = 0 then
         return;
      end if;

      --  We cannot simply subsume the empty case into the loop below (the loop
      --  would iterate 0 times), because we rename the internal array object
      --  (which is allocated), but an empty vector isn't guaranteed to have
      --  actually allocated an array. (Note that an empty vector can never be
      --  busy, so there's no semantic harm in returning early here.)

      if Container.Is_Empty then
         return;
      end if;

      --  The tampering bits exist to prevent an item from being deleted (or
      --  otherwise harmfully manipulated) while it is being visited. Query,
      --  Update, and Iterate increment the busy count on entry, and decrement
      --  the count on exit. Delete_Last checks the count to determine whether
      --  it is being called while the associated callback procedure is
      --  executing.

      if Container.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (vector is busy)";
      end if;

      --  Elements in an indefinite vector are allocated, so we must iterate
      --  over the loop and deallocate elements one-at-a-time. We work from
      --  back to front, deleting the last element during each pass, in order
      --  to gracefully handle deallocation failures.

      declare
         E : Elements_Array renames Container.Elements.EA;

      begin
         for Indx in 1 .. Count_Type'Min (Count, Container.Length) loop
            declare
               J : constant Index_Type := Container.Last;
               X : Element_Access := E (J);

            begin
               --  Note that we first isolate the element we're deleting,
               --  removing it from the vector, before we actually deallocate
               --  it, in order to preserve representation invariants even if
               --  the deallocation fails.

               E (J) := null;
               Container.Last := J - 1;

               --  Container invariants have been restored, so it is now safe
               --  to deallocate the element.

               Free (X);
            end;
         end loop;
      end;
   end Delete_Last;

   -------------
   -- Element --
   -------------

   function Element
     (Container : Vector;
      Index     : Index_Type) return Element_Type
   is
   begin
      if Index > Container.Last then
         raise Constraint_Error with "Index is out of range";
      end if;

      declare
         EA : constant Element_Access := Container.Elements.EA (Index);
      begin
         if EA = null then
            raise Constraint_Error with "element is empty";
         else
            return EA.all;
         end if;
      end;
   end Element;

   function Element (Position : Cursor) return Element_Type is
   begin
      if Position.Container = null then
         raise Constraint_Error with "Position cursor has no element";
      end if;

      if Position.Index > Position.Container.Last then
         raise Constraint_Error with "Position cursor is out of range";
      end if;

      declare
         EA : constant Element_Access :=
                Position.Container.Elements.EA (Position.Index);
      begin
         if EA = null then
            raise Constraint_Error with "element is empty";
         else
            return EA.all;
         end if;
      end;
   end Element;

   --------------
   -- Finalize --
   --------------

   procedure Finalize (Container : in out Vector) is
   begin
      Clear (Container);  --  Checks busy-bit

      declare
         X : Elements_Access := Container.Elements;
      begin
         Container.Elements := null;
         Free (X);
      end;
   end Finalize;

   procedure Finalize (Object : in out Iterator) is
      B : Natural renames Object.Container.Busy;
   begin
      B := B - 1;
   end Finalize;

   procedure Finalize (Control : in out Reference_Control_Type) is
   begin
      if Control.Container /= null then
         declare
            C : Vector renames Control.Container.all;
            B : Natural renames C.Busy;
            L : Natural renames C.Lock;
         begin
            B := B - 1;
            L := L - 1;
         end;

         Control.Container := null;
      end if;
   end Finalize;

   ----------
   -- Find --
   ----------

   function Find
     (Container : Vector;
      Item      : Element_Type;
      Position  : Cursor := No_Element) return Cursor
   is
   begin
      if Position.Container /= null then
         if Position.Container /= Container'Unrestricted_Access then
            raise Program_Error with "Position cursor denotes wrong container";
         end if;

         if Position.Index > Container.Last then
            raise Program_Error with "Position index is out of range";
         end if;
      end if;

      --  Per AI05-0022, the container implementation is required to detect
      --  element tampering by a generic actual subprogram.

      declare
         B : Natural renames Container'Unrestricted_Access.Busy;
         L : Natural renames Container'Unrestricted_Access.Lock;

         Result : Index_Type'Base;

      begin
         B := B + 1;
         L := L + 1;

         Result := No_Index;
         for J in Position.Index .. Container.Last loop
            if Container.Elements.EA (J) /= null
              and then Container.Elements.EA (J).all = Item
            then
               Result := J;
               exit;
            end if;
         end loop;

         B := B - 1;
         L := L - 1;

         if Result = No_Index then
            return No_Element;
         else
            return Cursor'(Container'Unrestricted_Access, Result);
         end if;

      exception
         when others =>
            B := B - 1;
            L := L - 1;
            raise;
      end;
   end Find;

   ----------------
   -- Find_Index --
   ----------------

   function Find_Index
     (Container : Vector;
      Item      : Element_Type;
      Index     : Index_Type := Index_Type'First) return Extended_Index
   is
      B : Natural renames Container'Unrestricted_Access.Busy;
      L : Natural renames Container'Unrestricted_Access.Lock;

      Result : Index_Type'Base;

   begin
      --  Per AI05-0022, the container implementation is required to detect
      --  element tampering by a generic actual subprogram.

      B := B + 1;
      L := L + 1;

      Result := No_Index;
      for Indx in Index .. Container.Last loop
         if Container.Elements.EA (Indx) /= null
           and then Container.Elements.EA (Indx).all = Item
         then
            Result := Indx;
            exit;
         end if;
      end loop;

      B := B - 1;
      L := L - 1;

      return Result;

   exception
      when others =>
         B := B - 1;
         L := L - 1;

         raise;
   end Find_Index;

   -----------
   -- First --
   -----------

   function First (Container : Vector) return Cursor is
   begin
      if Is_Empty (Container) then
         return No_Element;
      end if;

      return (Container'Unrestricted_Access, Index_Type'First);
   end First;

   function First (Object : Iterator) return Cursor is
   begin
      --  The value of the iterator object's Index component influences the
      --  behavior of the First (and Last) selector function.

      --  When the Index component is No_Index, this means the iterator
      --  object was constructed without a start expression, in which case the
      --  (forward) iteration starts from the (logical) beginning of the entire
      --  sequence of items (corresponding to Container.First, for a forward
      --  iterator).

      --  Otherwise, this is iteration over a partial sequence of items.
      --  When the Index component isn't No_Index, the iterator object was
      --  constructed with a start expression, that specifies the position
      --  from which the (forward) partial iteration begins.

      if Object.Index = No_Index then
         return First (Object.Container.all);
      else
         return Cursor'(Object.Container, Object.Index);
      end if;
   end First;

   -------------------
   -- First_Element --
   -------------------

   function First_Element (Container : Vector) return Element_Type is
   begin
      if Container.Last = No_Index then
         raise Constraint_Error with "Container is empty";
      end if;

      declare
         EA : constant Element_Access :=
                Container.Elements.EA (Index_Type'First);
      begin
         if EA = null then
            raise Constraint_Error with "first element is empty";
         else
            return EA.all;
         end if;
      end;
   end First_Element;

   -----------------
   -- First_Index --
   -----------------

   function First_Index (Container : Vector) return Index_Type is
      pragma Unreferenced (Container);
   begin
      return Index_Type'First;
   end First_Index;

   ---------------------
   -- Generic_Sorting --
   ---------------------

   package body Generic_Sorting is

      -----------------------
      -- Local Subprograms --
      -----------------------

      function Is_Less (L, R : Element_Access) return Boolean;
      pragma Inline (Is_Less);

      -------------
      -- Is_Less --
      -------------

      function Is_Less (L, R : Element_Access) return Boolean is
      begin
         if L = null then
            return R /= null;
         elsif R = null then
            return False;
         else
            return L.all < R.all;
         end if;
      end Is_Less;

      ---------------
      -- Is_Sorted --
      ---------------

      function Is_Sorted (Container : Vector) return Boolean is
      begin
         if Container.Last <= Index_Type'First then
            return True;
         end if;

         --  Per AI05-0022, the container implementation is required to detect
         --  element tampering by a generic actual subprogram.

         declare
            E : Elements_Array renames Container.Elements.EA;

            B : Natural renames Container'Unrestricted_Access.Busy;
            L : Natural renames Container'Unrestricted_Access.Lock;

            Result : Boolean;

         begin
            B := B + 1;
            L := L + 1;

            Result := True;
            for I in Index_Type'First .. Container.Last - 1 loop
               if Is_Less (E (I + 1), E (I)) then
                  Result := False;
                  exit;
               end if;
            end loop;

            B := B - 1;
            L := L - 1;

            return Result;

         exception
            when others =>
               B := B - 1;
               L := L - 1;

               raise;
         end;
      end Is_Sorted;

      -----------
      -- Merge --
      -----------

      procedure Merge (Target, Source : in out Vector) is
         I, J : Index_Type'Base;

      begin
         --  The semantics of Merge changed slightly per AI05-0021. It was
         --  originally the case that if Target and Source denoted the same
         --  container object, then the GNAT implementation of Merge did
         --  nothing. However, it was argued that RM05 did not precisely
         --  specify the semantics for this corner case. The decision of the
         --  ARG was that if Target and Source denote the same non-empty
         --  container object, then Program_Error is raised.

         if Source.Last < Index_Type'First then  -- Source is empty
            return;
         end if;

         if Target'Address = Source'Address then
            raise Program_Error with
              "Target and Source denote same non-empty container";
         end if;

         if Target.Last < Index_Type'First then  -- Target is empty
            Move (Target => Target, Source => Source);
            return;
         end if;

         if Source.Busy > 0 then
            raise Program_Error with
              "attempt to tamper with cursors (vector is busy)";
         end if;

         I := Target.Last;  -- original value (before Set_Length)
         Target.Set_Length (Length (Target) + Length (Source));

         --  Per AI05-0022, the container implementation is required to detect
         --  element tampering by a generic actual subprogram.

         declare
            TA : Elements_Array renames Target.Elements.EA;
            SA : Elements_Array renames Source.Elements.EA;

            TB : Natural renames Target.Busy;
            TL : Natural renames Target.Lock;

            SB : Natural renames Source.Busy;
            SL : Natural renames Source.Lock;

         begin
            TB := TB + 1;
            TL := TL + 1;

            SB := SB + 1;
            SL := SL + 1;

            J := Target.Last;  -- new value (after Set_Length)
            while Source.Last >= Index_Type'First loop
               pragma Assert
                 (Source.Last <= Index_Type'First
                   or else not (Is_Less (SA (Source.Last),
                                         SA (Source.Last - 1))));

               if I < Index_Type'First then
                  declare
                     Src : Elements_Array renames
                             SA (Index_Type'First .. Source.Last);
                  begin
                     TA (Index_Type'First .. J) := Src;
                     Src := (others => null);
                  end;

                  Source.Last := No_Index;
                  exit;
               end if;

               pragma Assert
                 (I <= Index_Type'First
                    or else not (Is_Less (TA (I), TA (I - 1))));

               declare
                  Src : Element_Access renames SA (Source.Last);
                  Tgt : Element_Access renames TA (I);

               begin
                  if Is_Less (Src, Tgt) then
                     Target.Elements.EA (J) := Tgt;
                     Tgt := null;
                     I := I - 1;

                  else
                     Target.Elements.EA (J) := Src;
                     Src := null;
                     Source.Last := Source.Last - 1;
                  end if;
               end;

               J := J - 1;
            end loop;

            TB := TB - 1;
            TL := TL - 1;

            SB := SB - 1;
            SL := SL - 1;

         exception
            when others =>
               TB := TB - 1;
               TL := TL - 1;

               SB := SB - 1;
               SL := SL - 1;

               raise;
         end;
      end Merge;

      ----------
      -- Sort --
      ----------

      procedure Sort (Container : in out Vector) is
         procedure Sort is new Generic_Array_Sort
           (Index_Type   => Index_Type,
            Element_Type => Element_Access,
            Array_Type   => Elements_Array,
            "<"          => Is_Less);

      --  Start of processing for Sort

      begin
         if Container.Last <= Index_Type'First then
            return;
         end if;

         --  The exception behavior for the vector container must match that
         --  for the list container, so we check for cursor tampering here
         --  (which will catch more things) instead of for element tampering
         --  (which will catch fewer things). It's true that the elements of
         --  this vector container could be safely moved around while (say) an
         --  iteration is taking place (iteration only increments the busy
         --  counter), and so technically all we would need here is a test for
         --  element tampering (indicated by the lock counter), that's simply
         --  an artifact of our array-based implementation. Logically Sort
         --  requires a check for cursor tampering.

         if Container.Busy > 0 then
            raise Program_Error with
              "attempt to tamper with cursors (vector is busy)";
         end if;

         --  Per AI05-0022, the container implementation is required to detect
         --  element tampering by a generic actual subprogram.

         declare
            B : Natural renames Container.Busy;
            L : Natural renames Container.Lock;

         begin
            B := B + 1;
            L := L + 1;

            Sort (Container.Elements.EA (Index_Type'First .. Container.Last));

            B := B - 1;
            L := L - 1;

         exception
            when others =>
               B := B - 1;
               L := L - 1;

               raise;
         end;
      end Sort;

   end Generic_Sorting;

   -----------------
   -- Has_Element --
   -----------------

   function Has_Element (Position : Cursor) return Boolean is
   begin
      if Position.Container = null then
         return False;
      else
         return Position.Index <= Position.Container.Last;
      end if;
   end Has_Element;

   ------------
   -- Insert --
   ------------

   procedure Insert
     (Container : in out Vector;
      Before    : Extended_Index;
      New_Item  : Element_Type;
      Count     : Count_Type := 1)
   is
      Old_Length : constant Count_Type := Container.Length;

      Max_Length : Count_Type'Base;  -- determined from range of Index_Type
      New_Length : Count_Type'Base;  -- sum of current length and Count
      New_Last   : Index_Type'Base;  -- last index of vector after insertion

      Index : Index_Type'Base;  -- scratch for intermediate values
      J     : Count_Type'Base;  -- scratch

      New_Capacity : Count_Type'Base;  -- length of new, expanded array
      Dst_Last     : Index_Type'Base;  -- last index of new, expanded array
      Dst          : Elements_Access;  -- new, expanded internal array

   begin
      --  As a precondition on the generic actual Index_Type, the base type
      --  must include Index_Type'Pred (Index_Type'First); this is the value
      --  that Container.Last assumes when the vector is empty. However, we do
      --  not allow that as the value for Index when specifying where the new
      --  items should be inserted, so we must manually check. (That the user
      --  is allowed to specify the value at all here is a consequence of the
      --  declaration of the Extended_Index subtype, which includes the values
      --  in the base range that immediately precede and immediately follow the
      --  values in the Index_Type.)

      if Before < Index_Type'First then
         raise Constraint_Error with
           "Before index is out of range (too small)";
      end if;

      --  We do allow a value greater than Container.Last to be specified as
      --  the Index, but only if it's immediately greater. This allows for the
      --  case of appending items to the back end of the vector. (It is assumed
      --  that specifying an index value greater than Last + 1 indicates some
      --  deeper flaw in the caller's algorithm, so that case is treated as a
      --  proper error.)

      if Before > Container.Last
        and then Before > Container.Last + 1
      then
         raise Constraint_Error with
           "Before index is out of range (too large)";
      end if;

      --  We treat inserting 0 items into the container as a no-op, even when
      --  the container is busy, so we simply return.

      if Count = 0 then
         return;
      end if;

      --  There are two constraints we need to satisfy. The first constraint is
      --  that a container cannot have more than Count_Type'Last elements, so
      --  we must check the sum of the current length and the insertion count.
      --  Note that we cannot simply add these values, because of the
      --  possibility of overflow.

      if Old_Length > Count_Type'Last - Count then
         raise Constraint_Error with "Count is out of range";
      end if;

      --  It is now safe compute the length of the new vector, without fear of
      --  overflow.

      New_Length := Old_Length + Count;

      --  The second constraint is that the new Last index value cannot exceed
      --  Index_Type'Last. In each branch below, we calculate the maximum
      --  length (computed from the range of values in Index_Type), and then
      --  compare the new length to the maximum length. If the new length is
      --  acceptable, then we compute the new last index from that.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then

         --  We have to handle the case when there might be more values in the
         --  range of Index_Type than in the range of Count_Type.

         if Index_Type'First <= 0 then

            --  We know that No_Index (the same as Index_Type'First - 1) is
            --  less than 0, so it is safe to compute the following sum without
            --  fear of overflow.

            Index := No_Index + Index_Type'Base (Count_Type'Last);

            if Index <= Index_Type'Last then

               --  We have determined that range of Index_Type has at least as
               --  many values as in Count_Type, so Count_Type'Last is the
               --  maximum number of items that are allowed.

               Max_Length := Count_Type'Last;

            else
               --  The range of Index_Type has fewer values than in Count_Type,
               --  so the maximum number of items is computed from the range of
               --  the Index_Type.

               Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
            end if;

         else
            --  No_Index is equal or greater than 0, so we can safely compute
            --  the difference without fear of overflow (which we would have to
            --  worry about if No_Index were less than 0, but that case is
            --  handled above).

            if Index_Type'Last - No_Index >=
                 Count_Type'Pos (Count_Type'Last)
            then
               --  We have determined that range of Index_Type has at least as
               --  many values as in Count_Type, so Count_Type'Last is the
               --  maximum number of items that are allowed.

               Max_Length := Count_Type'Last;

            else
               --  The range of Index_Type has fewer values than in Count_Type,
               --  so the maximum number of items is computed from the range of
               --  the Index_Type.

               Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
            end if;
         end if;

      elsif Index_Type'First <= 0 then

         --  We know that No_Index (the same as Index_Type'First - 1) is less
         --  than 0, so it is safe to compute the following sum without fear of
         --  overflow.

         J := Count_Type'Base (No_Index) + Count_Type'Last;

         if J <= Count_Type'Base (Index_Type'Last) then

            --  We have determined that range of Index_Type has at least as
            --  many values as in Count_Type, so Count_Type'Last is the maximum
            --  number of items that are allowed.

            Max_Length := Count_Type'Last;

         else
            --  The range of Index_Type has fewer values than Count_Type does,
            --  so the maximum number of items is computed from the range of
            --  the Index_Type.

            Max_Length :=
              Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
         end if;

      else
         --  No_Index is equal or greater than 0, so we can safely compute the
         --  difference without fear of overflow (which we would have to worry
         --  about if No_Index were less than 0, but that case is handled
         --  above).

         Max_Length :=
           Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
      end if;

      --  We have just computed the maximum length (number of items). We must
      --  now compare the requested length to the maximum length, as we do not
      --  allow a vector expand beyond the maximum (because that would create
      --  an internal array with a last index value greater than
      --  Index_Type'Last, with no way to index those elements).

      if New_Length > Max_Length then
         raise Constraint_Error with "Count is out of range";
      end if;

      --  New_Last is the last index value of the items in the container after
      --  insertion.  Use the wider of Index_Type'Base and Count_Type'Base to
      --  compute its value from the New_Length.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
         New_Last := No_Index + Index_Type'Base (New_Length);
      else
         New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
      end if;

      if Container.Elements = null then
         pragma Assert (Container.Last = No_Index);

         --  This is the simplest case, with which we must always begin: we're
         --  inserting items into an empty vector that hasn't allocated an
         --  internal array yet. Note that we don't need to check the busy bit
         --  here, because an empty container cannot be busy.

         --  In an indefinite vector, elements are allocated individually, and
         --  stored as access values on the internal array (the length of which
         --  represents the vector "capacity"), which is separately allocated.

         Container.Elements := new Elements_Type (New_Last);

         --  The element backbone has been successfully allocated, so now we
         --  allocate the elements.

         for Idx in Container.Elements.EA'Range loop

            --  In order to preserve container invariants, we always attempt
            --  the element allocation first, before setting the Last index
            --  value, in case the allocation fails (either because there is no
            --  storage available, or because element initialization fails).

            declare
               --  The element allocator may need an accessibility check in the
               --  case actual type is class-wide or has access discriminants
               --  (see RM 4.8(10.1) and AI12-0035).

               pragma Unsuppress (Accessibility_Check);

            begin
               Container.Elements.EA (Idx) := new Element_Type'(New_Item);
            end;

            --  The allocation of the element succeeded, so it is now safe to
            --  update the Last index, restoring container invariants.

            Container.Last := Idx;
         end loop;

         return;
      end if;

      --  The tampering bits exist to prevent an item from being harmfully
      --  manipulated while it is being visited. Query, Update, and Iterate
      --  increment the busy count on entry, and decrement the count on
      --  exit. Insert checks the count to determine whether it is being called
      --  while the associated callback procedure is executing.

      if Container.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (vector is busy)";
      end if;

      if New_Length <= Container.Elements.EA'Length then

         --  In this case, we're inserting elements into a vector that has
         --  already allocated an internal array, and the existing array has
         --  enough unused storage for the new items.

         declare
            E : Elements_Array renames Container.Elements.EA;
            K : Index_Type'Base;

         begin
            if Before > Container.Last then

               --  The new items are being appended to the vector, so no
               --  sliding of existing elements is required.

               for Idx in Before .. New_Last loop

                  --  In order to preserve container invariants, we always
                  --  attempt the element allocation first, before setting the
                  --  Last index value, in case the allocation fails (either
                  --  because there is no storage available, or because element
                  --  initialization fails).

                  declare
                     --  The element allocator may need an accessibility check
                     --  in case the actual type is class-wide or has access
                     --  discriminants (see RM 4.8(10.1) and AI12-0035).

                     pragma Unsuppress (Accessibility_Check);

                  begin
                     E (Idx) := new Element_Type'(New_Item);
                  end;

                  --  The allocation of the element succeeded, so it is now
                  --  safe to update the Last index, restoring container
                  --  invariants.

                  Container.Last := Idx;
               end loop;

            else
               --  The new items are being inserted before some existing
               --  elements, so we must slide the existing elements up to their
               --  new home. We use the wider of Index_Type'Base and
               --  Count_Type'Base as the type for intermediate index values.

               if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
                  Index := Before + Index_Type'Base (Count);
               else
                  Index := Index_Type'Base (Count_Type'Base (Before) + Count);
               end if;

               --  The new items are being inserted in the middle of the array,
               --  in the range [Before, Index). Copy the existing elements to
               --  the end of the array, to make room for the new items.

               E (Index .. New_Last) := E (Before .. Container.Last);
               Container.Last := New_Last;

               --  We have copied the existing items up to the end of the
               --  array, to make room for the new items in the middle of
               --  the array.  Now we actually allocate the new items.

               --  Note: initialize K outside loop to make it clear that
               --  K always has a value if the exception handler triggers.

               K := Before;

               declare
                  --  The element allocator may need an accessibility check in
                  --  the case the actual type is class-wide or has access
                  --  discriminants (see RM 4.8(10.1) and AI12-0035).

                  pragma Unsuppress (Accessibility_Check);

               begin
                  while K < Index loop
                     E (K) := new Element_Type'(New_Item);
                     K := K + 1;
                  end loop;

               exception
                  when others =>

                     --  Values in the range [Before, K) were successfully
                     --  allocated, but values in the range [K, Index) are
                     --  stale (these array positions contain copies of the
                     --  old items, that did not get assigned a new item,
                     --  because the allocation failed). We must finish what
                     --  we started by clearing out all of the stale values,
                     --  leaving a "hole" in the middle of the array.

                     E (K .. Index - 1) := (others => null);
                     raise;
               end;
            end if;
         end;

         return;
      end if;

      --  In this case, we're inserting elements into a vector that has already
      --  allocated an internal array, but the existing array does not have
      --  enough storage, so we must allocate a new, longer array. In order to
      --  guarantee that the amortized insertion cost is O(1), we always
      --  allocate an array whose length is some power-of-two factor of the
      --  current array length. (The new array cannot have a length less than
      --  the New_Length of the container, but its last index value cannot be
      --  greater than Index_Type'Last.)

      New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
      while New_Capacity < New_Length loop
         if New_Capacity > Count_Type'Last / 2 then
            New_Capacity := Count_Type'Last;
            exit;
         end if;

         New_Capacity := 2 * New_Capacity;
      end loop;

      if New_Capacity > Max_Length then

         --  We have reached the limit of capacity, so no further expansion
         --  will occur. (This is not a problem, as there is never a need to
         --  have more capacity than the maximum container length.)

         New_Capacity := Max_Length;
      end if;

      --  We have computed the length of the new internal array (and this is
      --  what "vector capacity" means), so use that to compute its last index.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
         Dst_Last := No_Index + Index_Type'Base (New_Capacity);
      else
         Dst_Last :=
           Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
      end if;

      --  Now we allocate the new, longer internal array. If the allocation
      --  fails, we have not changed any container state, so no side-effect
      --  will occur as a result of propagating the exception.

      Dst := new Elements_Type (Dst_Last);

      --  We have our new internal array. All that needs to be done now is to
      --  copy the existing items (if any) from the old array (the "source"
      --  array) to the new array (the "destination" array), and then
      --  deallocate the old array.

      declare
         Src : Elements_Access := Container.Elements;

      begin
         Dst.EA (Index_Type'First .. Before - 1) :=
           Src.EA (Index_Type'First .. Before - 1);

         if Before > Container.Last then

            --  The new items are being appended to the vector, so no
            --  sliding of existing elements is required.

            --  We have copied the elements from to the old source array to the
            --  new destination array, so we can now deallocate the old array.

            Container.Elements := Dst;
            Free (Src);

            --  Now we append the new items.

            for Idx in Before .. New_Last loop

               --  In order to preserve container invariants, we always attempt
               --  the element allocation first, before setting the Last index
               --  value, in case the allocation fails (either because there
               --  is no storage available, or because element initialization
               --  fails).

               declare
                  --  The element allocator may need an accessibility check in
                  --  the case the actual type is class-wide or has access
                  --  discriminants (see RM 4.8(10.1) and AI12-0035).

                  pragma Unsuppress (Accessibility_Check);

               begin
                  Dst.EA (Idx) := new Element_Type'(New_Item);
               end;

               --  The allocation of the element succeeded, so it is now safe
               --  to update the Last index, restoring container invariants.

               Container.Last := Idx;
            end loop;

         else
            --  The new items are being inserted before some existing elements,
            --  so we must slide the existing elements up to their new home.

            if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
               Index := Before + Index_Type'Base (Count);
            else
               Index := Index_Type'Base (Count_Type'Base (Before) + Count);
            end if;

            Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last);

            --  We have copied the elements from to the old source array to the
            --  new destination array, so we can now deallocate the old array.

            Container.Elements := Dst;
            Container.Last := New_Last;
            Free (Src);

            --  The new array has a range in the middle containing null access
            --  values. Fill in that partition of the array with the new items.

            for Idx in Before .. Index - 1 loop

               --  Note that container invariants have already been satisfied
               --  (in particular, the Last index value of the vector has
               --  already been updated), so if this allocation fails we simply
               --  let it propagate.

               declare
                  --  The element allocator may need an accessibility check in
                  --  the case the actual type is class-wide or has access
                  --  discriminants (see RM 4.8(10.1) and AI12-0035).

                  pragma Unsuppress (Accessibility_Check);

               begin
                  Dst.EA (Idx) := new Element_Type'(New_Item);
               end;
            end loop;
         end if;
      end;
   end Insert;

   procedure Insert
     (Container : in out Vector;
      Before    : Extended_Index;
      New_Item  : Vector)
   is
      N : constant Count_Type := Length (New_Item);
      J : Index_Type'Base;

   begin
      --  Use Insert_Space to create the "hole" (the destination slice) into
      --  which we copy the source items.

      Insert_Space (Container, Before, Count => N);

      if N = 0 then

         --  There's nothing else to do here (vetting of parameters was
         --  performed already in Insert_Space), so we simply return.

         return;
      end if;

      if Container'Address /= New_Item'Address then

         --  This is the simple case.  New_Item denotes an object different
         --  from Container, so there's nothing special we need to do to copy
         --  the source items to their destination, because all of the source
         --  items are contiguous.

         declare
            subtype Src_Index_Subtype is Index_Type'Base range
              Index_Type'First .. New_Item.Last;

            Src : Elements_Array renames
                    New_Item.Elements.EA (Src_Index_Subtype);

            Dst : Elements_Array renames Container.Elements.EA;

            Dst_Index : Index_Type'Base;

         begin
            Dst_Index := Before - 1;
            for Src_Index in Src'Range loop
               Dst_Index := Dst_Index + 1;

               if Src (Src_Index) /= null then
                  Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
               end if;
            end loop;
         end;

         return;
      end if;

      --  New_Item denotes the same object as Container, so an insertion has
      --  potentially split the source items.  The first source slice is
      --  [Index_Type'First, Before), and the second source slice is
      --  [J, Container.Last], where index value J is the first index of the
      --  second slice. (J gets computed below, but only after we have
      --  determined that the second source slice is non-empty.) The
      --  destination slice is always the range [Before, J). We perform the
      --  copy in two steps, using each of the two slices of the source items.

      declare
         L : constant Index_Type'Base := Before - 1;

         subtype Src_Index_Subtype is Index_Type'Base range
           Index_Type'First .. L;

         Src : Elements_Array renames
                 Container.Elements.EA (Src_Index_Subtype);

         Dst : Elements_Array renames Container.Elements.EA;

         Dst_Index : Index_Type'Base;

      begin
         --  We first copy the source items that precede the space we
         --  inserted. (If Before equals Index_Type'First, then this first
         --  source slice will be empty, which is harmless.)

         Dst_Index := Before - 1;
         for Src_Index in Src'Range loop
            Dst_Index := Dst_Index + 1;

            if Src (Src_Index) /= null then
               Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
            end if;
         end loop;

         if Src'Length = N then

            --  The new items were effectively appended to the container, so we
            --  have already copied all of the items that need to be copied.
            --  We return early here, even though the source slice below is
            --  empty (so the assignment would be harmless), because we want to
            --  avoid computing J, which will overflow if J is greater than
            --  Index_Type'Base'Last.

            return;
         end if;
      end;

      --  Index value J is the first index of the second source slice. (It is
      --  also 1 greater than the last index of the destination slice.) Note:
      --  avoid computing J if J is greater than Index_Type'Base'Last, in order
      --  to avoid overflow. Prevent that by returning early above, immediately
      --  after copying the first slice of the source, and determining that
      --  this second slice of the source is empty.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
         J := Before + Index_Type'Base (N);
      else
         J := Index_Type'Base (Count_Type'Base (Before) + N);
      end if;

      declare
         subtype Src_Index_Subtype is Index_Type'Base range
           J .. Container.Last;

         Src : Elements_Array renames
                 Container.Elements.EA (Src_Index_Subtype);

         Dst : Elements_Array renames Container.Elements.EA;

         Dst_Index : Index_Type'Base;

      begin
         --  We next copy the source items that follow the space we inserted.
         --  Index value Dst_Index is the first index of that portion of the
         --  destination that receives this slice of the source. (For the
         --  reasons given above, this slice is guaranteed to be non-empty.)

         if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
            Dst_Index := J - Index_Type'Base (Src'Length);
         else
            Dst_Index := Index_Type'Base (Count_Type'Base (J) - Src'Length);
         end if;

         for Src_Index in Src'Range loop
            if Src (Src_Index) /= null then
               Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
            end if;

            Dst_Index := Dst_Index + 1;
         end loop;
      end;
   end Insert;

   procedure Insert
     (Container : in out Vector;
      Before    : Cursor;
      New_Item  : Vector)
   is
      Index : Index_Type'Base;

   begin
      if Before.Container /= null
        and then Before.Container /= Container'Unrestricted_Access
      then
         raise Program_Error with "Before cursor denotes wrong container";
      end if;

      if Is_Empty (New_Item) then
         return;
      end if;

      if Before.Container = null or else Before.Index > Container.Last then
         if Container.Last = Index_Type'Last then
            raise Constraint_Error with
              "vector is already at its maximum length";
         end if;

         Index := Container.Last + 1;

      else
         Index := Before.Index;
      end if;

      Insert (Container, Index, New_Item);
   end Insert;

   procedure Insert
     (Container : in out Vector;
      Before    : Cursor;
      New_Item  : Vector;
      Position  : out Cursor)
   is
      Index : Index_Type'Base;

   begin
      if Before.Container /= null
        and then Before.Container /=
                   Vector_Access'(Container'Unrestricted_Access)
      then
         raise Program_Error with "Before cursor denotes wrong container";
      end if;

      if Is_Empty (New_Item) then
         if Before.Container = null or else Before.Index > Container.Last then
            Position := No_Element;
         else
            Position := (Container'Unrestricted_Access, Before.Index);
         end if;

         return;
      end if;

      if Before.Container = null or else Before.Index > Container.Last then
         if Container.Last = Index_Type'Last then
            raise Constraint_Error with
              "vector is already at its maximum length";
         end if;

         Index := Container.Last + 1;

      else
         Index := Before.Index;
      end if;

      Insert (Container, Index, New_Item);

      Position := Cursor'(Container'Unrestricted_Access, Index);
   end Insert;

   procedure Insert
     (Container : in out Vector;
      Before    : Cursor;
      New_Item  : Element_Type;
      Count     : Count_Type := 1)
   is
      Index : Index_Type'Base;

   begin
      if Before.Container /= null
        and then Before.Container /= Container'Unrestricted_Access
      then
         raise Program_Error with "Before cursor denotes wrong container";
      end if;

      if Count = 0 then
         return;
      end if;

      if Before.Container = null or else Before.Index > Container.Last then
         if Container.Last = Index_Type'Last then
            raise Constraint_Error with
              "vector is already at its maximum length";
         end if;

         Index := Container.Last + 1;

      else
         Index := Before.Index;
      end if;

      Insert (Container, Index, New_Item, Count);
   end Insert;

   procedure Insert
     (Container : in out Vector;
      Before    : Cursor;
      New_Item  : Element_Type;
      Position  : out Cursor;
      Count     : Count_Type := 1)
   is
      Index : Index_Type'Base;

   begin
      if Before.Container /= null
        and then Before.Container /= Container'Unrestricted_Access
      then
         raise Program_Error with "Before cursor denotes wrong container";
      end if;

      if Count = 0 then
         if Before.Container = null
           or else Before.Index > Container.Last
         then
            Position := No_Element;
         else
            Position := (Container'Unrestricted_Access, Before.Index);
         end if;

         return;
      end if;

      if Before.Container = null or else Before.Index > Container.Last then
         if Container.Last = Index_Type'Last then
            raise Constraint_Error with
              "vector is already at its maximum length";
         end if;

         Index := Container.Last + 1;

      else
         Index := Before.Index;
      end if;

      Insert (Container, Index, New_Item, Count);

      Position := (Container'Unrestricted_Access, Index);
   end Insert;

   ------------------
   -- Insert_Space --
   ------------------

   procedure Insert_Space
     (Container : in out Vector;
      Before    : Extended_Index;
      Count     : Count_Type := 1)
   is
      Old_Length : constant Count_Type := Container.Length;

      Max_Length : Count_Type'Base;  -- determined from range of Index_Type
      New_Length : Count_Type'Base;  -- sum of current length and Count
      New_Last   : Index_Type'Base;  -- last index of vector after insertion

      Index : Index_Type'Base;  -- scratch for intermediate values
      J     : Count_Type'Base;  -- scratch

      New_Capacity : Count_Type'Base;  -- length of new, expanded array
      Dst_Last     : Index_Type'Base;  -- last index of new, expanded array
      Dst          : Elements_Access;  -- new, expanded internal array

   begin
      --  As a precondition on the generic actual Index_Type, the base type
      --  must include Index_Type'Pred (Index_Type'First); this is the value
      --  that Container.Last assumes when the vector is empty. However, we do
      --  not allow that as the value for Index when specifying where the new
      --  items should be inserted, so we must manually check. (That the user
      --  is allowed to specify the value at all here is a consequence of the
      --  declaration of the Extended_Index subtype, which includes the values
      --  in the base range that immediately precede and immediately follow the
      --  values in the Index_Type.)

      if Before < Index_Type'First then
         raise Constraint_Error with
           "Before index is out of range (too small)";
      end if;

      --  We do allow a value greater than Container.Last to be specified as
      --  the Index, but only if it's immediately greater. This allows for the
      --  case of appending items to the back end of the vector. (It is assumed
      --  that specifying an index value greater than Last + 1 indicates some
      --  deeper flaw in the caller's algorithm, so that case is treated as a
      --  proper error.)

      if Before > Container.Last and then Before > Container.Last + 1 then
         raise Constraint_Error with
           "Before index is out of range (too large)";
      end if;

      --  We treat inserting 0 items into the container as a no-op, even when
      --  the container is busy, so we simply return.

      if Count = 0 then
         return;
      end if;

      --  There are two constraints we need to satisfy. The first constraint is
      --  that a container cannot have more than Count_Type'Last elements, so
      --  we must check the sum of the current length and the insertion
      --  count. Note that we cannot simply add these values, because of the
      --  possibility of overflow.

      if Old_Length > Count_Type'Last - Count then
         raise Constraint_Error with "Count is out of range";
      end if;

      --  It is now safe compute the length of the new vector, without fear of
      --  overflow.

      New_Length := Old_Length + Count;

      --  The second constraint is that the new Last index value cannot exceed
      --  Index_Type'Last. In each branch below, we calculate the maximum
      --  length (computed from the range of values in Index_Type), and then
      --  compare the new length to the maximum length. If the new length is
      --  acceptable, then we compute the new last index from that.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
         --  We have to handle the case when there might be more values in the
         --  range of Index_Type than in the range of Count_Type.

         if Index_Type'First <= 0 then

            --  We know that No_Index (the same as Index_Type'First - 1) is
            --  less than 0, so it is safe to compute the following sum without
            --  fear of overflow.

            Index := No_Index + Index_Type'Base (Count_Type'Last);

            if Index <= Index_Type'Last then

               --  We have determined that range of Index_Type has at least as
               --  many values as in Count_Type, so Count_Type'Last is the
               --  maximum number of items that are allowed.

               Max_Length := Count_Type'Last;

            else
               --  The range of Index_Type has fewer values than in Count_Type,
               --  so the maximum number of items is computed from the range of
               --  the Index_Type.

               Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
            end if;

         else
            --  No_Index is equal or greater than 0, so we can safely compute
            --  the difference without fear of overflow (which we would have to
            --  worry about if No_Index were less than 0, but that case is
            --  handled above).

            if Index_Type'Last - No_Index >=
                 Count_Type'Pos (Count_Type'Last)
            then
               --  We have determined that range of Index_Type has at least as
               --  many values as in Count_Type, so Count_Type'Last is the
               --  maximum number of items that are allowed.

               Max_Length := Count_Type'Last;

            else
               --  The range of Index_Type has fewer values than in Count_Type,
               --  so the maximum number of items is computed from the range of
               --  the Index_Type.

               Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
            end if;
         end if;

      elsif Index_Type'First <= 0 then

         --  We know that No_Index (the same as Index_Type'First - 1) is less
         --  than 0, so it is safe to compute the following sum without fear of
         --  overflow.

         J := Count_Type'Base (No_Index) + Count_Type'Last;

         if J <= Count_Type'Base (Index_Type'Last) then

            --  We have determined that range of Index_Type has at least as
            --  many values as in Count_Type, so Count_Type'Last is the maximum
            --  number of items that are allowed.

            Max_Length := Count_Type'Last;

         else
            --  The range of Index_Type has fewer values than Count_Type does,
            --  so the maximum number of items is computed from the range of
            --  the Index_Type.

            Max_Length :=
              Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
         end if;

      else
         --  No_Index is equal or greater than 0, so we can safely compute the
         --  difference without fear of overflow (which we would have to worry
         --  about if No_Index were less than 0, but that case is handled
         --  above).

         Max_Length :=
           Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
      end if;

      --  We have just computed the maximum length (number of items). We must
      --  now compare the requested length to the maximum length, as we do not
      --  allow a vector expand beyond the maximum (because that would create
      --  an internal array with a last index value greater than
      --  Index_Type'Last, with no way to index those elements).

      if New_Length > Max_Length then
         raise Constraint_Error with "Count is out of range";
      end if;

      --  New_Last is the last index value of the items in the container after
      --  insertion.  Use the wider of Index_Type'Base and Count_Type'Base to
      --  compute its value from the New_Length.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
         New_Last := No_Index + Index_Type'Base (New_Length);
      else
         New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
      end if;

      if Container.Elements = null then
         pragma Assert (Container.Last = No_Index);

         --  This is the simplest case, with which we must always begin: we're
         --  inserting items into an empty vector that hasn't allocated an
         --  internal array yet. Note that we don't need to check the busy bit
         --  here, because an empty container cannot be busy.

         --  In an indefinite vector, elements are allocated individually, and
         --  stored as access values on the internal array (the length of which
         --  represents the vector "capacity"), which is separately allocated.
         --  We have no elements here (because we're inserting "space"), so all
         --  we need to do is allocate the backbone.

         Container.Elements := new Elements_Type (New_Last);
         Container.Last := New_Last;

         return;
      end if;

      --  The tampering bits exist to prevent an item from being harmfully
      --  manipulated while it is being visited. Query, Update, and Iterate
      --  increment the busy count on entry, and decrement the count on exit.
      --  Insert checks the count to determine whether it is being called while
      --  the associated callback procedure is executing.

      if Container.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (vector is busy)";
      end if;

      if New_Length <= Container.Elements.EA'Length then

         --  In this case, we are inserting elements into a vector that has
         --  already allocated an internal array, and the existing array has
         --  enough unused storage for the new items.

         declare
            E : Elements_Array renames Container.Elements.EA;

         begin
            if Before <= Container.Last then

               --  The new space is being inserted before some existing
               --  elements, so we must slide the existing elements up to
               --  their new home. We use the wider of Index_Type'Base and
               --  Count_Type'Base as the type for intermediate index values.

               if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
                  Index := Before + Index_Type'Base (Count);
               else
                  Index := Index_Type'Base (Count_Type'Base (Before) + Count);
               end if;

               E (Index .. New_Last) := E (Before .. Container.Last);
               E (Before .. Index - 1) := (others => null);
            end if;
         end;

         Container.Last := New_Last;
         return;
      end if;

      --  In this case, we're inserting elements into a vector that has already
      --  allocated an internal array, but the existing array does not have
      --  enough storage, so we must allocate a new, longer array. In order to
      --  guarantee that the amortized insertion cost is O(1), we always
      --  allocate an array whose length is some power-of-two factor of the
      --  current array length. (The new array cannot have a length less than
      --  the New_Length of the container, but its last index value cannot be
      --  greater than Index_Type'Last.)

      New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
      while New_Capacity < New_Length loop
         if New_Capacity > Count_Type'Last / 2 then
            New_Capacity := Count_Type'Last;
            exit;
         end if;

         New_Capacity := 2 * New_Capacity;
      end loop;

      if New_Capacity > Max_Length then

         --  We have reached the limit of capacity, so no further expansion
         --  will occur. (This is not a problem, as there is never a need to
         --  have more capacity than the maximum container length.)

         New_Capacity := Max_Length;
      end if;

      --  We have computed the length of the new internal array (and this is
      --  what "vector capacity" means), so use that to compute its last index.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
         Dst_Last := No_Index + Index_Type'Base (New_Capacity);
      else
         Dst_Last :=
           Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
      end if;

      --  Now we allocate the new, longer internal array. If the allocation
      --  fails, we have not changed any container state, so no side-effect
      --  will occur as a result of propagating the exception.

      Dst := new Elements_Type (Dst_Last);

      --  We have our new internal array. All that needs to be done now is to
      --  copy the existing items (if any) from the old array (the "source"
      --  array) to the new array (the "destination" array), and then
      --  deallocate the old array.

      declare
         Src : Elements_Access := Container.Elements;

      begin
         Dst.EA (Index_Type'First .. Before - 1) :=
           Src.EA (Index_Type'First .. Before - 1);

         if Before <= Container.Last then

            --  The new items are being inserted before some existing elements,
            --  so we must slide the existing elements up to their new home.

            if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
               Index := Before + Index_Type'Base (Count);
            else
               Index := Index_Type'Base (Count_Type'Base (Before) + Count);
            end if;

            Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last);
         end if;

         --  We have copied the elements from to the old, source array to the
         --  new, destination array, so we can now restore invariants, and
         --  deallocate the old array.

         Container.Elements := Dst;
         Container.Last := New_Last;
         Free (Src);
      end;
   end Insert_Space;

   procedure Insert_Space
     (Container : in out Vector;
      Before    : Cursor;
      Position  : out Cursor;
      Count     : Count_Type := 1)
   is
      Index : Index_Type'Base;

   begin
      if Before.Container /= null
        and then Before.Container /= Container'Unrestricted_Access
      then
         raise Program_Error with "Before cursor denotes wrong container";
      end if;

      if Count = 0 then
         if Before.Container = null or else Before.Index > Container.Last then
            Position := No_Element;
         else
            Position := (Container'Unrestricted_Access, Before.Index);
         end if;

         return;
      end if;

      if Before.Container = null
        or else Before.Index > Container.Last
      then
         if Container.Last = Index_Type'Last then
            raise Constraint_Error with
              "vector is already at its maximum length";
         end if;

         Index := Container.Last + 1;

      else
         Index := Before.Index;
      end if;

      Insert_Space (Container, Index, Count);

      Position := Cursor'(Container'Unrestricted_Access, Index);
   end Insert_Space;

   --------------
   -- Is_Empty --
   --------------

   function Is_Empty (Container : Vector) return Boolean is
   begin
      return Container.Last < Index_Type'First;
   end Is_Empty;

   -------------
   -- Iterate --
   -------------

   procedure Iterate
     (Container : Vector;
      Process   : not null access procedure (Position : Cursor))
   is
      B : Natural renames Container'Unrestricted_Access.all.Busy;

   begin
      B := B + 1;

      begin
         for Indx in Index_Type'First .. Container.Last loop
            Process (Cursor'(Container'Unrestricted_Access, Indx));
         end loop;
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
   end Iterate;

   function Iterate (Container : Vector)
      return Vector_Iterator_Interfaces.Reversible_Iterator'Class
   is
      V : constant Vector_Access := Container'Unrestricted_Access;
      B : Natural renames V.Busy;

   begin
      --  The value of its Index component influences the behavior of the First
      --  and Last selector functions of the iterator object. When the Index
      --  component is No_Index (as is the case here), this means the iterator
      --  object was constructed without a start expression. This is a complete
      --  iterator, meaning that the iteration starts from the (logical)
      --  beginning of the sequence of items.

      --  Note: For a forward iterator, Container.First is the beginning, and
      --  for a reverse iterator, Container.Last is the beginning.

      return It : constant Iterator :=
        (Limited_Controlled with
           Container => V,
           Index     => No_Index)
      do
         B := B + 1;
      end return;
   end Iterate;

   function Iterate
     (Container : Vector;
      Start     : Cursor)
      return Vector_Iterator_Interfaces.Reversible_Iterator'Class
   is
      V : constant Vector_Access := Container'Unrestricted_Access;
      B : Natural renames V.Busy;

   begin
      --  It was formerly the case that when Start = No_Element, the partial
      --  iterator was defined to behave the same as for a complete iterator,
      --  and iterate over the entire sequence of items. However, those
      --  semantics were unintuitive and arguably error-prone (it is too easy
      --  to accidentally create an endless loop), and so they were changed,
      --  per the ARG meeting in Denver on 2011/11. However, there was no
      --  consensus about what positive meaning this corner case should have,
      --  and so it was decided to simply raise an exception. This does imply,
      --  however, that it is not possible to use a partial iterator to specify
      --  an empty sequence of items.

      if Start.Container = null then
         raise Constraint_Error with
           "Start position for iterator equals No_Element";
      end if;

      if Start.Container /= V then
         raise Program_Error with
           "Start cursor of Iterate designates wrong vector";
      end if;

      if Start.Index > V.Last then
         raise Constraint_Error with
           "Start position for iterator equals No_Element";
      end if;

      --  The value of its Index component influences the behavior of the First
      --  and Last selector functions of the iterator object. When the Index
      --  component is not No_Index (as is the case here), it means that this
      --  is a partial iteration, over a subset of the complete sequence of
      --  items. The iterator object was constructed with a start expression,
      --  indicating the position from which the iteration begins. Note that
      --  the start position has the same value irrespective of whether this
      --  is a forward or reverse iteration.

      return It : constant Iterator :=
        (Limited_Controlled with
           Container => V,
           Index     => Start.Index)
      do
         B := B + 1;
      end return;
   end Iterate;

   ----------
   -- Last --
   ----------

   function Last (Container : Vector) return Cursor is
   begin
      if Is_Empty (Container) then
         return No_Element;
      end if;

      return (Container'Unrestricted_Access, Container.Last);
   end Last;

   function Last (Object : Iterator) return Cursor is
   begin
      --  The value of the iterator object's Index component influences the
      --  behavior of the Last (and First) selector function.

      --  When the Index component is No_Index, this means the iterator
      --  object was constructed without a start expression, in which case the
      --  (reverse) iteration starts from the (logical) beginning of the entire
      --  sequence (corresponding to Container.Last, for a reverse iterator).

      --  Otherwise, this is iteration over a partial sequence of items.
      --  When the Index component is not No_Index, the iterator object was
      --  constructed with a start expression, that specifies the position
      --  from which the (reverse) partial iteration begins.

      if Object.Index = No_Index then
         return Last (Object.Container.all);
      else
         return Cursor'(Object.Container, Object.Index);
      end if;
   end Last;

   -----------------
   -- Last_Element --
   ------------------

   function Last_Element (Container : Vector) return Element_Type is
   begin
      if Container.Last = No_Index then
         raise Constraint_Error with "Container is empty";
      end if;

      declare
         EA : constant Element_Access :=
                Container.Elements.EA (Container.Last);
      begin
         if EA = null then
            raise Constraint_Error with "last element is empty";
         else
            return EA.all;
         end if;
      end;
   end Last_Element;

   ----------------
   -- Last_Index --
   ----------------

   function Last_Index (Container : Vector) return Extended_Index is
   begin
      return Container.Last;
   end Last_Index;

   ------------
   -- Length --
   ------------

   function Length (Container : Vector) return Count_Type is
      L : constant Index_Type'Base := Container.Last;
      F : constant Index_Type := Index_Type'First;

   begin
      --  The base range of the index type (Index_Type'Base) might not include
      --  all values for length (Count_Type). Contrariwise, the index type
      --  might include values outside the range of length.  Hence we use
      --  whatever type is wider for intermediate values when calculating
      --  length. Note that no matter what the index type is, the maximum
      --  length to which a vector is allowed to grow is always the minimum
      --  of Count_Type'Last and (IT'Last - IT'First + 1).

      --  For example, an Index_Type with range -127 .. 127 is only guaranteed
      --  to have a base range of -128 .. 127, but the corresponding vector
      --  would have lengths in the range 0 .. 255. In this case we would need
      --  to use Count_Type'Base for intermediate values.

      --  Another case would be the index range -2**63 + 1 .. -2**63 + 10. The
      --  vector would have a maximum length of 10, but the index values lie
      --  outside the range of Count_Type (which is only 32 bits). In this
      --  case we would need to use Index_Type'Base for intermediate values.

      if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
         return Count_Type'Base (L) - Count_Type'Base (F) + 1;
      else
         return Count_Type (L - F + 1);
      end if;
   end Length;

   ----------
   -- Move --
   ----------

   procedure Move
     (Target : in out Vector;
      Source : in out Vector)
   is
   begin
      if Target'Address = Source'Address then
         return;
      end if;

      if Source.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (Source is busy)";
      end if;

      Clear (Target);  --  Checks busy-bit

      declare
         Target_Elements : constant Elements_Access := Target.Elements;
      begin
         Target.Elements := Source.Elements;
         Source.Elements := Target_Elements;
      end;

      Target.Last := Source.Last;
      Source.Last := No_Index;
   end Move;

   ----------
   -- Next --
   ----------

   function Next (Position : Cursor) return Cursor is
   begin
      if Position.Container = null then
         return No_Element;
      elsif Position.Index < Position.Container.Last then
         return (Position.Container, Position.Index + 1);
      else
         return No_Element;
      end if;
   end Next;

   function Next (Object : Iterator; Position : Cursor) return Cursor is
   begin
      if Position.Container = null then
         return No_Element;
      elsif Position.Container /= Object.Container then
         raise Program_Error with
           "Position cursor of Next designates wrong vector";
      else
         return Next (Position);
      end if;
   end Next;

   procedure Next (Position : in out Cursor) is
   begin
      if Position.Container = null then
         return;
      elsif Position.Index < Position.Container.Last then
         Position.Index := Position.Index + 1;
      else
         Position := No_Element;
      end if;
   end Next;

   -------------
   -- Prepend --
   -------------

   procedure Prepend (Container : in out Vector; New_Item : Vector) is
   begin
      Insert (Container, Index_Type'First, New_Item);
   end Prepend;

   procedure Prepend
     (Container : in out Vector;
      New_Item  : Element_Type;
      Count     : Count_Type := 1)
   is
   begin
      Insert (Container, Index_Type'First, New_Item, Count);
   end Prepend;

   --------------
   -- Previous --
   --------------

   procedure Previous (Position : in out Cursor) is
   begin
      if Position.Container = null then
         return;
      elsif Position.Index > Index_Type'First then
         Position.Index := Position.Index - 1;
      else
         Position := No_Element;
      end if;
   end Previous;

   function Previous (Position : Cursor) return Cursor is
   begin
      if Position.Container = null then
         return No_Element;
      elsif Position.Index > Index_Type'First then
         return (Position.Container, Position.Index - 1);
      else
         return No_Element;
      end if;
   end Previous;

   function Previous (Object : Iterator; Position : Cursor) return Cursor is
   begin
      if Position.Container = null then
         return No_Element;
      elsif Position.Container /= Object.Container then
         raise Program_Error with
           "Position cursor of Previous designates wrong vector";
      else
         return Previous (Position);
      end if;
   end Previous;

   -------------------
   -- Query_Element --
   -------------------

   procedure Query_Element
     (Container : Vector;
      Index     : Index_Type;
      Process   : not null access procedure (Element : Element_Type))
   is
      V : Vector renames Container'Unrestricted_Access.all;
      B : Natural renames V.Busy;
      L : Natural renames V.Lock;

   begin
      if Index > Container.Last then
         raise Constraint_Error with "Index is out of range";
      end if;

      if V.Elements.EA (Index) = null then
         raise Constraint_Error with "element is null";
      end if;

      B := B + 1;
      L := L + 1;

      begin
         Process (V.Elements.EA (Index).all);
      exception
         when others =>
            L := L - 1;
            B := B - 1;
            raise;
      end;

      L := L - 1;
      B := B - 1;
   end Query_Element;

   procedure Query_Element
     (Position : Cursor;
      Process  : not null access procedure (Element : Element_Type))
   is
   begin
      if Position.Container = null then
         raise Constraint_Error with "Position cursor has no element";
      else
         Query_Element (Position.Container.all, Position.Index, Process);
      end if;
   end Query_Element;

   ----------
   -- Read --
   ----------

   procedure Read
     (Stream    : not null access Root_Stream_Type'Class;
      Container : out Vector)
   is
      Length : Count_Type'Base;
      Last   : Index_Type'Base := Index_Type'Pred (Index_Type'First);
      B      : Boolean;

   begin
      Clear (Container);

      Count_Type'Base'Read (Stream, Length);

      if Length > Capacity (Container) then
         Reserve_Capacity (Container, Capacity => Length);
      end if;

      for J in Count_Type range 1 .. Length loop
         Last := Last + 1;

         Boolean'Read (Stream, B);

         if B then
            Container.Elements.EA (Last) :=
              new Element_Type'(Element_Type'Input (Stream));
         end if;

         Container.Last := Last;
      end loop;
   end Read;

   procedure Read
     (Stream   : not null access Root_Stream_Type'Class;
      Position : out Cursor)
   is
   begin
      raise Program_Error with "attempt to stream vector cursor";
   end Read;

   procedure Read
     (Stream : not null access Root_Stream_Type'Class;
      Item   : out Reference_Type)
   is
   begin
      raise Program_Error with "attempt to stream reference";
   end Read;

   procedure Read
     (Stream : not null access Root_Stream_Type'Class;
      Item   : out Constant_Reference_Type)
   is
   begin
      raise Program_Error with "attempt to stream reference";
   end Read;

   ---------------
   -- Reference --
   ---------------

   function Reference
     (Container : aliased in out Vector;
      Position  : Cursor) return Reference_Type
   is
      E : Element_Access;

   begin
      if Position.Container = null then
         raise Constraint_Error with "Position cursor has no element";
      end if;

      if Position.Container /= Container'Unrestricted_Access then
         raise Program_Error with "Position cursor denotes wrong container";
      end if;

      if Position.Index > Position.Container.Last then
         raise Constraint_Error with "Position cursor is out of range";
      end if;

      E := Container.Elements.EA (Position.Index);

      if E = null then
         raise Constraint_Error with "element at Position is empty";
      end if;

      declare
         C : Vector renames Container'Unrestricted_Access.all;
         B : Natural renames C.Busy;
         L : Natural renames C.Lock;
      begin
         return R : constant Reference_Type :=
           (Element => E.all'Access,
            Control => (Controlled with Position.Container))
         do
            B := B + 1;
            L := L + 1;
         end return;
      end;
   end Reference;

   function Reference
     (Container : aliased in out Vector;
      Index     : Index_Type) return Reference_Type
   is
      E : Element_Access;

   begin
      if Index > Container.Last then
         raise Constraint_Error with "Index is out of range";
      end if;

      E := Container.Elements.EA (Index);

      if E = null then
         raise Constraint_Error with "element at Index is empty";
      end if;

      declare
         C : Vector renames Container'Unrestricted_Access.all;
         B : Natural renames C.Busy;
         L : Natural renames C.Lock;
      begin
         return R : constant Reference_Type :=
           (Element => E.all'Access,
            Control => (Controlled with Container'Unrestricted_Access))
         do
            B := B + 1;
            L := L + 1;
         end return;
      end;
   end Reference;

   ---------------------
   -- Replace_Element --
   ---------------------

   procedure Replace_Element
     (Container : in out Vector;
      Index     : Index_Type;
      New_Item  : Element_Type)
   is
   begin
      if Index > Container.Last then
         raise Constraint_Error with "Index is out of range";
      end if;

      if Container.Lock > 0 then
         raise Program_Error with
           "attempt to tamper with elements (vector is locked)";
      end if;

      declare
         X : Element_Access := Container.Elements.EA (Index);

         --  The element allocator may need an accessibility check in the case
         --  where the actual type is class-wide or has access discriminants
         --  (see RM 4.8(10.1) and AI12-0035).

         pragma Unsuppress (Accessibility_Check);

      begin
         Container.Elements.EA (Index) := new Element_Type'(New_Item);
         Free (X);
      end;
   end Replace_Element;

   procedure Replace_Element
     (Container : in out Vector;
      Position  : Cursor;
      New_Item  : Element_Type)
   is
   begin
      if Position.Container = null then
         raise Constraint_Error with "Position cursor has no element";
      end if;

      if Position.Container /= Container'Unrestricted_Access then
         raise Program_Error with "Position cursor denotes wrong container";
      end if;

      if Position.Index > Container.Last then
         raise Constraint_Error with "Position cursor is out of range";
      end if;

      if Container.Lock > 0 then
         raise Program_Error with
           "attempt to tamper with elements (vector is locked)";
      end if;

      declare
         X : Element_Access := Container.Elements.EA (Position.Index);

         --  The element allocator may need an accessibility check in the case
         --  where the actual type is class-wide or has access discriminants
         --  (see RM 4.8(10.1) and AI12-0035).

         pragma Unsuppress (Accessibility_Check);

      begin
         Container.Elements.EA (Position.Index) := new Element_Type'(New_Item);
         Free (X);
      end;
   end Replace_Element;

   ----------------------
   -- Reserve_Capacity --
   ----------------------

   procedure Reserve_Capacity
     (Container : in out Vector;
      Capacity  : Count_Type)
   is
      N : constant Count_Type := Length (Container);

      Index : Count_Type'Base;
      Last  : Index_Type'Base;

   begin
      --  Reserve_Capacity can be used to either expand the storage available
      --  for elements (this would be its typical use, in anticipation of
      --  future insertion), or to trim back storage. In the latter case,
      --  storage can only be trimmed back to the limit of the container
      --  length. Note that Reserve_Capacity neither deletes (active) elements
      --  nor inserts elements; it only affects container capacity, never
      --  container length.

      if Capacity = 0 then

         --  This is a request to trim back storage, to the minimum amount
         --  possible given the current state of the container.

         if N = 0 then

            --  The container is empty, so in this unique case we can
            --  deallocate the entire internal array. Note that an empty
            --  container can never be busy, so there's no need to check the
            --  tampering bits.

            declare
               X : Elements_Access := Container.Elements;

            begin
               --  First we remove the internal array from the container, to
               --  handle the case when the deallocation raises an exception
               --  (although that's unlikely, since this is simply an array of
               --  access values, all of which are null).

               Container.Elements := null;

               --  Container invariants have been restored, so it is now safe
               --  to attempt to deallocate the internal array.

               Free (X);
            end;

         elsif N < Container.Elements.EA'Length then

            --  The container is not empty, and the current length is less than
            --  the current capacity, so there's storage available to trim. In
            --  this case, we allocate a new internal array having a length
            --  that exactly matches the number of items in the
            --  container. (Reserve_Capacity does not delete active elements,
            --  so this is the best we can do with respect to minimizing
            --  storage).

            if Container.Busy > 0 then
               raise Program_Error with
                 "attempt to tamper with cursors (vector is busy)";
            end if;

            declare
               subtype Array_Index_Subtype is Index_Type'Base range
                 Index_Type'First .. Container.Last;

               Src : Elements_Array renames
                       Container.Elements.EA (Array_Index_Subtype);

               X : Elements_Access := Container.Elements;

            begin
               --  Although we have isolated the old internal array that we're
               --  going to deallocate, we don't deallocate it until we have
               --  successfully allocated a new one. If there is an exception
               --  during allocation (because there is not enough storage), we
               --  let it propagate without causing any side-effect.

               Container.Elements := new Elements_Type'(Container.Last, Src);

               --  We have successfully allocated a new internal array (with a
               --  smaller length than the old one, and containing a copy of
               --  just the active elements in the container), so we can
               --  deallocate the old array.

               Free (X);
            end;
         end if;

         return;
      end if;

      --  Reserve_Capacity can be used to expand the storage available for
      --  elements, but we do not let the capacity grow beyond the number of
      --  values in Index_Type'Range. (Were it otherwise, there would be no way
      --  to refer to the elements with index values greater than
      --  Index_Type'Last, so that storage would be wasted.) Here we compute
      --  the Last index value of the new internal array, in a way that avoids
      --  any possibility of overflow.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then

         --  We perform a two-part test. First we determine whether the
         --  computed Last value lies in the base range of the type, and then
         --  determine whether it lies in the range of the index (sub)type.

         --  Last must satisfy this relation:
         --    First + Length - 1 <= Last
         --  We regroup terms:
         --    First - 1 <= Last - Length
         --  Which can rewrite as:
         --    No_Index <= Last - Length

         if Index_Type'Base'Last - Index_Type'Base (Capacity) < No_Index then
            raise Constraint_Error with "Capacity is out of range";
         end if;

         --  We now know that the computed value of Last is within the base
         --  range of the type, so it is safe to compute its value:

         Last := No_Index + Index_Type'Base (Capacity);

         --  Finally we test whether the value is within the range of the
         --  generic actual index subtype:

         if Last > Index_Type'Last then
            raise Constraint_Error with "Capacity is out of range";
         end if;

      elsif Index_Type'First <= 0 then

         --  Here we can compute Last directly, in the normal way. We know that
         --  No_Index is less than 0, so there is no danger of overflow when
         --  adding the (positive) value of Capacity.

         Index := Count_Type'Base (No_Index) + Capacity;  -- Last

         if Index > Count_Type'Base (Index_Type'Last) then
            raise Constraint_Error with "Capacity is out of range";
         end if;

         --  We know that the computed value (having type Count_Type) of Last
         --  is within the range of the generic actual index subtype, so it is
         --  safe to convert to Index_Type:

         Last := Index_Type'Base (Index);

      else
         --  Here Index_Type'First (and Index_Type'Last) is positive, so we
         --  must test the length indirectly (by working backwards from the
         --  largest possible value of Last), in order to prevent overflow.

         Index := Count_Type'Base (Index_Type'Last) - Capacity;  -- No_Index

         if Index < Count_Type'Base (No_Index) then
            raise Constraint_Error with "Capacity is out of range";
         end if;

         --  We have determined that the value of Capacity would not create a
         --  Last index value outside of the range of Index_Type, so we can now
         --  safely compute its value.

         Last := Index_Type'Base (Count_Type'Base (No_Index) + Capacity);
      end if;

      --  The requested capacity is non-zero, but we don't know yet whether
      --  this is a request for expansion or contraction of storage.

      if Container.Elements = null then

         --  The container is empty (it doesn't even have an internal array),
         --  so this represents a request to allocate storage having the given
         --  capacity.

         Container.Elements := new Elements_Type (Last);
         return;
      end if;

      if Capacity <= N then

         --  This is a request to trim back storage, but only to the limit of
         --  what's already in the container. (Reserve_Capacity never deletes
         --  active elements, it only reclaims excess storage.)

         if N < Container.Elements.EA'Length then

            --  The container is not empty (because the requested capacity is
            --  positive, and less than or equal to the container length), and
            --  the current length is less than the current capacity, so there
            --  is storage available to trim. In this case, we allocate a new
            --  internal array having a length that exactly matches the number
            --  of items in the container.

            if Container.Busy > 0 then
               raise Program_Error with
                 "attempt to tamper with cursors (vector is busy)";
            end if;

            declare
               subtype Array_Index_Subtype is Index_Type'Base range
                 Index_Type'First .. Container.Last;

               Src : Elements_Array renames
                       Container.Elements.EA (Array_Index_Subtype);

               X : Elements_Access := Container.Elements;

            begin
               --  Although we have isolated the old internal array that we're
               --  going to deallocate, we don't deallocate it until we have
               --  successfully allocated a new one. If there is an exception
               --  during allocation (because there is not enough storage), we
               --  let it propagate without causing any side-effect.

               Container.Elements := new Elements_Type'(Container.Last, Src);

               --  We have successfully allocated a new internal array (with a
               --  smaller length than the old one, and containing a copy of
               --  just the active elements in the container), so it is now
               --  safe to deallocate the old array.

               Free (X);
            end;
         end if;

         return;
      end if;

      --  The requested capacity is larger than the container length (the
      --  number of active elements). Whether this represents a request for
      --  expansion or contraction of the current capacity depends on what the
      --  current capacity is.

      if Capacity = Container.Elements.EA'Length then

         --  The requested capacity matches the existing capacity, so there's
         --  nothing to do here. We treat this case as a no-op, and simply
         --  return without checking the busy bit.

         return;
      end if;

      --  There is a change in the capacity of a non-empty container, so a new
      --  internal array will be allocated. (The length of the new internal
      --  array could be less or greater than the old internal array. We know
      --  only that the length of the new internal array is greater than the
      --  number of active elements in the container.) We must check whether
      --  the container is busy before doing anything else.

      if Container.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (vector is busy)";
      end if;

      --  We now allocate a new internal array, having a length different from
      --  its current value.

      declare
         X : Elements_Access := Container.Elements;

         subtype Index_Subtype is Index_Type'Base range
           Index_Type'First .. Container.Last;

      begin
         --  We now allocate a new internal array, having a length different
         --  from its current value.

         Container.Elements := new Elements_Type (Last);

         --  We have successfully allocated the new internal array, so now we
         --  move the existing elements from the existing the old internal
         --  array onto the new one. Note that we're just copying access
         --  values, to this should not raise any exceptions.

         Container.Elements.EA (Index_Subtype) := X.EA (Index_Subtype);

         --  We have moved the elements from the old internal array, so now we
         --  can deallocate it.

         Free (X);
      end;
   end Reserve_Capacity;

   ----------------------
   -- Reverse_Elements --
   ----------------------

   procedure Reverse_Elements (Container : in out Vector) is
   begin
      if Container.Length <= 1 then
         return;
      end if;

      --  The exception behavior for the vector container must match that for
      --  the list container, so we check for cursor tampering here (which will
      --  catch more things) instead of for element tampering (which will catch
      --  fewer things). It's true that the elements of this vector container
      --  could be safely moved around while (say) an iteration is taking place
      --  (iteration only increments the busy counter), and so technically all
      --  we would need here is a test for element tampering (indicated by the
      --  lock counter), that's simply an artifact of our array-based
      --  implementation. Logically Reverse_Elements requires a check for
      --  cursor tampering.

      if Container.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (vector is busy)";
      end if;

      declare
         I : Index_Type;
         J : Index_Type;
         E : Elements_Array renames Container.Elements.EA;

      begin
         I := Index_Type'First;
         J := Container.Last;
         while I < J loop
            declare
               EI : constant Element_Access := E (I);

            begin
               E (I) := E (J);
               E (J) := EI;
            end;

            I := I + 1;
            J := J - 1;
         end loop;
      end;
   end Reverse_Elements;

   ------------------
   -- Reverse_Find --
   ------------------

   function Reverse_Find
     (Container : Vector;
      Item      : Element_Type;
      Position  : Cursor := No_Element) return Cursor
   is
      Last : Index_Type'Base;

   begin
      if Position.Container /= null
        and then Position.Container /= Container'Unrestricted_Access
      then
         raise Program_Error with "Position cursor denotes wrong container";
      end if;

      if Position.Container = null or else Position.Index > Container.Last then
         Last := Container.Last;
      else
         Last := Position.Index;
      end if;

      --  Per AI05-0022, the container implementation is required to detect
      --  element tampering by a generic actual subprogram.

      declare
         B : Natural renames Container'Unrestricted_Access.Busy;
         L : Natural renames Container'Unrestricted_Access.Lock;

         Result : Index_Type'Base;

      begin
         B := B + 1;
         L := L + 1;

         Result := No_Index;
         for Indx in reverse Index_Type'First .. Last loop
            if Container.Elements.EA (Indx) /= null
              and then Container.Elements.EA (Indx).all = Item
            then
               Result := Indx;
               exit;
            end if;
         end loop;

         B := B - 1;
         L := L - 1;

         if Result = No_Index then
            return No_Element;
         else
            return Cursor'(Container'Unrestricted_Access, Result);
         end if;

      exception
         when others =>
            B := B - 1;
            L := L - 1;
            raise;
      end;
   end Reverse_Find;

   ------------------------
   -- Reverse_Find_Index --
   ------------------------

   function Reverse_Find_Index
     (Container : Vector;
      Item      : Element_Type;
      Index     : Index_Type := Index_Type'Last) return Extended_Index
   is
      B : Natural renames Container'Unrestricted_Access.Busy;
      L : Natural renames Container'Unrestricted_Access.Lock;

      Last : constant Index_Type'Base :=
        (if Index > Container.Last then Container.Last else Index);

      Result : Index_Type'Base;

   begin
      --  Per AI05-0022, the container implementation is required to detect
      --  element tampering by a generic actual subprogram.

      B := B + 1;
      L := L + 1;

      Result := No_Index;
      for Indx in reverse Index_Type'First .. Last loop
         if Container.Elements.EA (Indx) /= null
           and then Container.Elements.EA (Indx).all = Item
         then
            Result := Indx;
            exit;
         end if;
      end loop;

      B := B - 1;
      L := L - 1;

      return Result;

   exception
      when others =>
         B := B - 1;
         L := L - 1;
         raise;
   end Reverse_Find_Index;

   ---------------------
   -- Reverse_Iterate --
   ---------------------

   procedure Reverse_Iterate
     (Container : Vector;
      Process   : not null access procedure (Position : Cursor))
   is
      V : Vector renames Container'Unrestricted_Access.all;
      B : Natural renames V.Busy;

   begin
      B := B + 1;

      begin
         for Indx in reverse Index_Type'First .. Container.Last loop
            Process (Cursor'(Container'Unrestricted_Access, Indx));
         end loop;
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
   end Reverse_Iterate;

   ----------------
   -- Set_Length --
   ----------------

   procedure Set_Length
     (Container : in out Vector;
      Length    : Count_Type)
   is
      Count : constant Count_Type'Base := Container.Length - Length;

   begin
      --  Set_Length allows the user to set the length explicitly, instead of
      --  implicitly as a side-effect of deletion or insertion. If the
      --  requested length is less than the current length, this is equivalent
      --  to deleting items from the back end of the vector. If the requested
      --  length is greater than the current length, then this is equivalent to
      --  inserting "space" (nonce items) at the end.

      if Count >= 0 then
         Container.Delete_Last (Count);

      elsif Container.Last >= Index_Type'Last then
         raise Constraint_Error with "vector is already at its maximum length";

      else
         Container.Insert_Space (Container.Last + 1, -Count);
      end if;
   end Set_Length;

   ----------
   -- Swap --
   ----------

   procedure Swap
     (Container : in out Vector;
      I, J      : Index_Type)
   is
   begin
      if I > Container.Last then
         raise Constraint_Error with "I index is out of range";
      end if;

      if J > Container.Last then
         raise Constraint_Error with "J index is out of range";
      end if;

      if I = J then
         return;
      end if;

      if Container.Lock > 0 then
         raise Program_Error with
           "attempt to tamper with elements (vector is locked)";
      end if;

      declare
         EI : Element_Access renames Container.Elements.EA (I);
         EJ : Element_Access renames Container.Elements.EA (J);

         EI_Copy : constant Element_Access := EI;

      begin
         EI := EJ;
         EJ := EI_Copy;
      end;
   end Swap;

   procedure Swap
     (Container : in out Vector;
      I, J      : Cursor)
   is
   begin
      if I.Container = null then
         raise Constraint_Error with "I cursor has no element";
      end if;

      if J.Container = null then
         raise Constraint_Error with "J cursor has no element";
      end if;

      if I.Container /= Container'Unrestricted_Access then
         raise Program_Error with "I cursor denotes wrong container";
      end if;

      if J.Container /= Container'Unrestricted_Access then
         raise Program_Error with "J cursor denotes wrong container";
      end if;

      Swap (Container, I.Index, J.Index);
   end Swap;

   ---------------
   -- To_Cursor --
   ---------------

   function To_Cursor
     (Container : Vector;
      Index     : Extended_Index) return Cursor
   is
   begin
      if Index not in Index_Type'First .. Container.Last then
         return No_Element;
      end if;

      return Cursor'(Container'Unrestricted_Access, Index);
   end To_Cursor;

   --------------
   -- To_Index --
   --------------

   function To_Index (Position : Cursor) return Extended_Index is
   begin
      if Position.Container = null then
         return No_Index;
      elsif Position.Index <= Position.Container.Last then
         return Position.Index;
      else
         return No_Index;
      end if;
   end To_Index;

   ---------------
   -- To_Vector --
   ---------------

   function To_Vector (Length : Count_Type) return Vector is
      Index    : Count_Type'Base;
      Last     : Index_Type'Base;
      Elements : Elements_Access;

   begin
      if Length = 0 then
         return Empty_Vector;
      end if;

      --  We create a vector object with a capacity that matches the specified
      --  Length, but we do not allow the vector capacity (the length of the
      --  internal array) to exceed the number of values in Index_Type'Range
      --  (otherwise, there would be no way to refer to those components via an
      --  index).  We must therefore check whether the specified Length would
      --  create a Last index value greater than Index_Type'Last.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then

         --  We perform a two-part test. First we determine whether the
         --  computed Last value lies in the base range of the type, and then
         --  determine whether it lies in the range of the index (sub)type.

         --  Last must satisfy this relation:
         --    First + Length - 1 <= Last
         --  We regroup terms:
         --    First - 1 <= Last - Length
         --  Which can rewrite as:
         --    No_Index <= Last - Length

         if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
            raise Constraint_Error with "Length is out of range";
         end if;

         --  We now know that the computed value of Last is within the base
         --  range of the type, so it is safe to compute its value:

         Last := No_Index + Index_Type'Base (Length);

         --  Finally we test whether the value is within the range of the
         --  generic actual index subtype:

         if Last > Index_Type'Last then
            raise Constraint_Error with "Length is out of range";
         end if;

      elsif Index_Type'First <= 0 then

         --  Here we can compute Last directly, in the normal way. We know that
         --  No_Index is less than 0, so there is no danger of overflow when
         --  adding the (positive) value of Length.

         Index := Count_Type'Base (No_Index) + Length;  -- Last

         if Index > Count_Type'Base (Index_Type'Last) then
            raise Constraint_Error with "Length is out of range";
         end if;

         --  We know that the computed value (having type Count_Type) of Last
         --  is within the range of the generic actual index subtype, so it is
         --  safe to convert to Index_Type:

         Last := Index_Type'Base (Index);

      else
         --  Here Index_Type'First (and Index_Type'Last) is positive, so we
         --  must test the length indirectly (by working backwards from the
         --  largest possible value of Last), in order to prevent overflow.

         Index := Count_Type'Base (Index_Type'Last) - Length;  -- No_Index

         if Index < Count_Type'Base (No_Index) then
            raise Constraint_Error with "Length is out of range";
         end if;

         --  We have determined that the value of Length would not create a
         --  Last index value outside of the range of Index_Type, so we can now
         --  safely compute its value.

         Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
      end if;

      Elements := new Elements_Type (Last);

      return Vector'(Controlled with Elements, Last, 0, 0);
   end To_Vector;

   function To_Vector
     (New_Item : Element_Type;
      Length   : Count_Type) return Vector
   is
      Index    : Count_Type'Base;
      Last     : Index_Type'Base;
      Elements : Elements_Access;

   begin
      if Length = 0 then
         return Empty_Vector;
      end if;

      --  We create a vector object with a capacity that matches the specified
      --  Length, but we do not allow the vector capacity (the length of the
      --  internal array) to exceed the number of values in Index_Type'Range
      --  (otherwise, there would be no way to refer to those components via an
      --  index). We must therefore check whether the specified Length would
      --  create a Last index value greater than Index_Type'Last.

      if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then

         --  We perform a two-part test. First we determine whether the
         --  computed Last value lies in the base range of the type, and then
         --  determine whether it lies in the range of the index (sub)type.

         --  Last must satisfy this relation:
         --    First + Length - 1 <= Last
         --  We regroup terms:
         --    First - 1 <= Last - Length
         --  Which can rewrite as:
         --    No_Index <= Last - Length

         if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
            raise Constraint_Error with "Length is out of range";
         end if;

         --  We now know that the computed value of Last is within the base
         --  range of the type, so it is safe to compute its value:

         Last := No_Index + Index_Type'Base (Length);

         --  Finally we test whether the value is within the range of the
         --  generic actual index subtype:

         if Last > Index_Type'Last then
            raise Constraint_Error with "Length is out of range";
         end if;

      elsif Index_Type'First <= 0 then

         --  Here we can compute Last directly, in the normal way. We know that
         --  No_Index is less than 0, so there is no danger of overflow when
         --  adding the (positive) value of Length.

         Index := Count_Type'Base (No_Index) + Length;  -- Last

         if Index > Count_Type'Base (Index_Type'Last) then
            raise Constraint_Error with "Length is out of range";
         end if;

         --  We know that the computed value (having type Count_Type) of Last
         --  is within the range of the generic actual index subtype, so it is
         --  safe to convert to Index_Type:

         Last := Index_Type'Base (Index);

      else
         --  Here Index_Type'First (and Index_Type'Last) is positive, so we
         --  must test the length indirectly (by working backwards from the
         --  largest possible value of Last), in order to prevent overflow.

         Index := Count_Type'Base (Index_Type'Last) - Length;  -- No_Index

         if Index < Count_Type'Base (No_Index) then
            raise Constraint_Error with "Length is out of range";
         end if;

         --  We have determined that the value of Length would not create a
         --  Last index value outside of the range of Index_Type, so we can now
         --  safely compute its value.

         Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
      end if;

      Elements := new Elements_Type (Last);

      --  We use Last as the index of the loop used to populate the internal
      --  array with items. In general, we prefer to initialize the loop index
      --  immediately prior to entering the loop. However, Last is also used in
      --  the exception handler (to reclaim elements that have been allocated,
      --  before propagating the exception), and the initialization of Last
      --  after entering the block containing the handler confuses some static
      --  analysis tools, with respect to whether Last has been properly
      --  initialized when the handler executes. So here we initialize our loop
      --  variable earlier than we prefer, before entering the block, so there
      --  is no ambiguity.

      Last := Index_Type'First;

      declare
         --  The element allocator may need an accessibility check in the case
         --  where the actual type is class-wide or has access discriminants
         --  (see RM 4.8(10.1) and AI12-0035).

         pragma Unsuppress (Accessibility_Check);

      begin
         loop
            Elements.EA (Last) := new Element_Type'(New_Item);
            exit when Last = Elements.Last;
            Last := Last + 1;
         end loop;

      exception
         when others =>
            for J in Index_Type'First .. Last - 1 loop
               Free (Elements.EA (J));
            end loop;

            Free (Elements);
            raise;
      end;

      return (Controlled with Elements, Last, 0, 0);
   end To_Vector;

   --------------------
   -- Update_Element --
   --------------------

   procedure Update_Element
     (Container : in out Vector;
      Index     : Index_Type;
      Process   : not null access procedure (Element : in out Element_Type))
   is
      B : Natural renames Container.Busy;
      L : Natural renames Container.Lock;

   begin
      if Index > Container.Last then
         raise Constraint_Error with "Index is out of range";
      end if;

      if Container.Elements.EA (Index) = null then
         raise Constraint_Error with "element is null";
      end if;

      B := B + 1;
      L := L + 1;

      begin
         Process (Container.Elements.EA (Index).all);
      exception
         when others =>
            L := L - 1;
            B := B - 1;
            raise;
      end;

      L := L - 1;
      B := B - 1;
   end Update_Element;

   procedure Update_Element
     (Container : in out Vector;
      Position  : Cursor;
      Process   : not null access procedure (Element : in out Element_Type))
   is
   begin
      if Position.Container = null then
         raise Constraint_Error with "Position cursor has no element";

      elsif Position.Container /= Container'Unrestricted_Access then
         raise Program_Error with "Position cursor denotes wrong container";

      else
         Update_Element (Container, Position.Index, Process);
      end if;
   end Update_Element;

   -----------
   -- Write --
   -----------

   procedure Write
     (Stream    : not null access Root_Stream_Type'Class;
      Container : Vector)
   is
      N : constant Count_Type := Length (Container);

   begin
      Count_Type'Base'Write (Stream, N);

      if N = 0 then
         return;
      end if;

      declare
         E : Elements_Array renames Container.Elements.EA;

      begin
         for Indx in Index_Type'First .. Container.Last loop
            if E (Indx) = null then
               Boolean'Write (Stream, False);
            else
               Boolean'Write (Stream, True);
               Element_Type'Output (Stream, E (Indx).all);
            end if;
         end loop;
      end;
   end Write;

   procedure Write
     (Stream   : not null access Root_Stream_Type'Class;
      Position : Cursor)
   is
   begin
      raise Program_Error with "attempt to stream vector cursor";
   end Write;

   procedure Write
     (Stream : not null access Root_Stream_Type'Class;
      Item   : Reference_Type)
   is
   begin
      raise Program_Error with "attempt to stream reference";
   end Write;

   procedure Write
     (Stream : not null access Root_Stream_Type'Class;
      Item   : Constant_Reference_Type)
   is
   begin
      raise Program_Error with "attempt to stream reference";
   end Write;

end Ada.Containers.Indefinite_Vectors;