1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- A D A . C O N T A I N E R S . R E D _ B L A C K _ T R E E S . --
-- G E N E R I C _ K E Y S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2005 Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the contents of the part following the private keyword. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
package body Ada.Containers.Red_Black_Trees.Generic_Keys is
package Ops renames Tree_Operations;
-------------
-- Ceiling --
-------------
-- AKA Lower_Bound
function Ceiling (Tree : Tree_Type; Key : Key_Type) return Node_Access is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= null loop
if Is_Greater_Key_Node (Key, X) then
X := Ops.Right (X);
else
Y := X;
X := Ops.Left (X);
end if;
end loop;
return Y;
end Ceiling;
----------
-- Find --
----------
function Find (Tree : Tree_Type; Key : Key_Type) return Node_Access is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= null loop
if Is_Greater_Key_Node (Key, X) then
X := Ops.Right (X);
else
Y := X;
X := Ops.Left (X);
end if;
end loop;
if Y = null then
return null;
end if;
if Is_Less_Key_Node (Key, Y) then
return null;
end if;
return Y;
end Find;
-----------
-- Floor --
-----------
function Floor (Tree : Tree_Type; Key : Key_Type) return Node_Access is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= null loop
if Is_Less_Key_Node (Key, X) then
X := Ops.Left (X);
else
Y := X;
X := Ops.Right (X);
end if;
end loop;
return Y;
end Floor;
--------------------------------
-- Generic_Conditional_Insert --
--------------------------------
procedure Generic_Conditional_Insert
(Tree : in out Tree_Type;
Key : Key_Type;
Node : out Node_Access;
Success : out Boolean)
is
Y : Node_Access := null;
X : Node_Access := Tree.Root;
begin
Success := True;
while X /= null loop
Y := X;
Success := Is_Less_Key_Node (Key, X);
if Success then
X := Ops.Left (X);
else
X := Ops.Right (X);
end if;
end loop;
Node := Y;
if Success then
if Node = Tree.First then
Insert_Post (Tree, X, Y, Key, Node);
return;
end if;
Node := Ops.Previous (Node);
end if;
if Is_Greater_Key_Node (Key, Node) then
Insert_Post (Tree, X, Y, Key, Node);
Success := True;
return;
end if;
Success := False;
end Generic_Conditional_Insert;
------------------------------------------
-- Generic_Conditional_Insert_With_Hint --
------------------------------------------
procedure Generic_Conditional_Insert_With_Hint
(Tree : in out Tree_Type;
Position : Node_Access;
Key : Key_Type;
Node : out Node_Access;
Success : out Boolean)
is
begin
if Position = null then -- largest
if Tree.Length > 0
and then Is_Greater_Key_Node (Key, Tree.Last)
then
Insert_Post (Tree, null, Tree.Last, Key, Node);
Success := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Success);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
if Is_Less_Key_Node (Key, Position) then
if Position = Tree.First then
Insert_Post (Tree, Position, Position, Key, Node);
Success := True;
return;
end if;
declare
Before : constant Node_Access := Ops.Previous (Position);
begin
if Is_Greater_Key_Node (Key, Before) then
if Ops.Right (Before) = null then
Insert_Post (Tree, null, Before, Key, Node);
else
Insert_Post (Tree, Position, Position, Key, Node);
end if;
Success := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Success);
end if;
end;
return;
end if;
if Is_Greater_Key_Node (Key, Position) then
if Position = Tree.Last then
Insert_Post (Tree, null, Tree.Last, Key, Node);
Success := True;
return;
end if;
declare
After : constant Node_Access := Ops.Next (Position);
begin
if Is_Less_Key_Node (Key, After) then
if Ops.Right (Position) = null then
Insert_Post (Tree, null, Position, Key, Node);
else
Insert_Post (Tree, After, After, Key, Node);
end if;
Success := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Success);
end if;
end;
return;
end if;
Node := Position;
Success := False;
end Generic_Conditional_Insert_With_Hint;
-------------------------
-- Generic_Insert_Post --
-------------------------
procedure Generic_Insert_Post
(Tree : in out Tree_Type;
X, Y : Node_Access;
Key : Key_Type;
Z : out Node_Access)
is
subtype Length_Subtype is Count_Type range 0 .. Count_Type'Last - 1;
New_Length : constant Count_Type := Length_Subtype'(Tree.Length) + 1;
begin
if Tree.Busy > 0 then
raise Program_Error;
end if;
if Y = null
or else X /= null
or else Is_Less_Key_Node (Key, Y)
then
pragma Assert (Y = null
or else Ops.Left (Y) = null);
-- Delay allocation as long as we can, in order to defend
-- against exceptions propagated by relational operators.
Z := New_Node;
pragma Assert (Z /= null);
pragma Assert (Ops.Color (Z) = Red);
if Y = null then
pragma Assert (Tree.Length = 0);
pragma Assert (Tree.Root = null);
pragma Assert (Tree.First = null);
pragma Assert (Tree.Last = null);
Tree.Root := Z;
Tree.First := Z;
Tree.Last := Z;
else
Ops.Set_Left (Y, Z);
if Y = Tree.First then
Tree.First := Z;
end if;
end if;
else
pragma Assert (Ops.Right (Y) = null);
-- Delay allocation as long as we can, in order to defend
-- against exceptions propagated by relational operators.
Z := New_Node;
pragma Assert (Z /= null);
pragma Assert (Ops.Color (Z) = Red);
Ops.Set_Right (Y, Z);
if Y = Tree.Last then
Tree.Last := Z;
end if;
end if;
Ops.Set_Parent (Z, Y);
Ops.Rebalance_For_Insert (Tree, Z);
Tree.Length := New_Length;
end Generic_Insert_Post;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration
(Tree : Tree_Type;
Key : Key_Type)
is
procedure Iterate (Node : Node_Access);
-------------
-- Iterate --
-------------
procedure Iterate (Node : Node_Access) is
N : Node_Access := Node;
begin
while N /= null loop
if Is_Less_Key_Node (Key, N) then
N := Ops.Left (N);
elsif Is_Greater_Key_Node (Key, N) then
N := Ops.Right (N);
else
Iterate (Ops.Left (N));
Process (N);
N := Ops.Right (N);
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Iteration
begin
Iterate (Tree.Root);
end Generic_Iteration;
-------------------------------
-- Generic_Reverse_Iteration --
-------------------------------
procedure Generic_Reverse_Iteration
(Tree : Tree_Type;
Key : Key_Type)
is
procedure Iterate (Node : Node_Access);
-------------
-- Iterate --
-------------
procedure Iterate (Node : Node_Access) is
N : Node_Access := Node;
begin
while N /= null loop
if Is_Less_Key_Node (Key, N) then
N := Ops.Left (N);
elsif Is_Greater_Key_Node (Key, N) then
N := Ops.Right (N);
else
Iterate (Ops.Right (N));
Process (N);
N := Ops.Left (N);
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Reverse_Iteration
begin
Iterate (Tree.Root);
end Generic_Reverse_Iteration;
----------------------------------
-- Generic_Unconditional_Insert --
----------------------------------
procedure Generic_Unconditional_Insert
(Tree : in out Tree_Type;
Key : Key_Type;
Node : out Node_Access)
is
Y : Node_Access := null;
X : Node_Access := Tree.Root;
begin
while X /= null loop
Y := X;
if Is_Less_Key_Node (Key, X) then
X := Ops.Left (X);
else
X := Ops.Right (X);
end if;
end loop;
Insert_Post (Tree, X, Y, Key, Node);
end Generic_Unconditional_Insert;
--------------------------------------------
-- Generic_Unconditional_Insert_With_Hint --
--------------------------------------------
procedure Generic_Unconditional_Insert_With_Hint
(Tree : in out Tree_Type;
Hint : Node_Access;
Key : Key_Type;
Node : out Node_Access)
is
-- TODO: verify this algorithm. It was (quickly) adapted it from the
-- same algorithm for conditional_with_hint. It may be that the test
-- Key > Hint should be something like a Key >= Hint, to handle the
-- case when Hint is The Last Item of A (Contiguous) sequence of
-- Equivalent Items. (The Key < Hint Test is probably OK. It is not
-- clear that you can use Key <= Hint, since new items are always
-- inserted last in the sequence of equivalent items.) ???
begin
if Hint = null then -- largest
if Tree.Length > 0
and then Is_Greater_Key_Node (Key, Tree.Last)
then
Insert_Post (Tree, null, Tree.Last, Key, Node);
else
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
if Is_Less_Key_Node (Key, Hint) then
if Hint = Tree.First then
Insert_Post (Tree, Hint, Hint, Key, Node);
return;
end if;
declare
Before : constant Node_Access := Ops.Previous (Hint);
begin
if Is_Greater_Key_Node (Key, Before) then
if Ops.Right (Before) = null then
Insert_Post (Tree, null, Before, Key, Node);
else
Insert_Post (Tree, Hint, Hint, Key, Node);
end if;
else
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end if;
end;
return;
end if;
if Is_Greater_Key_Node (Key, Hint) then
if Hint = Tree.Last then
Insert_Post (Tree, null, Tree.Last, Key, Node);
return;
end if;
declare
After : constant Node_Access := Ops.Next (Hint);
begin
if Is_Less_Key_Node (Key, After) then
if Ops.Right (Hint) = null then
Insert_Post (Tree, null, Hint, Key, Node);
else
Insert_Post (Tree, After, After, Key, Node);
end if;
else
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end if;
end;
return;
end if;
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end Generic_Unconditional_Insert_With_Hint;
-----------------
-- Upper_Bound --
-----------------
function Upper_Bound
(Tree : Tree_Type;
Key : Key_Type) return Node_Access
is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= null loop
if Is_Less_Key_Node (Key, X) then
Y := X;
X := Ops.Left (X);
else
X := Ops.Right (X);
end if;
end loop;
return Y;
end Upper_Bound;
end Ada.Containers.Red_Black_Trees.Generic_Keys;
|