summaryrefslogtreecommitdiff
path: root/gcc/ada/a-ngcefu.adb
blob: 1a19e0599cd19cc3398da52797168d2c3519a9c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUNTIME COMPONENTS                          --
--                                                                          --
--            ADA.NUMERICS.GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS             --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--                            $Revision: 1.13 $
--                                                                          --
--          Copyright (C) 1992-2001 Free Software Foundation, Inc.
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
-- MA 02111-1307, USA.                                                      --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
--                                                                          --
------------------------------------------------------------------------------

with Ada.Numerics.Generic_Elementary_Functions;

package body Ada.Numerics.Generic_Complex_Elementary_Functions is

   package Elementary_Functions is new
      Ada.Numerics.Generic_Elementary_Functions (Real'Base);
   use Elementary_Functions;

   PI      : constant := 3.14159_26535_89793_23846_26433_83279_50288_41971;
   PI_2    : constant := PI / 2.0;
   Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
   Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;

   subtype T is Real'Base;

   Epsilon                 : constant T := 2.0      ** (1 - T'Model_Mantissa);
   Square_Root_Epsilon     : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
   Inv_Square_Root_Epsilon : constant T := Sqrt_Two ** (T'Model_Mantissa - 1);
   Root_Root_Epsilon       : constant T := Sqrt_Two **
                                                 ((1 - T'Model_Mantissa) / 2);
   Log_Inverse_Epsilon_2   : constant T := T (T'Model_Mantissa - 1) / 2.0;

   Complex_Zero : constant Complex := (0.0,  0.0);
   Complex_One  : constant Complex := (1.0,  0.0);
   Complex_I    : constant Complex := (0.0,  1.0);
   Half_Pi      : constant Complex := (PI_2, 0.0);

   --------
   -- ** --
   --------

   function "**" (Left : Complex; Right : Complex) return Complex is
   begin
      if Re (Right) = 0.0
        and then Im (Right) = 0.0
        and then Re (Left)  = 0.0
        and then Im (Left)  = 0.0
      then
         raise Argument_Error;

      elsif Re (Left) = 0.0
        and then Im (Left) = 0.0
        and then Re (Right) < 0.0
      then
         raise Constraint_Error;

      elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then
         return Left;

      elsif Right = (0.0, 0.0)  then
         return Complex_One;

      elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then
         return 1.0 + Right;

      elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then
         return Left;

      else
         return Exp (Right * Log (Left));
      end if;
   end "**";

   function "**" (Left : Real'Base; Right : Complex) return Complex is
   begin
      if Re (Right) = 0.0 and then Im (Right) = 0.0 and then Left = 0.0 then
         raise Argument_Error;

      elsif Left = 0.0 and then Re (Right) < 0.0 then
         raise Constraint_Error;

      elsif Left = 0.0 then
         return Compose_From_Cartesian (Left, 0.0);

      elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then
         return Complex_One;

      elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then
         return Compose_From_Cartesian (Left, 0.0);

      else
         return Exp (Log (Left) * Right);
      end if;
   end "**";

   function "**" (Left : Complex; Right : Real'Base) return Complex is
   begin
      if Right = 0.0
        and then Re (Left) = 0.0
        and then Im (Left) = 0.0
      then
         raise Argument_Error;

      elsif Re (Left) = 0.0
        and then Im (Left) = 0.0
        and then Right < 0.0
      then
         raise Constraint_Error;

      elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then
         return Left;

      elsif Right = 0.0 then
         return Complex_One;

      elsif Right = 1.0 then
         return Left;

      else
         return Exp (Right * Log (Left));
      end if;
   end "**";

   ------------
   -- Arccos --
   ------------

   function Arccos (X : Complex) return Complex is
      Result : Complex;

   begin
      if X = Complex_One then
         return Complex_Zero;

      elsif abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return Half_Pi - X;

      elsif abs Re (X) > Inv_Square_Root_Epsilon or else
            abs Im (X) > Inv_Square_Root_Epsilon
      then
         return -2.0 * Complex_I * Log (Sqrt ((1.0 + X) / 2.0) +
                            Complex_I * Sqrt ((1.0 - X) / 2.0));
      end if;

      Result := -Complex_I * Log (X + Complex_I * Sqrt (1.0 - X * X));

      if Im (X) = 0.0
        and then abs Re (X) <= 1.00
      then
         Set_Im (Result, Im (X));
      end if;

      return Result;
   end Arccos;

   -------------
   -- Arccosh --
   -------------

   function Arccosh (X : Complex) return Complex is
      Result : Complex;

   begin
      if X = Complex_One then
         return Complex_Zero;

      elsif abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         Result := Compose_From_Cartesian (-Im (X), -PI_2 + Re (X));

      elsif abs Re (X) > Inv_Square_Root_Epsilon or else
            abs Im (X) > Inv_Square_Root_Epsilon
      then
         Result := Log_Two + Log (X);

      else
         Result := 2.0 * Log (Sqrt ((1.0 + X) / 2.0) +
                              Sqrt ((X - 1.0) / 2.0));
      end if;

      if Re (Result) <= 0.0 then
         Result := -Result;
      end if;

      return Result;
   end Arccosh;

   ------------
   -- Arccot --
   ------------

   function Arccot (X : Complex) return Complex is
      Xt : Complex;

   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return Half_Pi - X;

      elsif abs Re (X) > 1.0 / Epsilon or else
            abs Im (X) > 1.0 / Epsilon
      then
         Xt := Complex_One  /  X;

         if Re (X) < 0.0 then
            Set_Re (Xt, PI - Re (Xt));
            return Xt;
         else
            return Xt;
         end if;
      end if;

      Xt := Complex_I * Log ((X - Complex_I) / (X + Complex_I)) / 2.0;

      if Re (Xt) < 0.0 then
         Xt := PI + Xt;
      end if;

      return Xt;
   end Arccot;

   --------------
   -- Arctcoth --
   --------------

   function Arccoth (X : Complex) return Complex is
      R : Complex;

   begin
      if X = (0.0, 0.0) then
         return Compose_From_Cartesian (0.0, PI_2);

      elsif abs Re (X) < Square_Root_Epsilon
         and then abs Im (X) < Square_Root_Epsilon
      then
         return PI_2 * Complex_I + X;

      elsif abs Re (X) > 1.0 / Epsilon or else
            abs Im (X) > 1.0 / Epsilon
      then
         if Im (X) > 0.0 then
            return (0.0, 0.0);
         else
            return PI * Complex_I;
         end if;

      elsif Im (X) = 0.0 and then Re (X) = 1.0 then
         raise Constraint_Error;

      elsif Im (X) = 0.0 and then Re (X) = -1.0 then
         raise Constraint_Error;
      end if;

      begin
         R := Log ((1.0 + X) / (X - 1.0)) / 2.0;

      exception
         when Constraint_Error =>
            R := (Log (1.0 + X) - Log (X - 1.0)) / 2.0;
      end;

      if Im (R) < 0.0 then
         Set_Im (R, PI + Im (R));
      end if;

      if Re (X) = 0.0 then
         Set_Re (R, Re (X));
      end if;

      return R;
   end Arccoth;

   ------------
   -- Arcsin --
   ------------

   function Arcsin (X : Complex) return Complex is
      Result : Complex;

   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return X;

      elsif abs Re (X) > Inv_Square_Root_Epsilon or else
            abs Im (X) > Inv_Square_Root_Epsilon
      then
         Result := -Complex_I * (Log (Complex_I * X) + Log (2.0 * Complex_I));

         if Im (Result) > PI_2 then
            Set_Im (Result, PI - Im (X));

         elsif Im (Result) < -PI_2 then
            Set_Im (Result, -(PI + Im (X)));
         end if;
      end if;

      Result := -Complex_I * Log (Complex_I * X + Sqrt (1.0 - X * X));

      if Re (X) = 0.0 then
         Set_Re (Result, Re (X));

      elsif Im (X) = 0.0
        and then abs Re (X) <= 1.00
      then
         Set_Im (Result, Im (X));
      end if;

      return Result;
   end Arcsin;

   -------------
   -- Arcsinh --
   -------------

   function Arcsinh (X : Complex) return Complex is
      Result : Complex;

   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return X;

      elsif abs Re (X) > Inv_Square_Root_Epsilon or else
            abs Im (X) > Inv_Square_Root_Epsilon
      then
         Result := Log_Two + Log (X); -- may have wrong sign

         if (Re (X) < 0.0 and Re (Result) > 0.0)
           or else (Re (X) > 0.0 and Re (Result) < 0.0)
         then
            Set_Re (Result, -Re (Result));
         end if;

         return Result;
      end if;

      Result := Log (X + Sqrt (1.0 + X * X));

      if Re (X) = 0.0 then
         Set_Re (Result, Re (X));
      elsif Im  (X) = 0.0 then
         Set_Im (Result, Im  (X));
      end if;

      return Result;
   end Arcsinh;

   ------------
   -- Arctan --
   ------------

   function Arctan (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return X;

      else
         return -Complex_I * (Log (1.0 + Complex_I * X)
                            - Log (1.0 - Complex_I * X)) / 2.0;
      end if;
   end Arctan;

   -------------
   -- Arctanh --
   -------------

   function Arctanh (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return X;
      else
         return (Log (1.0 + X) - Log (1.0 - X)) / 2.0;
      end if;
   end Arctanh;

   ---------
   -- Cos --
   ---------

   function Cos (X : Complex) return Complex is
   begin
      return
        Compose_From_Cartesian
          (Cos (Re (X))  * Cosh (Im (X)),
           -Sin (Re (X)) * Sinh (Im (X)));
   end Cos;

   ----------
   -- Cosh --
   ----------

   function Cosh (X : Complex) return Complex is
   begin
      return
        Compose_From_Cartesian
          (Cosh (Re (X)) * Cos (Im (X)),
           Sinh (Re (X)) * Sin (Im (X)));
   end Cosh;

   ---------
   -- Cot --
   ---------

   function Cot (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return Complex_One  /  X;

      elsif Im (X) > Log_Inverse_Epsilon_2 then
         return -Complex_I;

      elsif Im (X) < -Log_Inverse_Epsilon_2 then
         return Complex_I;
      end if;

      return Cos (X) / Sin (X);
   end Cot;

   ----------
   -- Coth --
   ----------

   function Coth (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return Complex_One  /  X;

      elsif Re (X) > Log_Inverse_Epsilon_2 then
         return Complex_One;

      elsif Re (X) < -Log_Inverse_Epsilon_2 then
         return -Complex_One;

      else
         return Cosh (X) / Sinh (X);
      end if;
   end Coth;

   ---------
   -- Exp --
   ---------

   function Exp (X : Complex) return Complex is
      EXP_RE_X : Real'Base := Exp (Re (X));

   begin
      return Compose_From_Cartesian (EXP_RE_X * Cos (Im (X)),
                                     EXP_RE_X * Sin (Im (X)));
   end Exp;


   function Exp (X : Imaginary) return Complex is
      ImX : Real'Base := Im (X);

   begin
      return Compose_From_Cartesian (Cos (ImX), Sin (ImX));
   end Exp;

   ---------
   -- Log --
   ---------

   function Log (X : Complex) return Complex is
      ReX : Real'Base;
      ImX : Real'Base;
      Z   : Complex;

   begin
      if Re (X) = 0.0 and then Im (X) = 0.0 then
         raise Constraint_Error;

      elsif abs (1.0 - Re (X)) < Root_Root_Epsilon
        and then abs Im (X) < Root_Root_Epsilon
      then
         Z := X;
         Set_Re (Z, Re (Z) - 1.0);

         return (1.0 - (1.0 / 2.0 -
                       (1.0 / 3.0 - (1.0 / 4.0) * Z) * Z) * Z) * Z;
      end if;

      begin
         ReX := Log (Modulus (X));

      exception
         when Constraint_Error =>
            ReX := Log (Modulus (X / 2.0)) - Log_Two;
      end;

      ImX := Arctan (Im (X), Re (X));

      if ImX > PI then
         ImX := ImX - 2.0 * PI;
      end if;

      return Compose_From_Cartesian (ReX, ImX);
   end Log;

   ---------
   -- Sin --
   ---------

   function Sin (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon then
         return X;
      end if;

      return
        Compose_From_Cartesian
          (Sin (Re (X)) * Cosh (Im (X)),
           Cos (Re (X)) * Sinh (Im (X)));
   end Sin;

   ----------
   -- Sinh --
   ----------

   function Sinh (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return X;

      else
         return Compose_From_Cartesian (Sinh (Re (X)) * Cos (Im (X)),
                                        Cosh (Re (X)) * Sin (Im (X)));
      end if;
   end Sinh;

   ----------
   -- Sqrt --
   ----------

   function Sqrt (X : Complex) return Complex is
      ReX : constant Real'Base := Re (X);
      ImX : constant Real'Base := Im (X);
      XR  : constant Real'Base := abs Re (X);
      YR  : constant Real'Base := abs Im (X);
      R   : Real'Base;
      R_X : Real'Base;
      R_Y : Real'Base;

   begin
      --  Deal with pure real case, see (RM G.1.2(39))

      if ImX = 0.0 then
         if ReX > 0.0 then
            return
              Compose_From_Cartesian
                (Sqrt (ReX), 0.0);

         elsif ReX = 0.0 then
            return X;

         else
            return
              Compose_From_Cartesian
                (0.0, Real'Copy_Sign (Sqrt (-ReX), ImX));
         end if;

      elsif ReX = 0.0 then
         R_X := Sqrt (YR / 2.0);

         if ImX > 0.0 then
            return Compose_From_Cartesian (R_X, R_X);
         else
            return Compose_From_Cartesian (R_X, -R_X);
         end if;

      else
         R  := Sqrt (XR ** 2 + YR ** 2);

         --  If the square of the modulus overflows, try rescaling the
         --  real and imaginary parts. We cannot depend on an exception
         --  being raised on all targets.

         if R > Real'Base'Last then
            raise Constraint_Error;
         end if;

         --  We are solving the system

         --  XR = R_X ** 2 - Y_R ** 2      (1)
         --  YR = 2.0 * R_X * R_Y          (2)
         --
         --  The symmetric solution involves square roots for both R_X and
         --  R_Y, but it is more accurate to use the square root with the
         --  larger argument for either R_X or R_Y, and equation (2) for the
         --  other.

         if ReX < 0.0 then
            R_Y := Sqrt (0.5 * (R - ReX));
            R_X := YR / (2.0 * R_Y);

         else
            R_X := Sqrt (0.5 * (R + ReX));
            R_Y := YR / (2.0 * R_X);
         end if;
      end if;

      if Im (X) < 0.0 then                 -- halve angle, Sqrt of magnitude
         R_Y := -R_Y;
      end if;
      return Compose_From_Cartesian (R_X, R_Y);

   exception
      when Constraint_Error =>

         --  Rescale and try again.

         R := Modulus (Compose_From_Cartesian (Re (X / 4.0), Im (X / 4.0)));
         R_X := 2.0 * Sqrt (0.5 * R + 0.5 * Re (X / 4.0));
         R_Y := 2.0 * Sqrt (0.5 * R - 0.5 * Re (X / 4.0));

         if Im (X) < 0.0 then -- halve angle, Sqrt of magnitude
            R_Y := -R_Y;
         end if;

         return Compose_From_Cartesian (R_X, R_Y);
   end Sqrt;

   ---------
   -- Tan --
   ---------

   function Tan (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return X;

      elsif Im (X) > Log_Inverse_Epsilon_2 then
         return Complex_I;

      elsif Im (X) < -Log_Inverse_Epsilon_2 then
         return -Complex_I;

      else
         return Sin (X) / Cos (X);
      end if;
   end Tan;

   ----------
   -- Tanh --
   ----------

   function Tanh (X : Complex) return Complex is
   begin
      if abs Re (X) < Square_Root_Epsilon and then
         abs Im (X) < Square_Root_Epsilon
      then
         return X;

      elsif Re (X) > Log_Inverse_Epsilon_2 then
         return Complex_One;

      elsif Re (X) < -Log_Inverse_Epsilon_2 then
         return -Complex_One;

      else
         return Sinh (X) / Cosh (X);
      end if;
   end Tanh;

end Ada.Numerics.Generic_Complex_Elementary_Functions;