summaryrefslogtreecommitdiff
path: root/gcc/ada/a-ngrear.adb
blob: 098d5a9a2c5b2f95be8b4adf3896109931271066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                     ADA.NUMERICS.GENERIC_REAL_ARRAYS                     --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2006-2007, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with System; use System;
with System.Generic_Real_BLAS;
with System.Generic_Real_LAPACK;
with System.Generic_Array_Operations; use System.Generic_Array_Operations;

package body Ada.Numerics.Generic_Real_Arrays is

   --  Operations involving inner products use BLAS library implementations.
   --  This allows larger matrices and vectors to be computed efficiently,
   --  taking into account memory hierarchy issues and vector instructions
   --  that vary widely between machines.

   --  Operations that are defined in terms of operations on the type Real,
   --  such as addition, subtraction and scaling, are computed in the canonical
   --  way looping over all elements.

   --  Operations for solving linear systems and computing determinant,
   --  eigenvalues, eigensystem and inverse, are implemented using the
   --  LAPACK library.

   package BLAS is
      new Generic_Real_BLAS (Real'Base, Real_Vector, Real_Matrix);

   package LAPACK is
      new Generic_Real_LAPACK (Real'Base, Real_Vector, Real_Matrix);

   use BLAS, LAPACK;

   --  Procedure versions of functions returning unconstrained values.
   --  This allows for inlining the function wrapper.

   procedure Eigenvalues (A : Real_Matrix; Values : out Real_Vector);
   procedure Inverse   (A : Real_Matrix; R : out Real_Matrix);
   procedure Solve     (A : Real_Matrix; X : Real_Vector; B : out Real_Vector);
   procedure Solve     (A : Real_Matrix; X : Real_Matrix; B : out Real_Matrix);

   procedure Transpose is new
     Generic_Array_Operations.Transpose
       (Scalar        => Real'Base,
        Matrix        => Real_Matrix);

   --  Helper function that raises a Constraint_Error is the argument is
   --  not a square matrix, and otherwise returns its length.

   function Length is new Square_Matrix_Length (Real'Base, Real_Matrix);

   --  Instantiating the following subprograms directly would lead to
   --  name clashes, so use a local package.

   package Instantiations is

      function "+" is new
        Vector_Elementwise_Operation
          (X_Scalar      => Real'Base,
           Result_Scalar => Real'Base,
           X_Vector      => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "+");

      function "+" is new
        Matrix_Elementwise_Operation
          (X_Scalar      => Real'Base,
           Result_Scalar => Real'Base,
           X_Matrix      => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "+");

      function "+" is new
        Vector_Vector_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Vector   => Real_Vector,
           Right_Vector  => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "+");

      function "+" is new
        Matrix_Matrix_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Matrix   => Real_Matrix,
           Right_Matrix  => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "+");

      function "-" is new
        Vector_Elementwise_Operation
          (X_Scalar      => Real'Base,
           Result_Scalar => Real'Base,
           X_Vector      => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "-");

      function "-" is new
        Matrix_Elementwise_Operation
          (X_Scalar      => Real'Base,
           Result_Scalar => Real'Base,
           X_Matrix      => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "-");

      function "-" is new
        Vector_Vector_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Vector   => Real_Vector,
           Right_Vector  => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "-");

      function "-" is new
        Matrix_Matrix_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Matrix   => Real_Matrix,
           Right_Matrix  => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "-");

      function "*" is new
        Scalar_Vector_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Right_Vector  => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "*");

      function "*" is new
        Scalar_Matrix_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Right_Matrix  => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "*");

      function "*" is new
        Vector_Scalar_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Vector   => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "*");

      function "*" is new
        Matrix_Scalar_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Matrix   => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "*");

      function "*" is new
        Outer_Product
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Vector   => Real_Vector,
           Right_Vector  => Real_Vector,
           Matrix        => Real_Matrix);

      function "/" is new
        Vector_Scalar_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Vector   => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "/");

      function "/" is new
        Matrix_Scalar_Elementwise_Operation
          (Left_Scalar   => Real'Base,
           Right_Scalar  => Real'Base,
           Result_Scalar => Real'Base,
           Left_Matrix   => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "/");

      function "abs" is new
        Vector_Elementwise_Operation
          (X_Scalar      => Real'Base,
           Result_Scalar => Real'Base,
           X_Vector      => Real_Vector,
           Result_Vector => Real_Vector,
           Operation     => "abs");

      function "abs" is new
        Matrix_Elementwise_Operation
          (X_Scalar      => Real'Base,
           Result_Scalar => Real'Base,
           X_Matrix      => Real_Matrix,
           Result_Matrix => Real_Matrix,
           Operation     => "abs");

      function Unit_Matrix is new
        Generic_Array_Operations.Unit_Matrix
          (Scalar        => Real'Base,
           Matrix        => Real_Matrix,
           Zero          => 0.0,
           One           => 1.0);

      function Unit_Vector is new
        Generic_Array_Operations.Unit_Vector
          (Scalar        => Real'Base,
           Vector        => Real_Vector,
           Zero          => 0.0,
           One           => 1.0);

   end Instantiations;

   ---------
   -- "+" --
   ---------

   function "+" (Right : Real_Vector) return Real_Vector
      renames Instantiations."+";

   function "+" (Right : Real_Matrix) return Real_Matrix
      renames Instantiations."+";

   function "+" (Left, Right : Real_Vector) return Real_Vector
      renames Instantiations."+";

   function "+" (Left, Right : Real_Matrix) return Real_Matrix
      renames Instantiations."+";

   ---------
   -- "-" --
   ---------

   function "-" (Right : Real_Vector) return Real_Vector
      renames Instantiations."-";

   function "-" (Right : Real_Matrix) return Real_Matrix
      renames Instantiations."-";

   function "-" (Left, Right : Real_Vector) return Real_Vector
      renames Instantiations."-";

   function "-" (Left, Right : Real_Matrix) return Real_Matrix
      renames Instantiations."-";

   ---------
   -- "*" --
   ---------

   --  Scalar multiplication

   function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector
      renames Instantiations."*";

   function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector
      renames Instantiations."*";

   function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix
      renames Instantiations."*";

   function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix
      renames Instantiations."*";

   --  Vector multiplication

   function "*" (Left, Right : Real_Vector) return Real'Base is
   begin
      if Left'Length /= Right'Length then
         raise Constraint_Error with
            "vectors are of different length in inner product";
      end if;

      return dot (Left'Length, X => Left, Y => Right);
   end "*";

   function "*" (Left, Right : Real_Vector) return Real_Matrix
      renames Instantiations."*";

   function "*"
     (Left : Real_Vector;
      Right : Real_Matrix) return Real_Vector
   is
      R : Real_Vector (Right'Range (2));

   begin
      if Left'Length /= Right'Length (1) then
         raise Constraint_Error with
           "incompatible dimensions in vector-matrix multiplication";
      end if;

      gemv (Trans => No_Trans'Access,
            M     => Right'Length (2),
            N     => Right'Length (1),
            A     => Right,
            Ld_A  => Right'Length (2),
            X     => Left,
            Y     => R);

      return R;
   end "*";

   function "*"
     (Left : Real_Matrix;
      Right : Real_Vector) return Real_Vector
   is
      R : Real_Vector (Left'Range (1));

   begin
      if Left'Length (2) /= Right'Length then
         raise Constraint_Error with
            "incompatible dimensions in matrix-vector multiplication";
      end if;

      gemv (Trans => Trans'Access,
            M     => Left'Length (2),
            N     => Left'Length (1),
            A     => Left,
            Ld_A  => Left'Length (2),
            X     => Right,
            Y     => R);

      return R;
   end "*";

   --  Matrix Multiplication

   function "*" (Left, Right : Real_Matrix) return Real_Matrix is
      R : Real_Matrix (Left'Range (1), Right'Range (2));

   begin
      if Left'Length (2) /= Right'Length (1) then
         raise Constraint_Error with
            "incompatible dimensions in matrix-matrix multipication";
      end if;

      gemm (Trans_A => No_Trans'Access,
            Trans_B => No_Trans'Access,
            M       => Right'Length (2),
            N       => Left'Length (1),
            K       => Right'Length (1),
            A       => Right,
            Ld_A    => Right'Length (2),
            B       => Left,
            Ld_B    => Left'Length (2),
            C       => R,
            Ld_C    => R'Length (2));

      return R;
   end "*";

   ---------
   -- "/" --
   ---------

   function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector
      renames Instantiations."/";

   function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix
      renames Instantiations."/";

   -----------
   -- "abs" --
   -----------

   function "abs" (Right : Real_Vector) return Real'Base is
   begin
      return nrm2 (Right'Length, Right);
   end "abs";

   function "abs" (Right : Real_Vector) return Real_Vector
      renames Instantiations."abs";

   function "abs" (Right : Real_Matrix) return Real_Matrix
      renames Instantiations."abs";

   -----------------
   -- Determinant --
   -----------------

   function Determinant (A : Real_Matrix) return Real'Base is
      N    : constant Integer := Length (A);
      LU   : Real_Matrix (1 .. N, 1 .. N) := A;
      Piv  : Integer_Vector (1 .. N);
      Info : aliased Integer := -1;
      Det  : Real := 1.0;

   begin
      getrf (M     => N,
             N     => N,
             A     => LU,
             Ld_A  => N,
             I_Piv => Piv,
             Info  => Info'Access);

      if Info /= 0 then
         raise Constraint_Error with "ill-conditioned matrix";
      end if;

      for J in 1 .. N loop
         if Piv (J) /= J then
            Det := -Det * LU (J, J);
         else
            Det := Det * LU (J, J);
         end if;
      end loop;

      return Det;
   end Determinant;

   -----------------
   -- Eigensystem --
   -----------------

   procedure Eigensystem
     (A       : Real_Matrix;
      Values  : out Real_Vector;
      Vectors : out Real_Matrix)
   is
      N      : constant Natural := Length (A);
      Tau    : Real_Vector (1 .. N);
      L_Work : Real_Vector (1 .. 1);
      Info   : aliased Integer;

      E : Real_Vector (1 .. N);
      pragma Warnings (Off, E);

   begin
      if Values'Length /= N then
         raise Constraint_Error with "wrong length for output vector";
      end if;

      if N = 0 then
         return;
      end if;

      --  Initialize working matrix and check for symmetric input matrix

      Transpose (A, Vectors);

      if A /= Vectors then
         raise Argument_Error with "matrix not symmetric";
      end if;

      --  Compute size of additional working space

      sytrd (Uplo   => Lower'Access,
             N      => N,
             A      => Vectors,
             Ld_A   => N,
             D      => Values,
             E      => E,
             Tau    => Tau,
             Work   => L_Work,
             L_Work => -1,
             Info   => Info'Access);

      declare
         Work : Real_Vector (1 .. Integer'Max (Integer (L_Work (1)), 2 * N));
         pragma Warnings (Off, Work);

         Comp_Z : aliased constant Character := 'V';

      begin
         --  Reduce matrix to tridiagonal form

         sytrd (Uplo   => Lower'Access,
                N      => N,
                A      => Vectors,
                Ld_A   => A'Length (1),
                D      => Values,
                E      => E,
                Tau    => Tau,
                Work   => Work,
                L_Work => Work'Length,
                Info   => Info'Access);

         if Info /= 0 then
            raise Program_Error;
         end if;

         --  Generate the real orthogonal matrix determined by sytrd

         orgtr (Uplo   => Lower'Access,
                N      => N,
                A      => Vectors,
                Ld_A   => N,
                Tau    => Tau,
                Work   => Work,
                L_Work => Work'Length,
                Info   => Info'Access);

         if Info /= 0 then
            raise Program_Error;
         end if;

         --  Compute all eigenvalues and eigenvectors using QR algorithm

         steqr (Comp_Z => Comp_Z'Access,
                N      => N,
                D      => Values,
                E      => E,
                Z      => Vectors,
                Ld_Z   => N,
                Work   => Work,
                Info   => Info'Access);

         if Info /= 0 then
            raise Constraint_Error with
               "eigensystem computation failed to converge";
         end if;
      end;
   end Eigensystem;

   -----------------
   -- Eigenvalues --
   -----------------

   procedure Eigenvalues
     (A      : Real_Matrix;
      Values : out Real_Vector)
   is
      N      : constant Natural := Length (A);
      L_Work : Real_Vector (1 .. 1);
      Info   : aliased Integer;

      B   : Real_Matrix (1 .. N, 1 .. N);
      Tau : Real_Vector (1 .. N);
      E   : Real_Vector (1 .. N);
      pragma Warnings (Off, B);
      pragma Warnings (Off, Tau);
      pragma Warnings (Off, E);

   begin
      if Values'Length /= N then
         raise Constraint_Error with "wrong length for output vector";
      end if;

      if N = 0 then
         return;
      end if;

      --  Initialize working matrix and check for symmetric input matrix

      Transpose (A, B);

      if A /= B then
         raise Argument_Error with "matrix not symmetric";
      end if;

      --  Find size of work area

      sytrd (Uplo   => Lower'Access,
             N      => N,
             A      => B,
             Ld_A   => N,
             D      => Values,
             E      => E,
             Tau    => Tau,
             Work   => L_Work,
             L_Work => -1,
             Info   => Info'Access);

      declare
         Work : Real_Vector (1 .. Integer'Min (Integer (L_Work (1)), 4 * N));
         pragma Warnings (Off, Work);

      begin
         --  Reduce matrix to tridiagonal form

         sytrd (Uplo   => Lower'Access,
                N      => N,
                A      => B,
                Ld_A   => A'Length (1),
                D      => Values,
                E      => E,
                Tau    => Tau,
                Work   => Work,
                L_Work => Work'Length,
                Info   => Info'Access);

         if Info /= 0 then
            raise Constraint_Error;
         end if;

         --  Compute all eigenvalues using QR algorithm

         sterf (N      => N,
                D      => Values,
                E      => E,
                Info   => Info'Access);

         if Info /= 0 then
            raise Constraint_Error with
               "eigenvalues computation failed to converge";
         end if;
      end;
   end Eigenvalues;

   function Eigenvalues (A : Real_Matrix) return Real_Vector is
      R : Real_Vector (A'Range (1));
   begin
      Eigenvalues (A, R);
      return R;
   end Eigenvalues;

   -------------
   -- Inverse --
   -------------

   procedure Inverse (A : Real_Matrix; R : out Real_Matrix) is
      N      : constant Integer := Length (A);
      Piv    : Integer_Vector (1 .. N);
      L_Work : Real_Vector (1 .. 1);
      Info   : aliased Integer := -1;

   begin
      --  All computations are done using column-major order, but this works
      --  out fine, because Transpose (Inverse (Transpose (A))) = Inverse (A).

      R := A;

      --  Compute LU decomposition

      getrf (M      => N,
             N      => N,
             A      => R,
             Ld_A   => N,
             I_Piv  => Piv,
             Info   => Info'Access);

      if Info /= 0 then
         raise Constraint_Error with "inverting singular matrix";
      end if;

      --  Determine size of work area

      getri (N      => N,
             A      => R,
             Ld_A   => N,
             I_Piv  => Piv,
             Work   => L_Work,
             L_Work => -1,
             Info   => Info'Access);

      if Info /= 0 then
         raise Constraint_Error;
      end if;

      declare
         Work : Real_Vector (1 .. Integer (L_Work (1)));
         pragma Warnings (Off, Work);

      begin
         --  Compute inverse from LU decomposition

         getri (N      => N,
                A      => R,
                Ld_A   => N,
                I_Piv  => Piv,
                Work   => Work,
                L_Work => Work'Length,
                Info   => Info'Access);

         if Info /= 0 then
            raise Constraint_Error with "inverting singular matrix";
         end if;

         --  ??? Should iterate with gerfs, based on implementation advice
      end;
   end Inverse;

   function Inverse (A : Real_Matrix) return Real_Matrix is
      R : Real_Matrix (A'Range (2), A'Range (1));
   begin
      Inverse (A, R);
      return R;
   end Inverse;

   -----------
   -- Solve --
   -----------

   procedure Solve (A : Real_Matrix; X : Real_Vector; B : out Real_Vector) is
   begin
      if Length (A) /= X'Length then
         raise Constraint_Error with
           "incompatible matrix and vector dimensions";
      end if;

      --  ??? Should solve directly, is faster and more accurate

      B := Inverse (A) * X;
   end Solve;

   procedure Solve (A : Real_Matrix; X : Real_Matrix; B : out Real_Matrix) is
   begin
      if Length (A) /= X'Length (1) then
         raise Constraint_Error with "incompatible matrix dimensions";
      end if;

      --  ??? Should solve directly, is faster and more accurate

      B := Inverse (A) * X;
   end Solve;

   function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector is
      B : Real_Vector (A'Range (2));
   begin
      Solve (A, X, B);
      return B;
   end Solve;

   function Solve (A, X : Real_Matrix) return Real_Matrix is
      B : Real_Matrix (A'Range (2), X'Range (2));
   begin
      Solve (A, X, B);
      return B;
   end Solve;

   ---------------
   -- Transpose --
   ---------------

   function Transpose (X : Real_Matrix) return Real_Matrix is
      R : Real_Matrix (X'Range (2), X'Range (1));
   begin
      Transpose (X, R);

      return R;
   end Transpose;

   -----------------
   -- Unit_Matrix --
   -----------------

   function Unit_Matrix
     (Order   : Positive;
      First_1 : Integer := 1;
      First_2 : Integer := 1) return Real_Matrix
     renames Instantiations.Unit_Matrix;

   -----------------
   -- Unit_Vector --
   -----------------

   function Unit_Vector
     (Index : Integer;
      Order : Positive;
      First : Integer := 1) return Real_Vector
     renames Instantiations.Unit_Vector;

end Ada.Numerics.Generic_Real_Arrays;