summaryrefslogtreecommitdiff
path: root/gcc/ada/a-numaux-darwin.adb
blob: bbed0a9b3fcd617cb3c29c1d1f69ac736ad285a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                     A D A . N U M E R I C S . A U X                      --
--                                                                          --
--                                 B o d y                                  --
--                          (Apple OS X Version)                            --
--                                                                          --
--          Copyright (C) 1998-2005 Free Software Foundation, Inc.          --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
-- MA 02111-1307, USA.                                                      --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  File a-numaux.adb <- a-numaux-darwin.adb

package body Ada.Numerics.Aux is

   -----------------------
   -- Local subprograms --
   -----------------------

   procedure Reduce (X : in out Double; Q : out Natural);
   --  Implements reduction of X by Pi/2. Q is the quadrant of the final
   --  result in the range 0 .. 3. The absolute value of X is at most Pi/4.

   --  The following three functions implement Chebishev approximations
   --  of the trigoniometric functions in their reduced domain.
   --  These approximations have been computed using Maple.

   function Sine_Approx (X : Double) return Double;
   function Cosine_Approx (X : Double) return Double;

   pragma Inline (Reduce);
   pragma Inline (Sine_Approx);
   pragma Inline (Cosine_Approx);

   function Cosine_Approx (X : Double) return Double is
      XX : constant Double := X * X;
   begin
      return (((((16#8.DC57FBD05F640#E-08 * XX
              - 16#4.9F7D00BF25D80#E-06) * XX
              + 16#1.A019F7FDEFCC2#E-04) * XX
              - 16#5.B05B058F18B20#E-03) * XX
              + 16#A.AAAAAAAA73FA8#E-02) * XX
              - 16#7.FFFFFFFFFFDE4#E-01) * XX
              - 16#3.655E64869ECCE#E-14 + 1.0;
   end Cosine_Approx;

   function Sine_Approx (X : Double) return Double is
      XX : constant Double := X * X;
   begin
      return (((((16#A.EA2D4ABE41808#E-09 * XX
              - 16#6.B974C10F9D078#E-07) * XX
              + 16#2.E3BC673425B0E#E-05) * XX
              - 16#D.00D00CCA7AF00#E-04) * XX
              + 16#2.222222221B190#E-02) * XX
              - 16#2.AAAAAAAAAAA44#E-01) * (XX * X) + X;
   end Sine_Approx;

   ------------
   -- Reduce --
   ------------

   procedure Reduce (X : in out Double; Q : out Natural) is
      Half_Pi     : constant := Pi / 2.0;
      Two_Over_Pi : constant := 2.0 / Pi;

      HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
      M  : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
      P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
      P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
      P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
      P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
      P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
                                                                 - P4, HM);
      P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
      K  : Double := X * Two_Over_Pi;
   begin
      --  For X < 2.0**HM, all products below are computed exactly.
      --  Due to cancellation effects all subtractions are exact as well.
      --  As no double extended floating-point number has more than 75
      --  zeros after the binary point, the result will be the correctly
      --  rounded result of X - K * (Pi / 2.0).

      while abs K >= 2.0**HM loop
         K := K * M - (K * M - K);
         X := (((((X - K * P1) - K * P2) - K * P3)
                     - K * P4) - K * P5) - K * P6;
         K := X * Two_Over_Pi;
      end loop;

      if K /= K then

         --  K is not a number, because X was not finite

         raise Constraint_Error;
      end if;

      K := Double'Rounding (K);
      Q := Integer (K) mod 4;
      X := (((((X - K * P1) - K * P2) - K * P3)
                  - K * P4) - K * P5) - K * P6;
   end Reduce;

   ---------
   -- Cos --
   ---------

   function Cos (X : Double) return Double is
      Reduced_X : Double := abs X;
      Quadrant  : Natural range 0 .. 3;

   begin
      if Reduced_X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);

         case Quadrant is
            when 0 =>
               return Cosine_Approx (Reduced_X);

            when 1 =>
               return Sine_Approx (-Reduced_X);

            when 2 =>
               return -Cosine_Approx (Reduced_X);

            when 3 =>
               return Sine_Approx (Reduced_X);
         end case;
      end if;

      return Cosine_Approx (Reduced_X);
   end Cos;

   ---------
   -- Sin --
   ---------

   function Sin (X : Double) return Double is
      Reduced_X : Double := X;
      Quadrant  : Natural range 0 .. 3;

   begin
      if abs X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);

         case Quadrant is
            when 0 =>
               return Sine_Approx (Reduced_X);

            when 1 =>
               return Cosine_Approx (Reduced_X);

            when 2 =>
               return Sine_Approx (-Reduced_X);

            when 3 =>
               return -Cosine_Approx (Reduced_X);
         end case;
      end if;

      return Sine_Approx (Reduced_X);
   end Sin;

end Ada.Numerics.Aux;