1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- --
-- S p e c --
-- (Apple OS X Version) --
-- --
-- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This version is for use with normal Unix math functions, except for
-- sine/cosine which have been implemented directly in Ada to get
-- the required accuracy in OS X. Alternative packages are used
-- on OpenVMS (different import names), VxWorks (no need for the
-- -lm Linker_Options), and on the x86 (where we have two
-- versions one using inline ASM, and one importing from the C long
-- routines that take 80-bit arguments).
package Ada.Numerics.Aux is
pragma Pure (Aux);
pragma Linker_Options ("-lm");
type Double is digits 15;
-- Type Double is the type used to call the C routines
-- The following functions have been implemented in Ada, since
-- the OS X math library didn't meet accuracy requirements for
-- argument reduction. The implementation here has been tailored
-- to match Ada strict mode Numerics requirements while maintaining
-- maximum efficiency.
function Sin (X : Double) return Double;
pragma Inline (Sin);
function Cos (X : Double) return Double;
pragma Inline (Cos);
-- We import these functions directly from C. Note that we label them
-- all as pure functions, because indeed all of them are in fact pure!
function Tan (X : Double) return Double;
pragma Import (C, Tan, "tan");
pragma Pure_Function (Tan);
function Exp (X : Double) return Double;
pragma Import (C, Exp, "exp");
pragma Pure_Function (Exp);
function Sqrt (X : Double) return Double;
pragma Import (C, Sqrt, "sqrt");
pragma Pure_Function (Sqrt);
function Log (X : Double) return Double;
pragma Import (C, Log, "log");
pragma Pure_Function (Log);
function Acos (X : Double) return Double;
pragma Import (C, Acos, "acos");
pragma Pure_Function (Acos);
function Asin (X : Double) return Double;
pragma Import (C, Asin, "asin");
pragma Pure_Function (Asin);
function Atan (X : Double) return Double;
pragma Import (C, Atan, "atan");
pragma Pure_Function (Atan);
function Sinh (X : Double) return Double;
pragma Import (C, Sinh, "sinh");
pragma Pure_Function (Sinh);
function Cosh (X : Double) return Double;
pragma Import (C, Cosh, "cosh");
pragma Pure_Function (Cosh);
function Tanh (X : Double) return Double;
pragma Import (C, Tanh, "tanh");
pragma Pure_Function (Tanh);
function Pow (X, Y : Double) return Double;
pragma Import (C, Pow, "pow");
pragma Pure_Function (Pow);
end Ada.Numerics.Aux;
|