1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
|
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_OPERATIONS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
-- The references in this file to "CLR" refer to the following book, from
-- which several of the algorithms here were adapted:
-- Introduction to Algorithms
-- by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
-- Publisher: The MIT Press (June 18, 1990)
-- ISBN: 0262031418
with System; use type System.Address;
package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations is
pragma Annotate (CodePeer, Skip_Analysis);
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
-- See comment in Ada.Containers.Helpers
-----------------------
-- Local Subprograms --
-----------------------
procedure Delete_Fixup (Tree : in out Tree_Type'Class; Node : Count_Type);
procedure Delete_Swap (Tree : in out Tree_Type'Class; Z, Y : Count_Type);
procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type);
procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type);
----------------
-- Clear_Tree --
----------------
procedure Clear_Tree (Tree : in out Tree_Type'Class) is
begin
TC_Check (Tree.TC);
Tree.First := 0;
Tree.Last := 0;
Tree.Root := 0;
Tree.Length := 0;
Tree.Free := -1;
end Clear_Tree;
------------------
-- Delete_Fixup --
------------------
procedure Delete_Fixup
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 274
X : Count_Type;
W : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
X := Node;
while X /= Tree.Root and then Color (N (X)) = Black loop
if X = Left (N (Parent (N (X)))) then
W := Right (N (Parent (N (X))));
if Color (N (W)) = Red then
Set_Color (N (W), Black);
Set_Color (N (Parent (N (X))), Red);
Left_Rotate (Tree, Parent (N (X)));
W := Right (N (Parent (N (X))));
end if;
if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
and then
(Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
then
Set_Color (N (W), Red);
X := Parent (N (X));
else
if Right (N (W)) = 0
or else Color (N (Right (N (W)))) = Black
then
-- As a condition for setting the color of the left child to
-- black, the left child access value must be non-null. A
-- truth table analysis shows that if we arrive here, that
-- condition holds, so there's no need for an explicit test.
-- The assertion is here to document what we know is true.
pragma Assert (Left (N (W)) /= 0);
Set_Color (N (Left (N (W))), Black);
Set_Color (N (W), Red);
Right_Rotate (Tree, W);
W := Right (N (Parent (N (X))));
end if;
Set_Color (N (W), Color (N (Parent (N (X)))));
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Right (N (W))), Black);
Left_Rotate (Tree, Parent (N (X)));
X := Tree.Root;
end if;
else
pragma Assert (X = Right (N (Parent (N (X)))));
W := Left (N (Parent (N (X))));
if Color (N (W)) = Red then
Set_Color (N (W), Black);
Set_Color (N (Parent (N (X))), Red);
Right_Rotate (Tree, Parent (N (X)));
W := Left (N (Parent (N (X))));
end if;
if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
and then
(Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
then
Set_Color (N (W), Red);
X := Parent (N (X));
else
if Left (N (W)) = 0
or else Color (N (Left (N (W)))) = Black
then
-- As a condition for setting the color of the right child
-- to black, the right child access value must be non-null.
-- A truth table analysis shows that if we arrive here, that
-- condition holds, so there's no need for an explicit test.
-- The assertion is here to document what we know is true.
pragma Assert (Right (N (W)) /= 0);
Set_Color (N (Right (N (W))), Black);
Set_Color (N (W), Red);
Left_Rotate (Tree, W);
W := Left (N (Parent (N (X))));
end if;
Set_Color (N (W), Color (N (Parent (N (X)))));
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Left (N (W))), Black);
Right_Rotate (Tree, Parent (N (X)));
X := Tree.Root;
end if;
end if;
end loop;
Set_Color (N (X), Black);
end Delete_Fixup;
---------------------------
-- Delete_Node_Sans_Free --
---------------------------
procedure Delete_Node_Sans_Free
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 273
X, Y : Count_Type;
Z : constant Count_Type := Node;
N : Nodes_Type renames Tree.Nodes;
begin
TC_Check (Tree.TC);
-- If node is not present, return (exception will be raised in caller)
if Z = 0 then
return;
end if;
pragma Assert (Tree.Length > 0);
pragma Assert (Tree.Root /= 0);
pragma Assert (Tree.First /= 0);
pragma Assert (Tree.Last /= 0);
pragma Assert (Parent (N (Tree.Root)) = 0);
pragma Assert ((Tree.Length > 1)
or else (Tree.First = Tree.Last
and then Tree.First = Tree.Root));
pragma Assert ((Left (N (Node)) = 0)
or else (Parent (N (Left (N (Node)))) = Node));
pragma Assert ((Right (N (Node)) = 0)
or else (Parent (N (Right (N (Node)))) = Node));
pragma Assert (((Parent (N (Node)) = 0) and then (Tree.Root = Node))
or else ((Parent (N (Node)) /= 0) and then
((Left (N (Parent (N (Node)))) = Node)
or else
(Right (N (Parent (N (Node)))) = Node))));
if Left (N (Z)) = 0 then
if Right (N (Z)) = 0 then
if Z = Tree.First then
Tree.First := Parent (N (Z));
end if;
if Z = Tree.Last then
Tree.Last := Parent (N (Z));
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, Z);
end if;
pragma Assert (Left (N (Z)) = 0);
pragma Assert (Right (N (Z)) = 0);
if Z = Tree.Root then
pragma Assert (Tree.Length = 1);
pragma Assert (Parent (N (Z)) = 0);
Tree.Root := 0;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), 0);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), 0);
end if;
else
pragma Assert (Z /= Tree.Last);
X := Right (N (Z));
if Z = Tree.First then
Tree.First := Min (Tree, X);
end if;
if Z = Tree.Root then
Tree.Root := X;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), X);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), X);
end if;
Set_Parent (N (X), Parent (N (Z)));
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
end if;
elsif Right (N (Z)) = 0 then
pragma Assert (Z /= Tree.First);
X := Left (N (Z));
if Z = Tree.Last then
Tree.Last := Max (Tree, X);
end if;
if Z = Tree.Root then
Tree.Root := X;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), X);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), X);
end if;
Set_Parent (N (X), Parent (N (Z)));
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
else
pragma Assert (Z /= Tree.First);
pragma Assert (Z /= Tree.Last);
Y := Next (Tree, Z);
pragma Assert (Left (N (Y)) = 0);
X := Right (N (Y));
if X = 0 then
if Y = Left (N (Parent (N (Y)))) then
pragma Assert (Parent (N (Y)) /= Z);
Delete_Swap (Tree, Z, Y);
Set_Left (N (Parent (N (Z))), Z);
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
pragma Assert (Parent (N (Y)) = Z);
Set_Parent (N (Y), Parent (N (Z)));
if Z = Tree.Root then
Tree.Root := Y;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), Y);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), Y);
end if;
Set_Left (N (Y), Left (N (Z)));
Set_Parent (N (Left (N (Y))), Y);
Set_Right (N (Y), Z);
Set_Parent (N (Z), Y);
Set_Left (N (Z), 0);
Set_Right (N (Z), 0);
declare
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Color (N (Y), Color (N (Z)));
Set_Color (N (Z), Y_Color);
end;
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, Z);
end if;
pragma Assert (Left (N (Z)) = 0);
pragma Assert (Right (N (Z)) = 0);
if Z = Right (N (Parent (N (Z)))) then
Set_Right (N (Parent (N (Z))), 0);
else
pragma Assert (Z = Left (N (Parent (N (Z)))));
Set_Left (N (Parent (N (Z))), 0);
end if;
else
if Y = Left (N (Parent (N (Y)))) then
pragma Assert (Parent (N (Y)) /= Z);
Delete_Swap (Tree, Z, Y);
Set_Left (N (Parent (N (Z))), X);
Set_Parent (N (X), Parent (N (Z)));
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
pragma Assert (Parent (N (Y)) = Z);
Set_Parent (N (Y), Parent (N (Z)));
if Z = Tree.Root then
Tree.Root := Y;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), Y);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), Y);
end if;
Set_Left (N (Y), Left (N (Z)));
Set_Parent (N (Left (N (Y))), Y);
declare
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Color (N (Y), Color (N (Z)));
Set_Color (N (Z), Y_Color);
end;
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
end if;
end if;
Tree.Length := Tree.Length - 1;
end Delete_Node_Sans_Free;
-----------------
-- Delete_Swap --
-----------------
procedure Delete_Swap
(Tree : in out Tree_Type'Class;
Z, Y : Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
pragma Assert (Z /= Y);
pragma Assert (Parent (N (Y)) /= Z);
Y_Parent : constant Count_Type := Parent (N (Y));
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Parent (N (Y), Parent (N (Z)));
Set_Left (N (Y), Left (N (Z)));
Set_Right (N (Y), Right (N (Z)));
Set_Color (N (Y), Color (N (Z)));
if Tree.Root = Z then
Tree.Root := Y;
elsif Right (N (Parent (N (Y)))) = Z then
Set_Right (N (Parent (N (Y))), Y);
else
pragma Assert (Left (N (Parent (N (Y)))) = Z);
Set_Left (N (Parent (N (Y))), Y);
end if;
if Right (N (Y)) /= 0 then
Set_Parent (N (Right (N (Y))), Y);
end if;
if Left (N (Y)) /= 0 then
Set_Parent (N (Left (N (Y))), Y);
end if;
Set_Parent (N (Z), Y_Parent);
Set_Color (N (Z), Y_Color);
Set_Left (N (Z), 0);
Set_Right (N (Z), 0);
end Delete_Swap;
----------
-- Free --
----------
procedure Free (Tree : in out Tree_Type'Class; X : Count_Type) is
pragma Assert (X > 0);
pragma Assert (X <= Tree.Capacity);
N : Nodes_Type renames Tree.Nodes;
-- pragma Assert (N (X).Prev >= 0); -- node is active
-- Find a way to mark a node as active vs. inactive; we could
-- use a special value in Color_Type for this. ???
begin
-- The set container actually contains two data structures: a list for
-- the "active" nodes that contain elements that have been inserted
-- onto the tree, and another for the "inactive" nodes of the free
-- store.
--
-- We desire that merely declaring an object should have only minimal
-- cost; specially, we want to avoid having to initialize the free
-- store (to fill in the links), especially if the capacity is large.
--
-- The head of the free list is indicated by Container.Free. If its
-- value is non-negative, then the free store has been initialized
-- in the "normal" way: Container.Free points to the head of the list
-- of free (inactive) nodes, and the value 0 means the free list is
-- empty. Each node on the free list has been initialized to point
-- to the next free node (via its Parent component), and the value 0
-- means that this is the last free node.
--
-- If Container.Free is negative, then the links on the free store
-- have not been initialized. In this case the link values are
-- implied: the free store comprises the components of the node array
-- started with the absolute value of Container.Free, and continuing
-- until the end of the array (Nodes'Last).
--
-- ???
-- It might be possible to perform an optimization here. Suppose that
-- the free store can be represented as having two parts: one
-- comprising the non-contiguous inactive nodes linked together
-- in the normal way, and the other comprising the contiguous
-- inactive nodes (that are not linked together, at the end of the
-- nodes array). This would allow us to never have to initialize
-- the free store, except in a lazy way as nodes become inactive.
-- When an element is deleted from the list container, its node
-- becomes inactive, and so we set its Prev component to a negative
-- value, to indicate that it is now inactive. This provides a useful
-- way to detect a dangling cursor reference.
-- The comment above is incorrect; we need some other way to
-- indicate a node is inactive, for example by using a special
-- Color_Type value. ???
-- N (X).Prev := -1; -- Node is deallocated (not on active list)
if Tree.Free >= 0 then
-- The free store has previously been initialized. All we need to
-- do here is link the newly-free'd node onto the free list.
Set_Parent (N (X), Tree.Free);
Tree.Free := X;
elsif X + 1 = abs Tree.Free then
-- The free store has not been initialized, and the node becoming
-- inactive immediately precedes the start of the free store. All
-- we need to do is move the start of the free store back by one.
Tree.Free := Tree.Free + 1;
else
-- The free store has not been initialized, and the node becoming
-- inactive does not immediately precede the free store. Here we
-- first initialize the free store (meaning the links are given
-- values in the traditional way), and then link the newly-free'd
-- node onto the head of the free store.
-- ???
-- See the comments above for an optimization opportunity. If the
-- next link for a node on the free store is negative, then this
-- means the remaining nodes on the free store are physically
-- contiguous, starting as the absolute value of that index value.
Tree.Free := abs Tree.Free;
if Tree.Free > Tree.Capacity then
Tree.Free := 0;
else
for I in Tree.Free .. Tree.Capacity - 1 loop
Set_Parent (N (I), I + 1);
end loop;
Set_Parent (N (Tree.Capacity), 0);
end if;
Set_Parent (N (X), Tree.Free);
Tree.Free := X;
end if;
end Free;
-----------------------
-- Generic_Allocate --
-----------------------
procedure Generic_Allocate
(Tree : in out Tree_Type'Class;
Node : out Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
begin
if Tree.Free >= 0 then
Node := Tree.Free;
-- We always perform the assignment first, before we
-- change container state, in order to defend against
-- exceptions duration assignment.
Set_Element (N (Node));
Tree.Free := Parent (N (Node));
else
-- A negative free store value means that the links of the nodes
-- in the free store have not been initialized. In this case, the
-- nodes are physically contiguous in the array, starting at the
-- index that is the absolute value of the Container.Free, and
-- continuing until the end of the array (Nodes'Last).
Node := abs Tree.Free;
-- As above, we perform this assignment first, before modifying
-- any container state.
Set_Element (N (Node));
Tree.Free := Tree.Free - 1;
end if;
-- When a node is allocated from the free store, its pointer components
-- (the links to other nodes in the tree) must also be initialized (to
-- 0, the equivalent of null). This simplifies the post-allocation
-- handling of nodes inserted into terminal positions.
Set_Parent (N (Node), Parent => 0);
Set_Left (N (Node), Left => 0);
Set_Right (N (Node), Right => 0);
end Generic_Allocate;
-------------------
-- Generic_Equal --
-------------------
function Generic_Equal (Left, Right : Tree_Type'Class) return Boolean is
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
Lock_Left : With_Lock (Left.TC'Unrestricted_Access);
Lock_Right : With_Lock (Right.TC'Unrestricted_Access);
L_Node : Count_Type;
R_Node : Count_Type;
begin
if Left'Address = Right'Address then
return True;
end if;
if Left.Length /= Right.Length then
return False;
end if;
-- If the containers are empty, return a result immediately, so as to
-- not manipulate the tamper bits unnecessarily.
if Left.Length = 0 then
return True;
end if;
L_Node := Left.First;
R_Node := Right.First;
while L_Node /= 0 loop
if not Is_Equal (Left.Nodes (L_Node), Right.Nodes (R_Node)) then
return False;
end if;
L_Node := Next (Left, L_Node);
R_Node := Next (Right, R_Node);
end loop;
return True;
end Generic_Equal;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration (Tree : Tree_Type'Class) is
procedure Iterate (P : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (P : Count_Type) is
X : Count_Type := P;
begin
while X /= 0 loop
Iterate (Left (Tree.Nodes (X)));
Process (X);
X := Right (Tree.Nodes (X));
end loop;
end Iterate;
-- Start of processing for Generic_Iteration
begin
Iterate (Tree.Root);
end Generic_Iteration;
------------------
-- Generic_Read --
------------------
procedure Generic_Read
(Stream : not null access Root_Stream_Type'Class;
Tree : in out Tree_Type'Class)
is
Len : Count_Type'Base;
Node, Last_Node : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
Clear_Tree (Tree);
Count_Type'Base'Read (Stream, Len);
if Checks and then Len < 0 then
raise Program_Error with "bad container length (corrupt stream)";
end if;
if Len = 0 then
return;
end if;
if Checks and then Len > Tree.Capacity then
raise Constraint_Error with "length exceeds capacity";
end if;
-- Use Unconditional_Insert_With_Hint here instead ???
Allocate (Tree, Node);
pragma Assert (Node /= 0);
Set_Color (N (Node), Black);
Tree.Root := Node;
Tree.First := Node;
Tree.Last := Node;
Tree.Length := 1;
for J in Count_Type range 2 .. Len loop
Last_Node := Node;
pragma Assert (Last_Node = Tree.Last);
Allocate (Tree, Node);
pragma Assert (Node /= 0);
Set_Color (N (Node), Red);
Set_Right (N (Last_Node), Right => Node);
Tree.Last := Node;
Set_Parent (N (Node), Parent => Last_Node);
Rebalance_For_Insert (Tree, Node);
Tree.Length := Tree.Length + 1;
end loop;
end Generic_Read;
-------------------------------
-- Generic_Reverse_Iteration --
-------------------------------
procedure Generic_Reverse_Iteration (Tree : Tree_Type'Class) is
procedure Iterate (P : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (P : Count_Type) is
X : Count_Type := P;
begin
while X /= 0 loop
Iterate (Right (Tree.Nodes (X)));
Process (X);
X := Left (Tree.Nodes (X));
end loop;
end Iterate;
-- Start of processing for Generic_Reverse_Iteration
begin
Iterate (Tree.Root);
end Generic_Reverse_Iteration;
-------------------
-- Generic_Write --
-------------------
procedure Generic_Write
(Stream : not null access Root_Stream_Type'Class;
Tree : Tree_Type'Class)
is
procedure Process (Node : Count_Type);
pragma Inline (Process);
procedure Iterate is new Generic_Iteration (Process);
-------------
-- Process --
-------------
procedure Process (Node : Count_Type) is
begin
Write_Node (Stream, Tree.Nodes (Node));
end Process;
-- Start of processing for Generic_Write
begin
Count_Type'Base'Write (Stream, Tree.Length);
Iterate (Tree);
end Generic_Write;
-----------------
-- Left_Rotate --
-----------------
procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type) is
-- CLR p. 266
N : Nodes_Type renames Tree.Nodes;
Y : constant Count_Type := Right (N (X));
pragma Assert (Y /= 0);
begin
Set_Right (N (X), Left (N (Y)));
if Left (N (Y)) /= 0 then
Set_Parent (N (Left (N (Y))), X);
end if;
Set_Parent (N (Y), Parent (N (X)));
if X = Tree.Root then
Tree.Root := Y;
elsif X = Left (N (Parent (N (X)))) then
Set_Left (N (Parent (N (X))), Y);
else
pragma Assert (X = Right (N (Parent (N (X)))));
Set_Right (N (Parent (N (X))), Y);
end if;
Set_Left (N (Y), X);
Set_Parent (N (X), Y);
end Left_Rotate;
---------
-- Max --
---------
function Max
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
-- CLR p. 248
X : Count_Type := Node;
Y : Count_Type;
begin
loop
Y := Right (Tree.Nodes (X));
if Y = 0 then
return X;
end if;
X := Y;
end loop;
end Max;
---------
-- Min --
---------
function Min
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
-- CLR p. 248
X : Count_Type := Node;
Y : Count_Type;
begin
loop
Y := Left (Tree.Nodes (X));
if Y = 0 then
return X;
end if;
X := Y;
end loop;
end Min;
----------
-- Next --
----------
function Next
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
begin
-- CLR p. 249
if Node = 0 then
return 0;
end if;
if Right (Tree.Nodes (Node)) /= 0 then
return Min (Tree, Right (Tree.Nodes (Node)));
end if;
declare
X : Count_Type := Node;
Y : Count_Type := Parent (Tree.Nodes (Node));
begin
while Y /= 0 and then X = Right (Tree.Nodes (Y)) loop
X := Y;
Y := Parent (Tree.Nodes (Y));
end loop;
return Y;
end;
end Next;
--------------
-- Previous --
--------------
function Previous
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
begin
if Node = 0 then
return 0;
end if;
if Left (Tree.Nodes (Node)) /= 0 then
return Max (Tree, Left (Tree.Nodes (Node)));
end if;
declare
X : Count_Type := Node;
Y : Count_Type := Parent (Tree.Nodes (Node));
begin
while Y /= 0 and then X = Left (Tree.Nodes (Y)) loop
X := Y;
Y := Parent (Tree.Nodes (Y));
end loop;
return Y;
end;
end Previous;
--------------------------
-- Rebalance_For_Insert --
--------------------------
procedure Rebalance_For_Insert
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 268
N : Nodes_Type renames Tree.Nodes;
X : Count_Type := Node;
pragma Assert (X /= 0);
pragma Assert (Color (N (X)) = Red);
Y : Count_Type;
begin
while X /= Tree.Root and then Color (N (Parent (N (X)))) = Red loop
if Parent (N (X)) = Left (N (Parent (N (Parent (N (X)))))) then
Y := Right (N (Parent (N (Parent (N (X))))));
if Y /= 0 and then Color (N (Y)) = Red then
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Y), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
X := Parent (N (Parent (N (X))));
else
if X = Right (N (Parent (N (X)))) then
X := Parent (N (X));
Left_Rotate (Tree, X);
end if;
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
Right_Rotate (Tree, Parent (N (Parent (N (X)))));
end if;
else
pragma Assert (Parent (N (X)) =
Right (N (Parent (N (Parent (N (X)))))));
Y := Left (N (Parent (N (Parent (N (X))))));
if Y /= 0 and then Color (N (Y)) = Red then
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Y), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
X := Parent (N (Parent (N (X))));
else
if X = Left (N (Parent (N (X)))) then
X := Parent (N (X));
Right_Rotate (Tree, X);
end if;
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
Left_Rotate (Tree, Parent (N (Parent (N (X)))));
end if;
end if;
end loop;
Set_Color (N (Tree.Root), Black);
end Rebalance_For_Insert;
------------------
-- Right_Rotate --
------------------
procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type) is
N : Nodes_Type renames Tree.Nodes;
X : constant Count_Type := Left (N (Y));
pragma Assert (X /= 0);
begin
Set_Left (N (Y), Right (N (X)));
if Right (N (X)) /= 0 then
Set_Parent (N (Right (N (X))), Y);
end if;
Set_Parent (N (X), Parent (N (Y)));
if Y = Tree.Root then
Tree.Root := X;
elsif Y = Left (N (Parent (N (Y)))) then
Set_Left (N (Parent (N (Y))), X);
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
Set_Right (N (Parent (N (Y))), X);
end if;
Set_Right (N (X), Y);
Set_Parent (N (Y), X);
end Right_Rotate;
---------
-- Vet --
---------
function Vet (Tree : Tree_Type'Class; Index : Count_Type) return Boolean is
Nodes : Nodes_Type renames Tree.Nodes;
Node : Node_Type renames Nodes (Index);
begin
if Parent (Node) = Index
or else Left (Node) = Index
or else Right (Node) = Index
then
return False;
end if;
if Tree.Length = 0
or else Tree.Root = 0
or else Tree.First = 0
or else Tree.Last = 0
then
return False;
end if;
if Parent (Nodes (Tree.Root)) /= 0 then
return False;
end if;
if Left (Nodes (Tree.First)) /= 0 then
return False;
end if;
if Right (Nodes (Tree.Last)) /= 0 then
return False;
end if;
if Tree.Length = 1 then
if Tree.First /= Tree.Last
or else Tree.First /= Tree.Root
then
return False;
end if;
if Index /= Tree.First then
return False;
end if;
if Parent (Node) /= 0
or else Left (Node) /= 0
or else Right (Node) /= 0
then
return False;
end if;
return True;
end if;
if Tree.First = Tree.Last then
return False;
end if;
if Tree.Length = 2 then
if Tree.First /= Tree.Root and then Tree.Last /= Tree.Root then
return False;
end if;
if Tree.First /= Index and then Tree.Last /= Index then
return False;
end if;
end if;
if Left (Node) /= 0 and then Parent (Nodes (Left (Node))) /= Index then
return False;
end if;
if Right (Node) /= 0 and then Parent (Nodes (Right (Node))) /= Index then
return False;
end if;
if Parent (Node) = 0 then
if Tree.Root /= Index then
return False;
end if;
elsif Left (Nodes (Parent (Node))) /= Index
and then Right (Nodes (Parent (Node))) /= Index
then
return False;
end if;
return True;
end Vet;
end Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
|