summaryrefslogtreecommitdiff
path: root/gcc/ada/a-rbtgso.adb
blob: 4a46be1181c7e7fddcca875437a82cc2e73d80ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--       A D A . C O N T A I N E R S . R E D _ B L A C K _ T R E E S .      --
--               G E N E R I C _ S E T _ O P E R A T I O N S                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2004-2005 Free Software Foundation, Inc.          --
--                                                                          --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the  contents of the part following the private keyword. --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------

with System; use type System.Address;

package body Ada.Containers.Red_Black_Trees.Generic_Set_Operations is

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Clear (Tree : in out Tree_Type);

   function Copy (Source : Tree_Type) return Tree_Type;

   -----------
   -- Clear --
   -----------

   procedure Clear (Tree : in out Tree_Type) is
      pragma Assert (Tree.Busy = 0);
      pragma Assert (Tree.Lock = 0);

      Root : Node_Access := Tree.Root;

   begin
      Tree.Root := null;
      Tree.First := null;
      Tree.Last := null;
      Tree.Length := 0;

      Delete_Tree (Root);
   end Clear;

   ----------
   -- Copy --
   ----------

   function Copy (Source : Tree_Type) return Tree_Type is
      Target : Tree_Type;

   begin
      if Source.Length = 0 then
         return Target;
      end if;

      Target.Root := Copy_Tree (Source.Root);
      Target.First := Tree_Operations.Min (Target.Root);
      Target.Last := Tree_Operations.Max (Target.Root);
      Target.Length := Source.Length;

      return Target;
   end Copy;

   ----------------
   -- Difference --
   ----------------

   procedure Difference (Target : in out Tree_Type; Source : Tree_Type) is
      Tgt : Node_Access := Target.First;
      Src : Node_Access := Source.First;

   begin
      if Target'Address = Source'Address then
         if Target.Busy > 0 then
            raise Program_Error;
         end if;

         Clear (Target);
         return;
      end if;

      if Source.Length = 0 then
         return;
      end if;

      if Target.Busy > 0 then
         raise Program_Error;
      end if;

      loop
         if Tgt = null then
            return;
         end if;

         if Src = null then
            return;
         end if;

         if Is_Less (Tgt, Src) then
            Tgt := Tree_Operations.Next (Tgt);

         elsif Is_Less (Src, Tgt) then
            Src := Tree_Operations.Next (Src);

         else
            declare
               X : Node_Access := Tgt;
            begin
               Tgt := Tree_Operations.Next (Tgt);
               Tree_Operations.Delete_Node_Sans_Free (Target, X);
               Free (X);
            end;

            Src := Tree_Operations.Next (Src);
         end if;
      end loop;
   end Difference;

   function Difference (Left, Right : Tree_Type) return Tree_Type is
      Tree : Tree_Type;

      L_Node : Node_Access := Left.First;
      R_Node : Node_Access := Right.First;

      Dst_Node : Node_Access;

   begin
      if Left'Address = Right'Address then
         return Tree;  -- Empty set
      end if;

      if Left.Length = 0 then
         return Tree;  -- Empty set
      end if;

      if Right.Length = 0 then
         return Copy (Left);
      end if;

      loop
         if L_Node = null then
            return Tree;
         end if;

         if R_Node = null then
            while L_Node /= null loop
               Insert_With_Hint
                 (Dst_Tree => Tree,
                  Dst_Hint => null,
                  Src_Node => L_Node,
                  Dst_Node => Dst_Node);

               L_Node := Tree_Operations.Next (L_Node);

            end loop;

            return Tree;
         end if;

         if Is_Less (L_Node, R_Node) then
            Insert_With_Hint
              (Dst_Tree => Tree,
               Dst_Hint => null,
               Src_Node => L_Node,
               Dst_Node => Dst_Node);

            L_Node := Tree_Operations.Next (L_Node);

         elsif Is_Less (R_Node, L_Node) then
            R_Node := Tree_Operations.Next (R_Node);

         else
            L_Node := Tree_Operations.Next (L_Node);
            R_Node := Tree_Operations.Next (R_Node);
         end if;
      end loop;

   exception
      when others =>
         Delete_Tree (Tree.Root);
         raise;
   end Difference;

   ------------------
   -- Intersection --
   ------------------

   procedure Intersection
     (Target : in out Tree_Type;
      Source : Tree_Type)
   is
      Tgt : Node_Access := Target.First;
      Src : Node_Access := Source.First;

   begin
      if Target'Address = Source'Address then
         return;
      end if;

      if Target.Busy > 0 then
         raise Program_Error;
      end if;

      if Source.Length = 0 then
         Clear (Target);
         return;
      end if;

      while Tgt /= null
        and then Src /= null
      loop
         if Is_Less (Tgt, Src) then
            declare
               X : Node_Access := Tgt;
            begin
               Tgt := Tree_Operations.Next (Tgt);
               Tree_Operations.Delete_Node_Sans_Free (Target, X);
               Free (X);
            end;

         elsif Is_Less (Src, Tgt) then
            Src := Tree_Operations.Next (Src);

         else
            Tgt := Tree_Operations.Next (Tgt);
            Src := Tree_Operations.Next (Src);
         end if;
      end loop;

      while Tgt /= null loop
         declare
            X : Node_Access := Tgt;
         begin
            Tgt := Tree_Operations.Next (Tgt);
            Tree_Operations.Delete_Node_Sans_Free (Target, X);
            Free (X);
         end;
      end loop;
   end Intersection;

   function Intersection (Left, Right : Tree_Type) return Tree_Type is
      Tree : Tree_Type;

      L_Node : Node_Access := Left.First;
      R_Node : Node_Access := Right.First;

      Dst_Node : Node_Access;

   begin
      if Left'Address = Right'Address then
         return Copy (Left);
      end if;

      loop
         if L_Node = null then
            return Tree;
         end if;

         if R_Node = null then
            return Tree;
         end if;

         if Is_Less (L_Node, R_Node) then
            L_Node := Tree_Operations.Next (L_Node);

         elsif Is_Less (R_Node, L_Node) then
            R_Node := Tree_Operations.Next (R_Node);

         else
            Insert_With_Hint
              (Dst_Tree => Tree,
               Dst_Hint => null,
               Src_Node => L_Node,
               Dst_Node => Dst_Node);

            L_Node := Tree_Operations.Next (L_Node);
            R_Node := Tree_Operations.Next (R_Node);
         end if;
      end loop;

   exception
      when others =>
         Delete_Tree (Tree.Root);
         raise;
   end Intersection;

   ---------------
   -- Is_Subset --
   ---------------

   function Is_Subset
     (Subset : Tree_Type;
      Of_Set : Tree_Type) return Boolean
   is
   begin
      if Subset'Address = Of_Set'Address then
         return True;
      end if;

      if Subset.Length > Of_Set.Length then
         return False;
      end if;

      declare
         Subset_Node : Node_Access := Subset.First;
         Set_Node    : Node_Access := Of_Set.First;

      begin
         loop
            if Set_Node = null then
               return Subset_Node = null;
            end if;

            if Subset_Node = null then
               return True;
            end if;

            if Is_Less (Subset_Node, Set_Node) then
               return False;
            end if;

            if Is_Less (Set_Node, Subset_Node) then
               Set_Node := Tree_Operations.Next (Set_Node);
            else
               Set_Node := Tree_Operations.Next (Set_Node);
               Subset_Node := Tree_Operations.Next (Subset_Node);
            end if;
         end loop;
      end;
   end Is_Subset;

   -------------
   -- Overlap --
   -------------

   function Overlap (Left, Right : Tree_Type) return Boolean is
      L_Node : Node_Access := Left.First;
      R_Node : Node_Access := Right.First;

   begin
      if Left'Address = Right'Address then
         return Left.Length /= 0;
      end if;

      loop
         if L_Node = null
           or else R_Node = null
         then
            return False;
         end if;

         if Is_Less (L_Node, R_Node) then
            L_Node := Tree_Operations.Next (L_Node);

         elsif Is_Less (R_Node, L_Node) then
            R_Node := Tree_Operations.Next (R_Node);

         else
            return True;
         end if;
      end loop;
   end Overlap;

   --------------------------
   -- Symmetric_Difference --
   --------------------------

   procedure Symmetric_Difference
     (Target : in out Tree_Type;
      Source : Tree_Type)
   is
      Tgt : Node_Access := Target.First;
      Src : Node_Access := Source.First;

      New_Tgt_Node : Node_Access;

   begin
      if Target.Busy > 0 then
         raise Program_Error;
      end if;

      if Target'Address = Source'Address then
         Clear (Target);
         return;
      end if;

      loop
         if Tgt = null then
            while Src /= null loop
               Insert_With_Hint
                 (Dst_Tree => Target,
                  Dst_Hint => null,
                  Src_Node => Src,
                  Dst_Node => New_Tgt_Node);

               Src := Tree_Operations.Next (Src);
            end loop;

            return;
         end if;

         if Src = null then
            return;
         end if;

         if Is_Less (Tgt, Src) then
            Tgt := Tree_Operations.Next (Tgt);

         elsif Is_Less (Src, Tgt) then
            Insert_With_Hint
              (Dst_Tree => Target,
               Dst_Hint => Tgt,
               Src_Node => Src,
               Dst_Node => New_Tgt_Node);

            Src := Tree_Operations.Next (Src);

         else
            declare
               X : Node_Access := Tgt;
            begin
               Tgt := Tree_Operations.Next (Tgt);
               Tree_Operations.Delete_Node_Sans_Free (Target, X);
               Free (X);
            end;

            Src := Tree_Operations.Next (Src);
         end if;
      end loop;
   end Symmetric_Difference;

   function Symmetric_Difference (Left, Right : Tree_Type) return Tree_Type is
      Tree : Tree_Type;

      L_Node : Node_Access := Left.First;
      R_Node : Node_Access := Right.First;

      Dst_Node : Node_Access;

   begin
      if Left'Address = Right'Address then
         return Tree;  -- Empty set
      end if;

      if Right.Length = 0 then
         return Copy (Left);
      end if;

      if Left.Length = 0 then
         return Copy (Right);
      end if;

      loop
         if L_Node = null then
            while R_Node /= null loop
               Insert_With_Hint
                 (Dst_Tree => Tree,
                  Dst_Hint => null,
                  Src_Node => R_Node,
                  Dst_Node => Dst_Node);
               R_Node := Tree_Operations.Next (R_Node);
            end loop;

            return Tree;
         end if;

         if R_Node = null then
            while L_Node /= null loop
               Insert_With_Hint
                 (Dst_Tree => Tree,
                  Dst_Hint => null,
                  Src_Node => L_Node,
                  Dst_Node => Dst_Node);

               L_Node := Tree_Operations.Next (L_Node);
            end loop;

            return Tree;
         end if;

         if Is_Less (L_Node, R_Node) then
            Insert_With_Hint
              (Dst_Tree => Tree,
               Dst_Hint => null,
               Src_Node => L_Node,
               Dst_Node => Dst_Node);

            L_Node := Tree_Operations.Next (L_Node);

         elsif Is_Less (R_Node, L_Node) then
            Insert_With_Hint
              (Dst_Tree => Tree,
               Dst_Hint => null,
               Src_Node => R_Node,
               Dst_Node => Dst_Node);

            R_Node := Tree_Operations.Next (R_Node);

         else
            L_Node := Tree_Operations.Next (L_Node);
            R_Node := Tree_Operations.Next (R_Node);
         end if;
      end loop;

   exception
      when others =>
         Delete_Tree (Tree.Root);
         raise;
   end Symmetric_Difference;

   -----------
   -- Union --
   -----------

   procedure Union (Target : in out Tree_Type; Source : Tree_Type)
   is
      Hint : Node_Access;

      procedure Process (Node : Node_Access);
      pragma Inline (Process);

      procedure Iterate is new Tree_Operations.Generic_Iteration (Process);

      -------------
      -- Process --
      -------------

      procedure Process (Node : Node_Access) is
      begin
         Insert_With_Hint
           (Dst_Tree => Target,
            Dst_Hint => Hint,
            Src_Node => Node,
            Dst_Node => Hint);
      end Process;

   --  Start of processing for Union

   begin
      if Target'Address = Source'Address then
         return;
      end if;

      if Target.Busy > 0 then
         raise Program_Error;
      end if;

      Iterate (Source);
   end Union;

   function Union (Left, Right : Tree_Type) return Tree_Type is
   begin
      if Left'Address = Right'Address then
         return Copy (Left);
      end if;

      if Left.Length = 0 then
         return Copy (Right);
      end if;

      if Right.Length = 0 then
         return Copy (Left);
      end if;

      declare
         Tree : Tree_Type := Copy (Left);

         Hint : Node_Access;

         procedure Process (Node : Node_Access);
         pragma Inline (Process);

         procedure Iterate is
           new Tree_Operations.Generic_Iteration (Process);

         -------------
         -- Process --
         -------------

         procedure Process (Node : Node_Access) is
         begin
            Insert_With_Hint
              (Dst_Tree => Tree,
               Dst_Hint => Hint,
               Src_Node => Node,
               Dst_Node => Hint);
         end Process;

      --  Start of processing for Union

      begin
         Iterate (Right);
         return Tree;

      exception
         when others =>
            Delete_Tree (Tree.Root);
            raise;
      end;

   end Union;

end Ada.Containers.Red_Black_Trees.Generic_Set_Operations;