1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_SET_OPERATIONS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004 Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the contents of the part following the private keyword. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
package body Ada.Containers.Red_Black_Trees.Generic_Set_Operations is
----------------
-- Difference --
----------------
procedure Difference (Target : in out Tree_Type; Source : Tree_Type) is
Tgt : Node_Access := Target.First;
Src : Node_Access := Source.First;
begin
-- NOTE: must be done by client:
-- if Target'Address = Source'Address then
-- Clear (Target);
-- return;
-- end if;
loop
if Tgt = Tree_Operations.Null_Node then
return;
end if;
if Src = Tree_Operations.Null_Node then
return;
end if;
if Is_Less (Tgt, Src) then
Tgt := Tree_Operations.Next (Tgt);
elsif Is_Less (Src, Tgt) then
Src := Tree_Operations.Next (Src);
else
declare
X : Node_Access := Tgt;
begin
Tgt := Tree_Operations.Next (Tgt);
Tree_Operations.Delete_Node_Sans_Free (Target, X);
Free (X);
end;
Src := Tree_Operations.Next (Src);
end if;
end loop;
end Difference;
function Difference (Left, Right : Tree_Type) return Tree_Type is
Tree : Tree_Type := (Length => 0, others => Tree_Operations.Null_Node);
L_Node : Node_Access := Left.First;
R_Node : Node_Access := Right.First;
Dst_Node : Node_Access;
begin
-- NOTE: must by done by client:
-- if Left'Address = Right'Address then
-- return Empty_Set;
-- end if;
loop
if L_Node = Tree_Operations.Null_Node then
return Tree;
end if;
if R_Node = Tree_Operations.Null_Node then
while L_Node /= Tree_Operations.Null_Node loop
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => L_Node,
Dst_Node => Dst_Node);
L_Node := Tree_Operations.Next (L_Node);
end loop;
return Tree;
end if;
if Is_Less (L_Node, R_Node) then
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => L_Node,
Dst_Node => Dst_Node);
L_Node := Tree_Operations.Next (L_Node);
elsif Is_Less (R_Node, L_Node) then
R_Node := Tree_Operations.Next (R_Node);
else
L_Node := Tree_Operations.Next (L_Node);
R_Node := Tree_Operations.Next (R_Node);
end if;
end loop;
exception
when others =>
Delete_Tree (Tree.Root);
raise;
end Difference;
------------------
-- Intersection --
------------------
procedure Intersection
(Target : in out Tree_Type;
Source : Tree_Type)
is
Tgt : Node_Access := Target.First;
Src : Node_Access := Source.First;
begin
-- NOTE: must be done by caller: ???
-- if Target'Address = Source'Address then
-- return;
-- end if;
while Tgt /= Tree_Operations.Null_Node
and then Src /= Tree_Operations.Null_Node
loop
if Is_Less (Tgt, Src) then
declare
X : Node_Access := Tgt;
begin
Tgt := Tree_Operations.Next (Tgt);
Tree_Operations.Delete_Node_Sans_Free (Target, X);
Free (X);
end;
elsif Is_Less (Src, Tgt) then
Src := Tree_Operations.Next (Src);
else
Tgt := Tree_Operations.Next (Tgt);
Src := Tree_Operations.Next (Src);
end if;
end loop;
end Intersection;
function Intersection (Left, Right : Tree_Type) return Tree_Type is
Tree : Tree_Type := (Length => 0, others => Tree_Operations.Null_Node);
L_Node : Node_Access := Left.First;
R_Node : Node_Access := Right.First;
Dst_Node : Node_Access;
begin
-- NOTE: must be done by caller: ???
-- if Left'Address = Right'Address then
-- return Left;
-- end if;
loop
if L_Node = Tree_Operations.Null_Node then
return Tree;
end if;
if R_Node = Tree_Operations.Null_Node then
return Tree;
end if;
if Is_Less (L_Node, R_Node) then
L_Node := Tree_Operations.Next (L_Node);
elsif Is_Less (R_Node, L_Node) then
R_Node := Tree_Operations.Next (R_Node);
else
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => L_Node,
Dst_Node => Dst_Node);
L_Node := Tree_Operations.Next (L_Node);
R_Node := Tree_Operations.Next (R_Node);
end if;
end loop;
exception
when others =>
Delete_Tree (Tree.Root);
raise;
end Intersection;
---------------
-- Is_Subset --
---------------
function Is_Subset
(Subset : Tree_Type;
Of_Set : Tree_Type) return Boolean
is
begin
-- NOTE: must by done by caller:
-- if Subset'Address = Of_Set'Address then
-- return True;
-- end if;
if Subset.Length > Of_Set.Length then
return False;
end if;
declare
Subset_Node : Node_Access := Subset.First;
Set_Node : Node_Access := Of_Set.First;
begin
loop
if Set_Node = Tree_Operations.Null_Node then
return Subset_Node = Tree_Operations.Null_Node;
end if;
if Subset_Node = Tree_Operations.Null_Node then
return True;
end if;
if Is_Less (Subset_Node, Set_Node) then
return False;
end if;
if Is_Less (Set_Node, Subset_Node) then
Set_Node := Tree_Operations.Next (Set_Node);
else
Set_Node := Tree_Operations.Next (Set_Node);
Subset_Node := Tree_Operations.Next (Subset_Node);
end if;
end loop;
end;
end Is_Subset;
-------------
-- Overlap --
-------------
function Overlap (Left, Right : Tree_Type) return Boolean is
L_Node : Node_Access := Left.First;
R_Node : Node_Access := Right.First;
begin
-- NOTE: must be done by caller: ???
-- if Left'Address = Right'Address then
-- return Left.Tree.Length /= 0;
-- end if;
loop
if L_Node = Tree_Operations.Null_Node
or else R_Node = Tree_Operations.Null_Node
then
return False;
end if;
if Is_Less (L_Node, R_Node) then
L_Node := Tree_Operations.Next (L_Node);
elsif Is_Less (R_Node, L_Node) then
R_Node := Tree_Operations.Next (R_Node);
else
return True;
end if;
end loop;
end Overlap;
--------------------------
-- Symmetric_Difference --
--------------------------
procedure Symmetric_Difference
(Target : in out Tree_Type;
Source : Tree_Type)
is
Tgt : Node_Access := Target.First;
Src : Node_Access := Source.First;
New_Tgt_Node : Node_Access;
begin
-- NOTE: must by done by client: ???
-- if Target'Address = Source'Address then
-- Clear (Target);
-- return;
-- end if;
loop
if Tgt = Tree_Operations.Null_Node then
while Src /= Tree_Operations.Null_Node loop
Insert_With_Hint
(Dst_Tree => Target,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => Src,
Dst_Node => New_Tgt_Node);
Src := Tree_Operations.Next (Src);
end loop;
return;
end if;
if Src = Tree_Operations.Null_Node then
return;
end if;
if Is_Less (Tgt, Src) then
Tgt := Tree_Operations.Next (Tgt);
elsif Is_Less (Src, Tgt) then
Insert_With_Hint
(Dst_Tree => Target,
Dst_Hint => Tgt,
Src_Node => Src,
Dst_Node => New_Tgt_Node);
Src := Tree_Operations.Next (Src);
else
declare
X : Node_Access := Tgt;
begin
Tgt := Tree_Operations.Next (Tgt);
Tree_Operations.Delete_Node_Sans_Free (Target, X);
Free (X);
end;
Src := Tree_Operations.Next (Src);
end if;
end loop;
end Symmetric_Difference;
function Symmetric_Difference (Left, Right : Tree_Type) return Tree_Type is
Tree : Tree_Type := (Length => 0, others => Tree_Operations.Null_Node);
L_Node : Node_Access := Left.First;
R_Node : Node_Access := Right.First;
Dst_Node : Node_Access;
begin
-- NOTE: must by done by caller ???
-- if Left'Address = Right'Address then
-- return Empty_Set;
-- end if;
loop
if L_Node = Tree_Operations.Null_Node then
while R_Node /= Tree_Operations.Null_Node loop
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => R_Node,
Dst_Node => Dst_Node);
R_Node := Tree_Operations.Next (R_Node);
end loop;
return Tree;
end if;
if R_Node = Tree_Operations.Null_Node then
while L_Node /= Tree_Operations.Null_Node loop
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => L_Node,
Dst_Node => Dst_Node);
L_Node := Tree_Operations.Next (L_Node);
end loop;
return Tree;
end if;
if Is_Less (L_Node, R_Node) then
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => L_Node,
Dst_Node => Dst_Node);
L_Node := Tree_Operations.Next (L_Node);
elsif Is_Less (R_Node, L_Node) then
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Tree_Operations.Null_Node,
Src_Node => R_Node,
Dst_Node => Dst_Node);
R_Node := Tree_Operations.Next (R_Node);
else
L_Node := Tree_Operations.Next (L_Node);
R_Node := Tree_Operations.Next (R_Node);
end if;
end loop;
exception
when others =>
Delete_Tree (Tree.Root);
raise;
end Symmetric_Difference;
-----------
-- Union --
-----------
procedure Union (Target : in out Tree_Type; Source : Tree_Type)
is
Hint : Node_Access;
procedure Process (Node : Node_Access);
pragma Inline (Process);
procedure Iterate is new Tree_Operations.Generic_Iteration (Process);
-------------
-- Process --
-------------
procedure Process (Node : Node_Access) is
begin
Insert_With_Hint
(Dst_Tree => Target,
Dst_Hint => Hint,
Src_Node => Node,
Dst_Node => Hint);
end Process;
-- Start of processing for Union
begin
-- NOTE: must be done by caller: ???
-- if Target'Address = Source'Address then
-- return;
-- end if;
Iterate (Source);
end Union;
function Union (Left, Right : Tree_Type) return Tree_Type is
Tree : Tree_Type;
begin
-- NOTE: must be done by caller:
-- if Left'Address = Right'Address then
-- return Left;
-- end if;
declare
Root : constant Node_Access := Copy_Tree (Left.Root);
begin
Tree := (Root => Root,
First => Tree_Operations.Min (Root),
Last => Tree_Operations.Max (Root),
Length => Left.Length);
end;
declare
Hint : Node_Access;
procedure Process (Node : Node_Access);
pragma Inline (Process);
procedure Iterate is
new Tree_Operations.Generic_Iteration (Process);
-------------
-- Process --
-------------
procedure Process (Node : Node_Access) is
begin
Insert_With_Hint
(Dst_Tree => Tree,
Dst_Hint => Hint,
Src_Node => Node,
Dst_Node => Hint);
end Process;
-- Start of processing for Union
begin
Iterate (Right);
exception
when others =>
Delete_Tree (Tree.Root);
raise;
end;
return Tree;
end Union;
end Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
|