1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ A T T R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Elists; use Elists;
with Exp_Atag; use Exp_Atag;
with Exp_Ch2; use Exp_Ch2;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch9; use Exp_Ch9;
with Exp_Dist; use Exp_Dist;
with Exp_Imgv; use Exp_Imgv;
with Exp_Pakd; use Exp_Pakd;
with Exp_Strm; use Exp_Strm;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Exp_VFpt; use Exp_VFpt;
with Fname; use Fname;
with Freeze; use Freeze;
with Gnatvsn; use Gnatvsn;
with Itypes; use Itypes;
with Lib; use Lib;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Uname; use Uname;
with Validsw; use Validsw;
package body Exp_Attr is
-----------------------
-- Local Subprograms --
-----------------------
function Build_Array_VS_Func
(A_Type : Entity_Id;
Nod : Node_Id) return Entity_Id;
-- Build function to test Valid_Scalars for array type A_Type. Nod is the
-- Valid_Scalars attribute node, used to insert the function body, and the
-- value returned is the entity of the constructed function body. We do not
-- bother to generate a separate spec for this subprogram.
procedure Compile_Stream_Body_In_Scope
(N : Node_Id;
Decl : Node_Id;
Arr : Entity_Id;
Check : Boolean);
-- The body for a stream subprogram may be generated outside of the scope
-- of the type. If the type is fully private, it may depend on the full
-- view of other types (e.g. indexes) that are currently private as well.
-- We install the declarations of the package in which the type is declared
-- before compiling the body in what is its proper environment. The Check
-- parameter indicates if checks are to be suppressed for the stream body.
-- We suppress checks for array/record reads, since the rule is that these
-- are like assignments, out of range values due to uninitialized storage,
-- or other invalid values do NOT cause a Constraint_Error to be raised.
procedure Expand_Access_To_Protected_Op
(N : Node_Id;
Pref : Node_Id;
Typ : Entity_Id);
-- An attribute reference to a protected subprogram is transformed into
-- a pair of pointers: one to the object, and one to the operations.
-- This expansion is performed for 'Access and for 'Unrestricted_Access.
procedure Expand_Fpt_Attribute
(N : Node_Id;
Pkg : RE_Id;
Nam : Name_Id;
Args : List_Id);
-- This procedure expands a call to a floating-point attribute function.
-- N is the attribute reference node, and Args is a list of arguments to
-- be passed to the function call. Pkg identifies the package containing
-- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
-- have already been converted to the floating-point type for which Pkg was
-- instantiated. The Nam argument is the relevant attribute processing
-- routine to be called. This is the same as the attribute name, except in
-- the Unaligned_Valid case.
procedure Expand_Fpt_Attribute_R (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes a single floating-point argument. The function to be called
-- is always the same as the attribute name.
procedure Expand_Fpt_Attribute_RI (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes one floating-point argument and one integer argument. The
-- function to be called is always the same as the attribute name.
procedure Expand_Fpt_Attribute_RR (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes two floating-point arguments. The function to be called
-- is always the same as the attribute name.
procedure Expand_Loop_Entry_Attribute (N : Node_Id);
-- Handle the expansion of attribute 'Loop_Entry. As a result, the related
-- loop may be converted into a conditional block. See body for details.
procedure Expand_Min_Max_Attribute (N : Node_Id);
-- Handle the expansion of attributes 'Max and 'Min, including expanding
-- then out if we are in Modify_Tree_For_C mode.
procedure Expand_Pred_Succ_Attribute (N : Node_Id);
-- Handles expansion of Pred or Succ attributes for case of non-real
-- operand with overflow checking required.
procedure Expand_Update_Attribute (N : Node_Id);
-- Handle the expansion of attribute Update
function Get_Index_Subtype (N : Node_Id) return Entity_Id;
-- Used for Last, Last, and Length, when the prefix is an array type.
-- Obtains the corresponding index subtype.
procedure Find_Fat_Info
(T : Entity_Id;
Fat_Type : out Entity_Id;
Fat_Pkg : out RE_Id);
-- Given a floating-point type T, identifies the package containing the
-- attributes for this type (returned in Fat_Pkg), and the corresponding
-- type for which this package was instantiated from Fat_Gen. Error if T
-- is not a floating-point type.
function Find_Stream_Subprogram
(Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id;
-- Returns the stream-oriented subprogram attribute for Typ. For tagged
-- types, the corresponding primitive operation is looked up, else the
-- appropriate TSS from the type itself, or from its closest ancestor
-- defining it, is returned. In both cases, inheritance of representation
-- aspects is thus taken into account.
function Full_Base (T : Entity_Id) return Entity_Id;
-- The stream functions need to examine the underlying representation of
-- composite types. In some cases T may be non-private but its base type
-- is, in which case the function returns the corresponding full view.
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
-- Given a type, find a corresponding stream convert pragma that applies to
-- the implementation base type of this type (Typ). If found, return the
-- pragma node, otherwise return Empty if no pragma is found.
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
-- Utility for array attributes, returns true on packed constrained
-- arrays, and on access to same.
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean;
-- Returns true iff the given node refers to an attribute call that
-- can be expanded directly by the back end and does not need front end
-- expansion. Typically used for rounding and truncation attributes that
-- appear directly inside a conversion to integer.
-------------------------
-- Build_Array_VS_Func --
-------------------------
function Build_Array_VS_Func
(A_Type : Entity_Id;
Nod : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
Comp_Type : constant Entity_Id := Component_Type (A_Type);
Body_Stmts : List_Id;
Index_List : List_Id;
Func_Id : Entity_Id;
Formals : List_Id;
function Test_Component return List_Id;
-- Create one statement to test validity of one component designated by
-- a full set of indexes. Returns statement list containing test.
function Test_One_Dimension (N : Int) return List_Id;
-- Create loop to test one dimension of the array. The single statement
-- in the loop body tests the inner dimensions if any, or else the
-- single component. Note that this procedure is called recursively,
-- with N being the dimension to be initialized. A call with N greater
-- than the number of dimensions simply generates the component test,
-- terminating the recursion. Returns statement list containing tests.
--------------------
-- Test_Component --
--------------------
function Test_Component return List_Id is
Comp : Node_Id;
Anam : Name_Id;
begin
Comp :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uA),
Expressions => Index_List);
if Is_Scalar_Type (Comp_Type) then
Anam := Name_Valid;
else
Anam := Name_Valid_Scalars;
end if;
return New_List (
Make_If_Statement (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Anam,
Prefix => Comp)),
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc)))));
end Test_Component;
------------------------
-- Test_One_Dimension --
------------------------
function Test_One_Dimension (N : Int) return List_Id is
Index : Entity_Id;
begin
-- If all dimensions dealt with, we simply test the component
if N > Number_Dimensions (A_Type) then
return Test_Component;
-- Here we generate the required loop
else
Index :=
Make_Defining_Identifier (Loc, New_External_Name ('J', N));
Append (New_Occurrence_Of (Index, Loc), Index_List);
return New_List (
Make_Implicit_Loop_Statement (Nod,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uA),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, N))))),
Statements => Test_One_Dimension (N + 1)),
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)));
end if;
end Test_One_Dimension;
-- Start of processing for Build_Array_VS_Func
begin
Index_List := New_List;
Func_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
Body_Stmts := Test_One_Dimension (1);
-- Parameter is always (A : A_Typ)
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_uA),
In_Present => True,
Out_Present => False,
Parameter_Type => New_Occurrence_Of (A_Type, Loc)));
-- Build body
Set_Ekind (Func_Id, E_Function);
Set_Is_Internal (Func_Id);
Insert_Action (Nod,
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Id,
Parameter_Specifications => Formals,
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Body_Stmts)));
if not Debug_Generated_Code then
Set_Debug_Info_Off (Func_Id);
end if;
return Func_Id;
end Build_Array_VS_Func;
----------------------------------
-- Compile_Stream_Body_In_Scope --
----------------------------------
procedure Compile_Stream_Body_In_Scope
(N : Node_Id;
Decl : Node_Id;
Arr : Entity_Id;
Check : Boolean)
is
Installed : Boolean := False;
Scop : constant Entity_Id := Scope (Arr);
Curr : constant Entity_Id := Current_Scope;
begin
if Is_Hidden (Arr)
and then not In_Open_Scopes (Scop)
and then Ekind (Scop) = E_Package
then
Push_Scope (Scop);
Install_Visible_Declarations (Scop);
Install_Private_Declarations (Scop);
Installed := True;
-- The entities in the package are now visible, but the generated
-- stream entity must appear in the current scope (usually an
-- enclosing stream function) so that itypes all have their proper
-- scopes.
Push_Scope (Curr);
end if;
if Check then
Insert_Action (N, Decl);
else
Insert_Action (N, Decl, Suppress => All_Checks);
end if;
if Installed then
-- Remove extra copy of current scope, and package itself
Pop_Scope;
End_Package_Scope (Scop);
end if;
end Compile_Stream_Body_In_Scope;
-----------------------------------
-- Expand_Access_To_Protected_Op --
-----------------------------------
procedure Expand_Access_To_Protected_Op
(N : Node_Id;
Pref : Node_Id;
Typ : Entity_Id)
is
-- The value of the attribute_reference is a record containing two
-- fields: an access to the protected object, and an access to the
-- subprogram itself. The prefix is a selected component.
Loc : constant Source_Ptr := Sloc (N);
Agg : Node_Id;
Btyp : constant Entity_Id := Base_Type (Typ);
Sub : Entity_Id;
Sub_Ref : Node_Id;
E_T : constant Entity_Id := Equivalent_Type (Btyp);
Acc : constant Entity_Id :=
Etype (Next_Component (First_Component (E_T)));
Obj_Ref : Node_Id;
Curr : Entity_Id;
function May_Be_External_Call return Boolean;
-- If the 'Access is to a local operation, but appears in a context
-- where it may lead to a call from outside the object, we must treat
-- this as an external call. Clearly we cannot tell without full
-- flow analysis, and a subsequent call that uses this 'Access may
-- lead to a bounded error (trying to seize locks twice, e.g.). For
-- now we treat 'Access as a potential external call if it is an actual
-- in a call to an outside subprogram.
--------------------------
-- May_Be_External_Call --
--------------------------
function May_Be_External_Call return Boolean is
Subp : Entity_Id;
Par : Node_Id := Parent (N);
begin
-- Account for the case where the Access attribute is part of a
-- named parameter association.
if Nkind (Par) = N_Parameter_Association then
Par := Parent (Par);
end if;
if Nkind (Par) in N_Subprogram_Call
and then Is_Entity_Name (Name (Par))
then
Subp := Entity (Name (Par));
return not In_Open_Scopes (Scope (Subp));
else
return False;
end if;
end May_Be_External_Call;
-- Start of processing for Expand_Access_To_Protected_Op
begin
-- Within the body of the protected type, the prefix designates a local
-- operation, and the object is the first parameter of the corresponding
-- protected body of the current enclosing operation.
if Is_Entity_Name (Pref) then
if May_Be_External_Call then
Sub :=
New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc);
else
Sub :=
New_Occurrence_Of
(Protected_Body_Subprogram (Entity (Pref)), Loc);
end if;
-- Don't traverse the scopes when the attribute occurs within an init
-- proc, because we directly use the _init formal of the init proc in
-- that case.
Curr := Current_Scope;
if not Is_Init_Proc (Curr) then
pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
while Scope (Curr) /= Scope (Entity (Pref)) loop
Curr := Scope (Curr);
end loop;
end if;
-- In case of protected entries the first formal of its Protected_
-- Body_Subprogram is the address of the object.
if Ekind (Curr) = E_Entry then
Obj_Ref :=
New_Occurrence_Of
(First_Formal
(Protected_Body_Subprogram (Curr)), Loc);
-- If the current scope is an init proc, then use the address of the
-- _init formal as the object reference.
elsif Is_Init_Proc (Curr) then
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (First_Formal (Curr), Loc),
Attribute_Name => Name_Address);
-- In case of protected subprograms the first formal of its
-- Protected_Body_Subprogram is the object and we get its address.
else
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(First_Formal
(Protected_Body_Subprogram (Curr)), Loc),
Attribute_Name => Name_Address);
end if;
-- Case where the prefix is not an entity name. Find the
-- version of the protected operation to be called from
-- outside the protected object.
else
Sub :=
New_Occurrence_Of
(External_Subprogram
(Entity (Selector_Name (Pref))), Loc);
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Prefix (Pref)),
Attribute_Name => Name_Address);
end if;
Sub_Ref :=
Make_Attribute_Reference (Loc,
Prefix => Sub,
Attribute_Name => Name_Access);
-- We set the type of the access reference to the already generated
-- access_to_subprogram type, and declare the reference analyzed, to
-- prevent further expansion when the enclosing aggregate is analyzed.
Set_Etype (Sub_Ref, Acc);
Set_Analyzed (Sub_Ref);
Agg :=
Make_Aggregate (Loc,
Expressions => New_List (Obj_Ref, Sub_Ref));
-- Sub_Ref has been marked as analyzed, but we still need to make sure
-- Sub is correctly frozen.
Freeze_Before (N, Entity (Sub));
Rewrite (N, Agg);
Analyze_And_Resolve (N, E_T);
-- For subsequent analysis, the node must retain its type. The backend
-- will replace it with the equivalent type where needed.
Set_Etype (N, Typ);
end Expand_Access_To_Protected_Op;
--------------------------
-- Expand_Fpt_Attribute --
--------------------------
procedure Expand_Fpt_Attribute
(N : Node_Id;
Pkg : RE_Id;
Nam : Name_Id;
Args : List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Fnm : Node_Id;
begin
-- The function name is the selected component Attr_xxx.yyy where
-- Attr_xxx is the package name, and yyy is the argument Nam.
-- Note: it would be more usual to have separate RE entries for each
-- of the entities in the Fat packages, but first they have identical
-- names (so we would have to have lots of renaming declarations to
-- meet the normal RE rule of separate names for all runtime entities),
-- and second there would be an awful lot of them.
Fnm :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (RTE (Pkg), Loc),
Selector_Name => Make_Identifier (Loc, Nam));
-- The generated call is given the provided set of parameters, and then
-- wrapped in a conversion which converts the result to the target type
-- We use the base type as the target because a range check may be
-- required.
Rewrite (N,
Unchecked_Convert_To (Base_Type (Etype (N)),
Make_Function_Call (Loc,
Name => Fnm,
Parameter_Associations => Args)));
Analyze_And_Resolve (N, Typ);
end Expand_Fpt_Attribute;
----------------------------
-- Expand_Fpt_Attribute_R --
----------------------------
-- The single argument is converted to its root type to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_R (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
Ftp : Entity_Id;
Pkg : RE_Id;
begin
Find_Fat_Info (Etype (E1), Ftp, Pkg);
Expand_Fpt_Attribute
(N, Pkg, Attribute_Name (N),
New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1))));
end Expand_Fpt_Attribute_R;
-----------------------------
-- Expand_Fpt_Attribute_RI --
-----------------------------
-- The first argument is converted to its root type and the second
-- argument is converted to standard long long integer to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
Ftp : Entity_Id;
Pkg : RE_Id;
E2 : constant Node_Id := Next (E1);
begin
Find_Fat_Info (Etype (E1), Ftp, Pkg);
Expand_Fpt_Attribute
(N, Pkg, Attribute_Name (N),
New_List (
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
end Expand_Fpt_Attribute_RI;
-----------------------------
-- Expand_Fpt_Attribute_RR --
-----------------------------
-- The two arguments are converted to their root types to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
E2 : constant Node_Id := Next (E1);
Ftp : Entity_Id;
Pkg : RE_Id;
begin
Find_Fat_Info (Etype (E1), Ftp, Pkg);
Expand_Fpt_Attribute
(N, Pkg, Attribute_Name (N),
New_List (
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
Unchecked_Convert_To (Ftp, Relocate_Node (E2))));
end Expand_Fpt_Attribute_RR;
---------------------------------
-- Expand_Loop_Entry_Attribute --
---------------------------------
procedure Expand_Loop_Entry_Attribute (N : Node_Id) is
procedure Build_Conditional_Block
(Loc : Source_Ptr;
Cond : Node_Id;
Loop_Stmt : Node_Id;
If_Stmt : out Node_Id;
Blk_Stmt : out Node_Id);
-- Create a block Blk_Stmt with an empty declarative list and a single
-- loop Loop_Stmt. The block is encased in an if statement If_Stmt with
-- condition Cond. If_Stmt is Empty when there is no condition provided.
function Is_Array_Iteration (N : Node_Id) return Boolean;
-- Determine whether loop statement N denotes an Ada 2012 iteration over
-- an array object.
-----------------------------
-- Build_Conditional_Block --
-----------------------------
procedure Build_Conditional_Block
(Loc : Source_Ptr;
Cond : Node_Id;
Loop_Stmt : Node_Id;
If_Stmt : out Node_Id;
Blk_Stmt : out Node_Id)
is
begin
-- Do not reanalyze the original loop statement because it is simply
-- being relocated.
Set_Analyzed (Loop_Stmt);
Blk_Stmt :=
Make_Block_Statement (Loc,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Loop_Stmt)));
if Present (Cond) then
If_Stmt :=
Make_If_Statement (Loc,
Condition => Cond,
Then_Statements => New_List (Blk_Stmt));
else
If_Stmt := Empty;
end if;
end Build_Conditional_Block;
------------------------
-- Is_Array_Iteration --
------------------------
function Is_Array_Iteration (N : Node_Id) return Boolean is
Stmt : constant Node_Id := Original_Node (N);
Iter : Node_Id;
begin
if Nkind (Stmt) = N_Loop_Statement
and then Present (Iteration_Scheme (Stmt))
and then Present (Iterator_Specification (Iteration_Scheme (Stmt)))
then
Iter := Iterator_Specification (Iteration_Scheme (Stmt));
return
Of_Present (Iter) and then Is_Array_Type (Etype (Name (Iter)));
end if;
return False;
end Is_Array_Iteration;
-- Local variables
Exprs : constant List_Id := Expressions (N);
Pref : constant Node_Id := Prefix (N);
Typ : constant Entity_Id := Etype (Pref);
Blk : Node_Id;
Decls : List_Id;
Installed : Boolean;
Loc : Source_Ptr;
Loop_Id : Entity_Id;
Loop_Stmt : Node_Id;
Result : Node_Id;
Scheme : Node_Id;
Temp_Decl : Node_Id;
Temp_Id : Entity_Id;
-- Start of processing for Expand_Loop_Entry_Attribute
begin
-- Step 1: Find the related loop
-- The loop label variant of attribute 'Loop_Entry already has all the
-- information in its expression.
if Present (Exprs) then
Loop_Id := Entity (First (Exprs));
Loop_Stmt := Label_Construct (Parent (Loop_Id));
-- Climb the parent chain to find the nearest enclosing loop. Skip all
-- internally generated loops for quantified expressions.
else
Loop_Stmt := N;
while Present (Loop_Stmt) loop
if Nkind (Loop_Stmt) = N_Loop_Statement
and then Present (Identifier (Loop_Stmt))
then
exit;
end if;
Loop_Stmt := Parent (Loop_Stmt);
end loop;
Loop_Id := Entity (Identifier (Loop_Stmt));
end if;
Loc := Sloc (Loop_Stmt);
-- Step 2: Transform the loop
-- The loop has already been transformed during the expansion of a prior
-- 'Loop_Entry attribute. Retrieve the declarative list of the block.
if Has_Loop_Entry_Attributes (Loop_Id) then
-- When the related loop name appears as the argument of attribute
-- Loop_Entry, the corresponding label construct is the generated
-- block statement. This is because the expander reuses the label.
if Nkind (Loop_Stmt) = N_Block_Statement then
Decls := Declarations (Loop_Stmt);
-- In all other cases, the loop must appear in the handled sequence
-- of statements of the generated block.
else
pragma Assert
(Nkind (Parent (Loop_Stmt)) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Parent (Loop_Stmt))) =
N_Block_Statement);
Decls := Declarations (Parent (Parent (Loop_Stmt)));
end if;
Result := Empty;
-- Transform the loop into a conditional block
else
Set_Has_Loop_Entry_Attributes (Loop_Id);
Scheme := Iteration_Scheme (Loop_Stmt);
-- Infinite loops are transformed into:
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- loop
-- <original source statements with attribute rewrites>
-- end loop;
-- end;
if No (Scheme) then
Build_Conditional_Block (Loc,
Cond => Empty,
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
Result := Blk;
-- While loops are transformed into:
-- if <Condition> then
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- loop
-- <original source statements with attribute rewrites>
-- exit when not <Condition>;
-- end loop;
-- end;
-- end if;
-- Note that loops over iterators and containers are already
-- converted into while loops.
elsif Present (Condition (Scheme)) then
declare
Cond : constant Node_Id := Condition (Scheme);
begin
-- Transform the original while loop into an infinite loop
-- where the last statement checks the negated condition. This
-- placement ensures that the condition will not be evaluated
-- twice on the first iteration.
-- Generate:
-- exit when not <Cond>:
Append_To (Statements (Loop_Stmt),
Make_Exit_Statement (Loc,
Condition => Make_Op_Not (Loc, New_Copy_Tree (Cond))));
Build_Conditional_Block (Loc,
Cond => Relocate_Node (Cond),
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
end;
-- Ada 2012 iteration over an array is transformed into:
-- if <Array_Nam>'Length (1) > 0
-- and then <Array_Nam>'Length (N) > 0
-- then
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- for X in ... loop -- multiple loops depending on dims
-- <original source statements with attribute rewrites>
-- end loop;
-- end;
-- end if;
elsif Is_Array_Iteration (Loop_Stmt) then
declare
Array_Nam : constant Entity_Id :=
Entity (Name (Iterator_Specification
(Iteration_Scheme (Original_Node (Loop_Stmt)))));
Num_Dims : constant Pos :=
Number_Dimensions (Etype (Array_Nam));
Cond : Node_Id := Empty;
Check : Node_Id;
begin
-- Generate a check which determines whether all dimensions of
-- the array are non-null.
for Dim in 1 .. Num_Dims loop
Check :=
Make_Op_Gt (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Array_Nam, Loc),
Attribute_Name => Name_Length,
Expressions => New_List (
Make_Integer_Literal (Loc, Dim))),
Right_Opnd =>
Make_Integer_Literal (Loc, 0));
if No (Cond) then
Cond := Check;
else
Cond :=
Make_And_Then (Loc,
Left_Opnd => Cond,
Right_Opnd => Check);
end if;
end loop;
Build_Conditional_Block (Loc,
Cond => Cond,
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
end;
-- For loops are transformed into:
-- if <Low> <= <High> then
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- for <Def_Id> in <Low> .. <High> loop
-- <original source statements with attribute rewrites>
-- end loop;
-- end;
-- end if;
elsif Present (Loop_Parameter_Specification (Scheme)) then
declare
Loop_Spec : constant Node_Id :=
Loop_Parameter_Specification (Scheme);
Cond : Node_Id;
Subt_Def : Node_Id;
begin
Subt_Def := Discrete_Subtype_Definition (Loop_Spec);
-- When the loop iterates over a subtype indication with a
-- range, use the low and high bounds of the subtype itself.
if Nkind (Subt_Def) = N_Subtype_Indication then
Subt_Def := Scalar_Range (Etype (Subt_Def));
end if;
pragma Assert (Nkind (Subt_Def) = N_Range);
-- Generate
-- Low <= High
Cond :=
Make_Op_Le (Loc,
Left_Opnd => New_Copy_Tree (Low_Bound (Subt_Def)),
Right_Opnd => New_Copy_Tree (High_Bound (Subt_Def)));
Build_Conditional_Block (Loc,
Cond => Cond,
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
end;
end if;
Decls := Declarations (Blk);
end if;
-- Step 3: Create a constant to capture the value of the prefix at the
-- entry point into the loop.
-- Generate:
-- Temp : constant <type of Pref> := <Pref>;
Temp_Id := Make_Temporary (Loc, 'P');
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (Pref));
Append_To (Decls, Temp_Decl);
-- Step 4: Analyze all bits
Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
Installed := Current_Scope = Scope (Loop_Id);
-- Depending on the pracement of attribute 'Loop_Entry relative to the
-- associated loop, ensure the proper visibility for analysis.
if not Installed then
Push_Scope (Scope (Loop_Id));
end if;
-- The analysis of the conditional block takes care of the constant
-- declaration.
if Present (Result) then
Rewrite (Loop_Stmt, Result);
Analyze (Loop_Stmt);
-- The conditional block was analyzed when a previous 'Loop_Entry was
-- expanded. There is no point in reanalyzing the block, simply analyze
-- the declaration of the constant.
else
Analyze (Temp_Decl);
end if;
Analyze (N);
if not Installed then
Pop_Scope;
end if;
end Expand_Loop_Entry_Attribute;
------------------------------
-- Expand_Min_Max_Attribute --
------------------------------
procedure Expand_Min_Max_Attribute (N : Node_Id) is
begin
-- Min and Max are handled by the back end (except that static cases
-- have already been evaluated during semantic processing, although the
-- back end should not count on this). The one bit of special processing
-- required in the normal case is that these two attributes typically
-- generate conditionals in the code, so check the relevant restriction.
Check_Restriction (No_Implicit_Conditionals, N);
-- In Modify_Tree_For_C mode, we rewrite as an if expression
if Modify_Tree_For_C then
declare
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Expr : constant Node_Id := First (Expressions (N));
Left : constant Node_Id := Relocate_Node (Expr);
Right : constant Node_Id := Relocate_Node (Next (Expr));
function Make_Compare (Left, Right : Node_Id) return Node_Id;
-- Returns Left >= Right for Max, Left <= Right for Min
------------------
-- Make_Compare --
------------------
function Make_Compare (Left, Right : Node_Id) return Node_Id is
begin
if Attribute_Name (N) = Name_Max then
return
Make_Op_Ge (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
else
return
Make_Op_Le (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
end if;
end Make_Compare;
-- Start of processing for Min_Max
begin
-- If both Left and Right are side effect free, then we can just
-- use Duplicate_Expr to duplicate the references and return
-- (if Left >=|<= Right then Left else Right)
if Side_Effect_Free (Left) and then Side_Effect_Free (Right) then
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Compare (Left, Right),
Duplicate_Subexpr_No_Checks (Left),
Duplicate_Subexpr_No_Checks (Right))));
-- Otherwise we generate declarations to capture the values. We
-- can't put these declarations inside the if expression, since
-- we could end up with an N_Expression_With_Actions which has
-- declarations in the actions, forbidden for Modify_Tree_For_C.
-- The translation is
-- T1 : styp; -- inserted high up in tree
-- T2 : styp; -- inserted high up in tree
-- do
-- T1 := styp!(Left);
-- T2 := styp!(Right);
-- in
-- (if T1 >=|<= T2 then typ!(T1) else typ!(T2))
-- end;
-- We insert the T1,T2 declarations with Insert_Declaration which
-- inserts these declarations high up in the tree unconditionally.
-- This is safe since no code is associated with the declarations.
-- Here styp is a standard type whose Esize matches the size of
-- our type. We do this because the actual type may be a result of
-- some local declaration which would not be visible at the point
-- where we insert the declarations of T1 and T2.
else
declare
T1 : constant Entity_Id := Make_Temporary (Loc, 'T', Left);
T2 : constant Entity_Id := Make_Temporary (Loc, 'T', Left);
Styp : constant Entity_Id := Matching_Standard_Type (Typ);
begin
Insert_Declaration (N,
Make_Object_Declaration (Loc,
Defining_Identifier => T1,
Object_Definition => New_Occurrence_Of (Styp, Loc)));
Insert_Declaration (N,
Make_Object_Declaration (Loc,
Defining_Identifier => T2,
Object_Definition => New_Occurrence_Of (Styp, Loc)));
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (T1, Loc),
Expression => Unchecked_Convert_To (Styp, Left)),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (T2, Loc),
Expression => Unchecked_Convert_To (Styp, Right))),
Expression =>
Make_If_Expression (Loc,
Expressions => New_List (
Make_Compare
(New_Occurrence_Of (T1, Loc),
New_Occurrence_Of (T2, Loc)),
Unchecked_Convert_To (Typ,
New_Occurrence_Of (T1, Loc)),
Unchecked_Convert_To (Typ,
New_Occurrence_Of (T2, Loc))))));
end;
end if;
Analyze_And_Resolve (N, Typ);
end;
end if;
end Expand_Min_Max_Attribute;
----------------------------------
-- Expand_N_Attribute_Reference --
----------------------------------
procedure Expand_N_Attribute_Reference (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Btyp : constant Entity_Id := Base_Type (Typ);
Pref : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Etype (Pref);
Exprs : constant List_Id := Expressions (N);
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
-- Rewrites a stream attribute for Read, Write or Output with the
-- procedure call. Pname is the entity for the procedure to call.
------------------------------
-- Rewrite_Stream_Proc_Call --
------------------------------
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
Item : constant Node_Id := Next (First (Exprs));
Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
Formal_Typ : constant Entity_Id := Etype (Formal);
Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter);
begin
-- The expansion depends on Item, the second actual, which is
-- the object being streamed in or out.
-- If the item is a component of a packed array type, and
-- a conversion is needed on exit, we introduce a temporary to
-- hold the value, because otherwise the packed reference will
-- not be properly expanded.
if Nkind (Item) = N_Indexed_Component
and then Is_Packed (Base_Type (Etype (Prefix (Item))))
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
and then Is_Written
then
declare
Temp : constant Entity_Id := Make_Temporary (Loc, 'V');
Decl : Node_Id;
Assn : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Occurrence_Of (Formal_Typ, Loc));
Set_Etype (Temp, Formal_Typ);
Assn :=
Make_Assignment_Statement (Loc,
Name => New_Copy_Tree (Item),
Expression =>
Unchecked_Convert_To
(Etype (Item), New_Occurrence_Of (Temp, Loc)));
Rewrite (Item, New_Occurrence_Of (Temp, Loc));
Insert_Actions (N,
New_List (
Decl,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Pname, Loc),
Parameter_Associations => Exprs),
Assn));
Rewrite (N, Make_Null_Statement (Loc));
return;
end;
end if;
-- For the class-wide dispatching cases, and for cases in which
-- the base type of the second argument matches the base type of
-- the corresponding formal parameter (that is to say the stream
-- operation is not inherited), we are all set, and can use the
-- argument unchanged.
-- For all other cases we do an unchecked conversion of the second
-- parameter to the type of the formal of the procedure we are
-- calling. This deals with the private type cases, and with going
-- to the root type as required in elementary type case.
if not Is_Class_Wide_Type (Entity (Pref))
and then not Is_Class_Wide_Type (Etype (Item))
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
then
Rewrite (Item,
Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
-- For untagged derived types set Assignment_OK, to prevent
-- copies from being created when the unchecked conversion
-- is expanded (which would happen in Remove_Side_Effects
-- if Expand_N_Unchecked_Conversion were allowed to call
-- Force_Evaluation). The copy could violate Ada semantics in
-- cases such as an actual that is an out parameter. Note that
-- this approach is also used in exp_ch7 for calls to controlled
-- type operations to prevent problems with actuals wrapped in
-- unchecked conversions.
if Is_Untagged_Derivation (Etype (Expression (Item))) then
Set_Assignment_OK (Item);
end if;
end if;
-- The stream operation to call may be a renaming created by an
-- attribute definition clause, and may not be frozen yet. Ensure
-- that it has the necessary extra formals.
if not Is_Frozen (Pname) then
Create_Extra_Formals (Pname);
end if;
-- And now rewrite the call
Rewrite (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Pname, Loc),
Parameter_Associations => Exprs));
Analyze (N);
end Rewrite_Stream_Proc_Call;
-- Start of processing for Expand_N_Attribute_Reference
begin
-- Do required validity checking, if enabled. Do not apply check to
-- output parameters of an Asm instruction, since the value of this
-- is not set till after the attribute has been elaborated, and do
-- not apply the check to the arguments of a 'Read or 'Input attribute
-- reference since the scalar argument is an OUT scalar.
if Validity_Checks_On and then Validity_Check_Operands
and then Id /= Attribute_Asm_Output
and then Id /= Attribute_Read
and then Id /= Attribute_Input
then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
Ensure_Valid (Expr);
Next (Expr);
end loop;
end;
end if;
-- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
-- place function, then a temporary return object needs to be created
-- and access to it must be passed to the function. Currently we limit
-- such functions to those with inherently limited result subtypes, but
-- eventually we plan to expand the functions that are treated as
-- build-in-place to include other composite result types.
if Ada_Version >= Ada_2005
and then Is_Build_In_Place_Function_Call (Pref)
then
Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
end if;
-- If prefix is a protected type name, this is a reference to the
-- current instance of the type. For a component definition, nothing
-- to do (expansion will occur in the init proc). In other contexts,
-- rewrite into reference to current instance.
if Is_Protected_Self_Reference (Pref)
and then not
(Nkind_In (Parent (N), N_Index_Or_Discriminant_Constraint,
N_Discriminant_Association)
and then Nkind (Parent (Parent (Parent (Parent (N))))) =
N_Component_Definition)
-- No action needed for these attributes since the current instance
-- will be rewritten to be the name of the _object parameter
-- associated with the enclosing protected subprogram (see below).
and then Id /= Attribute_Access
and then Id /= Attribute_Unchecked_Access
and then Id /= Attribute_Unrestricted_Access
then
Rewrite (Pref, Concurrent_Ref (Pref));
Analyze (Pref);
end if;
-- Remaining processing depends on specific attribute
-- Note: individual sections of the following case statement are
-- allowed to assume there is no code after the case statement, and
-- are legitimately allowed to execute return statements if they have
-- nothing more to do.
case Id is
-- Attributes related to Ada 2012 iterators
when Attribute_Constant_Indexing |
Attribute_Default_Iterator |
Attribute_Implicit_Dereference |
Attribute_Iterable |
Attribute_Iterator_Element |
Attribute_Variable_Indexing =>
null;
-- Internal attributes used to deal with Ada 2012 delayed aspects. These
-- were already rejected by the parser. Thus they shouldn't appear here.
when Internal_Attribute_Id =>
raise Program_Error;
------------
-- Access --
------------
when Attribute_Access |
Attribute_Unchecked_Access |
Attribute_Unrestricted_Access =>
Access_Cases : declare
Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
Btyp_DDT : Entity_Id;
function Enclosing_Object (N : Node_Id) return Node_Id;
-- If N denotes a compound name (selected component, indexed
-- component, or slice), returns the name of the outermost such
-- enclosing object. Otherwise returns N. If the object is a
-- renaming, then the renamed object is returned.
----------------------
-- Enclosing_Object --
----------------------
function Enclosing_Object (N : Node_Id) return Node_Id is
Obj_Name : Node_Id;
begin
Obj_Name := N;
while Nkind_In (Obj_Name, N_Selected_Component,
N_Indexed_Component,
N_Slice)
loop
Obj_Name := Prefix (Obj_Name);
end loop;
return Get_Referenced_Object (Obj_Name);
end Enclosing_Object;
-- Local declarations
Enc_Object : constant Node_Id := Enclosing_Object (Ref_Object);
-- Start of processing for Access_Cases
begin
Btyp_DDT := Designated_Type (Btyp);
-- Handle designated types that come from the limited view
if Ekind (Btyp_DDT) = E_Incomplete_Type
and then From_Limited_With (Btyp_DDT)
and then Present (Non_Limited_View (Btyp_DDT))
then
Btyp_DDT := Non_Limited_View (Btyp_DDT);
elsif Is_Class_Wide_Type (Btyp_DDT)
and then Ekind (Etype (Btyp_DDT)) = E_Incomplete_Type
and then From_Limited_With (Etype (Btyp_DDT))
and then Present (Non_Limited_View (Etype (Btyp_DDT)))
and then Present (Class_Wide_Type
(Non_Limited_View (Etype (Btyp_DDT))))
then
Btyp_DDT :=
Class_Wide_Type (Non_Limited_View (Etype (Btyp_DDT)));
end if;
-- In order to improve the text of error messages, the designated
-- type of access-to-subprogram itypes is set by the semantics as
-- the associated subprogram entity (see sem_attr). Now we replace
-- such node with the proper E_Subprogram_Type itype.
if Id = Attribute_Unrestricted_Access
and then Is_Subprogram (Directly_Designated_Type (Typ))
then
-- The following conditions ensure that this special management
-- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
-- At this stage other cases in which the designated type is
-- still a subprogram (instead of an E_Subprogram_Type) are
-- wrong because the semantics must have overridden the type of
-- the node with the type imposed by the context.
if Nkind (Parent (N)) = N_Unchecked_Type_Conversion
and then Etype (Parent (N)) = RTE (RE_Prim_Ptr)
then
Set_Etype (N, RTE (RE_Prim_Ptr));
else
declare
Subp : constant Entity_Id :=
Directly_Designated_Type (Typ);
Etyp : Entity_Id;
Extra : Entity_Id := Empty;
New_Formal : Entity_Id;
Old_Formal : Entity_Id := First_Formal (Subp);
Subp_Typ : Entity_Id;
begin
Subp_Typ := Create_Itype (E_Subprogram_Type, N);
Set_Etype (Subp_Typ, Etype (Subp));
Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp));
if Present (Old_Formal) then
New_Formal := New_Copy (Old_Formal);
Set_First_Entity (Subp_Typ, New_Formal);
loop
Set_Scope (New_Formal, Subp_Typ);
Etyp := Etype (New_Formal);
-- Handle itypes. There is no need to duplicate
-- here the itypes associated with record types
-- (i.e the implicit full view of private types).
if Is_Itype (Etyp)
and then Ekind (Base_Type (Etyp)) /= E_Record_Type
then
Extra := New_Copy (Etyp);
Set_Parent (Extra, New_Formal);
Set_Etype (New_Formal, Extra);
Set_Scope (Extra, Subp_Typ);
end if;
Extra := New_Formal;
Next_Formal (Old_Formal);
exit when No (Old_Formal);
Set_Next_Entity (New_Formal,
New_Copy (Old_Formal));
Next_Entity (New_Formal);
end loop;
Set_Next_Entity (New_Formal, Empty);
Set_Last_Entity (Subp_Typ, Extra);
end if;
-- Now that the explicit formals have been duplicated,
-- any extra formals needed by the subprogram must be
-- created.
if Present (Extra) then
Set_Extra_Formal (Extra, Empty);
end if;
Create_Extra_Formals (Subp_Typ);
Set_Directly_Designated_Type (Typ, Subp_Typ);
end;
end if;
end if;
if Is_Access_Protected_Subprogram_Type (Btyp) then
Expand_Access_To_Protected_Op (N, Pref, Typ);
-- If prefix is a type name, this is a reference to the current
-- instance of the type, within its initialization procedure.
elsif Is_Entity_Name (Pref)
and then Is_Type (Entity (Pref))
then
declare
Par : Node_Id;
Formal : Entity_Id;
begin
-- If the current instance name denotes a task type, then
-- the access attribute is rewritten to be the name of the
-- "_task" parameter associated with the task type's task
-- procedure. An unchecked conversion is applied to ensure
-- a type match in cases of expander-generated calls (e.g.
-- init procs).
if Is_Task_Type (Entity (Pref)) then
Formal :=
First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
while Present (Formal) loop
exit when Chars (Formal) = Name_uTask;
Next_Entity (Formal);
end loop;
pragma Assert (Present (Formal));
Rewrite (N,
Unchecked_Convert_To (Typ,
New_Occurrence_Of (Formal, Loc)));
Set_Etype (N, Typ);
elsif Is_Protected_Type (Entity (Pref)) then
-- No action needed for current instance located in a
-- component definition (expansion will occur in the
-- init proc)
if Is_Protected_Type (Current_Scope) then
null;
-- If the current instance reference is located in a
-- protected subprogram or entry then rewrite the access
-- attribute to be the name of the "_object" parameter.
-- An unchecked conversion is applied to ensure a type
-- match in cases of expander-generated calls (e.g. init
-- procs).
-- The code may be nested in a block, so find enclosing
-- scope that is a protected operation.
else
declare
Subp : Entity_Id;
begin
Subp := Current_Scope;
while Ekind_In (Subp, E_Loop, E_Block) loop
Subp := Scope (Subp);
end loop;
Formal :=
First_Entity
(Protected_Body_Subprogram (Subp));
-- For a protected subprogram the _Object parameter
-- is the protected record, so we create an access
-- to it. The _Object parameter of an entry is an
-- address.
if Ekind (Subp) = E_Entry then
Rewrite (N,
Unchecked_Convert_To (Typ,
New_Occurrence_Of (Formal, Loc)));
Set_Etype (N, Typ);
else
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Unrestricted_Access,
Prefix =>
New_Occurrence_Of (Formal, Loc))));
Analyze_And_Resolve (N);
end if;
end;
end if;
-- The expression must appear in a default expression,
-- (which in the initialization procedure is the right-hand
-- side of an assignment), and not in a discriminant
-- constraint.
else
Par := Parent (N);
while Present (Par) loop
exit when Nkind (Par) = N_Assignment_Statement;
if Nkind (Par) = N_Component_Declaration then
return;
end if;
Par := Parent (Par);
end loop;
if Present (Par) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Attribute_Name => Attribute_Name (N)));
Analyze_And_Resolve (N, Typ);
end if;
end if;
end;
-- If the prefix of an Access attribute is a dereference of an
-- access parameter (or a renaming of such a dereference, or a
-- subcomponent of such a dereference) and the context is a
-- general access type (including the type of an object or
-- component with an access_definition, but not the anonymous
-- type of an access parameter or access discriminant), then
-- apply an accessibility check to the access parameter. We used
-- to rewrite the access parameter as a type conversion, but that
-- could only be done if the immediate prefix of the Access
-- attribute was the dereference, and didn't handle cases where
-- the attribute is applied to a subcomponent of the dereference,
-- since there's generally no available, appropriate access type
-- to convert to in that case. The attribute is passed as the
-- point to insert the check, because the access parameter may
-- come from a renaming, possibly in a different scope, and the
-- check must be associated with the attribute itself.
elsif Id = Attribute_Access
and then Nkind (Enc_Object) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Enc_Object))
and then (Ekind (Btyp) = E_General_Access_Type
or else Is_Local_Anonymous_Access (Btyp))
and then Ekind (Entity (Prefix (Enc_Object))) in Formal_Kind
and then Ekind (Etype (Entity (Prefix (Enc_Object))))
= E_Anonymous_Access_Type
and then Present (Extra_Accessibility
(Entity (Prefix (Enc_Object))))
then
Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N);
-- Ada 2005 (AI-251): If the designated type is an interface we
-- add an implicit conversion to force the displacement of the
-- pointer to reference the secondary dispatch table.
elsif Is_Interface (Btyp_DDT)
and then (Comes_From_Source (N)
or else Comes_From_Source (Ref_Object)
or else (Nkind (Ref_Object) in N_Has_Chars
and then Chars (Ref_Object) = Name_uInit))
then
if Nkind (Ref_Object) /= N_Explicit_Dereference then
-- No implicit conversion required if types match, or if
-- the prefix is the class_wide_type of the interface. In
-- either case passing an object of the interface type has
-- already set the pointer correctly.
if Btyp_DDT = Etype (Ref_Object)
or else (Is_Class_Wide_Type (Etype (Ref_Object))
and then
Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object))
then
null;
else
Rewrite (Prefix (N),
Convert_To (Btyp_DDT,
New_Copy_Tree (Prefix (N))));
Analyze_And_Resolve (Prefix (N), Btyp_DDT);
end if;
-- When the object is an explicit dereference, convert the
-- dereference's prefix.
else
declare
Obj_DDT : constant Entity_Id :=
Base_Type
(Directly_Designated_Type
(Etype (Prefix (Ref_Object))));
begin
-- No implicit conversion required if designated types
-- match, or if we have an unrestricted access.
if Obj_DDT /= Btyp_DDT
and then Id /= Attribute_Unrestricted_Access
and then not (Is_Class_Wide_Type (Obj_DDT)
and then Etype (Obj_DDT) = Btyp_DDT)
then
Rewrite (N,
Convert_To (Typ,
New_Copy_Tree (Prefix (Ref_Object))));
Analyze_And_Resolve (N, Typ);
end if;
end;
end if;
end if;
end Access_Cases;
--------------
-- Adjacent --
--------------
-- Transforms 'Adjacent into a call to the floating-point attribute
-- function Adjacent in Fat_xxx (where xxx is the root type)
when Attribute_Adjacent =>
Expand_Fpt_Attribute_RR (N);
-------------
-- Address --
-------------
when Attribute_Address => Address : declare
Task_Proc : Entity_Id;
begin
-- If the prefix is a task or a task type, the useful address is that
-- of the procedure for the task body, i.e. the actual program unit.
-- We replace the original entity with that of the procedure.
if Is_Entity_Name (Pref)
and then Is_Task_Type (Entity (Pref))
then
Task_Proc := Next_Entity (Root_Type (Ptyp));
while Present (Task_Proc) loop
exit when Ekind (Task_Proc) = E_Procedure
and then Etype (First_Formal (Task_Proc)) =
Corresponding_Record_Type (Ptyp);
Next_Entity (Task_Proc);
end loop;
if Present (Task_Proc) then
Set_Entity (Pref, Task_Proc);
Set_Etype (Pref, Etype (Task_Proc));
end if;
-- Similarly, the address of a protected operation is the address
-- of the corresponding protected body, regardless of the protected
-- object from which it is selected.
elsif Nkind (Pref) = N_Selected_Component
and then Is_Subprogram (Entity (Selector_Name (Pref)))
and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
then
Rewrite (Pref,
New_Occurrence_Of (
External_Subprogram (Entity (Selector_Name (Pref))), Loc));
elsif Nkind (Pref) = N_Explicit_Dereference
and then Ekind (Ptyp) = E_Subprogram_Type
and then Convention (Ptyp) = Convention_Protected
then
-- The prefix is be a dereference of an access_to_protected_
-- subprogram. The desired address is the second component of
-- the record that represents the access.
declare
Addr : constant Entity_Id := Etype (N);
Ptr : constant Node_Id := Prefix (Pref);
T : constant Entity_Id :=
Equivalent_Type (Base_Type (Etype (Ptr)));
begin
Rewrite (N,
Unchecked_Convert_To (Addr,
Make_Selected_Component (Loc,
Prefix => Unchecked_Convert_To (T, Ptr),
Selector_Name => New_Occurrence_Of (
Next_Entity (First_Entity (T)), Loc))));
Analyze_And_Resolve (N, Addr);
end;
-- Ada 2005 (AI-251): Class-wide interface objects are always
-- "displaced" to reference the tag associated with the interface
-- type. In order to obtain the real address of such objects we
-- generate a call to a run-time subprogram that returns the base
-- address of the object.
-- This processing is not needed in the VM case, where dispatching
-- issues are taken care of by the virtual machine.
elsif Is_Class_Wide_Type (Ptyp)
and then Is_Interface (Ptyp)
and then Tagged_Type_Expansion
and then not (Nkind (Pref) in N_Has_Entity
and then Is_Subprogram (Entity (Pref)))
then
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Base_Address), Loc),
Parameter_Associations => New_List (
Relocate_Node (N))));
Analyze (N);
return;
end if;
-- Deal with packed array reference, other cases are handled by
-- the back end.
if Involves_Packed_Array_Reference (Pref) then
Expand_Packed_Address_Reference (N);
end if;
end Address;
---------------
-- Alignment --
---------------
when Attribute_Alignment => Alignment : declare
New_Node : Node_Id;
begin
-- For class-wide types, X'Class'Alignment is transformed into a
-- direct reference to the Alignment of the class type, so that the
-- back end does not have to deal with the X'Class'Alignment
-- reference.
if Is_Entity_Name (Pref)
and then Is_Class_Wide_Type (Entity (Pref))
then
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
return;
-- For x'Alignment applied to an object of a class wide type,
-- transform X'Alignment into a call to the predefined primitive
-- operation _Alignment applied to X.
elsif Is_Class_Wide_Type (Ptyp) then
New_Node :=
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Tag);
if VM_Target = No_VM then
New_Node := Build_Get_Alignment (Loc, New_Node);
else
New_Node :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Get_Alignment), Loc),
Parameter_Associations => New_List (New_Node));
end if;
-- Case where the context is a specific integer type with which
-- the original attribute was compatible. The function has a
-- specific type as well, so to preserve the compatibility we
-- must convert explicitly.
if Typ /= Standard_Integer then
New_Node := Convert_To (Typ, New_Node);
end if;
Rewrite (N, New_Node);
Analyze_And_Resolve (N, Typ);
return;
-- For all other cases, we just have to deal with the case of
-- the fact that the result can be universal.
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Alignment;
---------------
-- AST_Entry --
---------------
when Attribute_AST_Entry => AST_Entry : declare
Ttyp : Entity_Id;
T_Id : Node_Id;
Eent : Entity_Id;
Entry_Ref : Node_Id;
-- The reference to the entry or entry family
Index : Node_Id;
-- The index expression for an entry family reference, or
-- the Empty if Entry_Ref references a simple entry.
begin
if Nkind (Pref) = N_Indexed_Component then
Entry_Ref := Prefix (Pref);
Index := First (Expressions (Pref));
else
Entry_Ref := Pref;
Index := Empty;
end if;
-- Get expression for Task_Id and the entry entity
if Nkind (Entry_Ref) = N_Selected_Component then
T_Id :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Identity,
Prefix => Prefix (Entry_Ref));
Ttyp := Etype (Prefix (Entry_Ref));
Eent := Entity (Selector_Name (Entry_Ref));
else
T_Id :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Current_Task), Loc));
Eent := Entity (Entry_Ref);
-- We have to find the enclosing task to get the task type
-- There must be one, since we already validated this earlier
Ttyp := Current_Scope;
while not Is_Task_Type (Ttyp) loop
Ttyp := Scope (Ttyp);
end loop;
end if;
-- Now rewrite the attribute with a call to Create_AST_Handler
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Create_AST_Handler), Loc),
Parameter_Associations => New_List (
T_Id,
Entry_Index_Expression (Loc, Eent, Index, Ttyp))));
Analyze_And_Resolve (N, RTE (RE_AST_Handler));
end AST_Entry;
---------
-- Bit --
---------
-- We compute this if a packed array reference was present, otherwise we
-- leave the computation up to the back end.
when Attribute_Bit =>
if Involves_Packed_Array_Reference (Pref) then
Expand_Packed_Bit_Reference (N);
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
------------------
-- Bit_Position --
------------------
-- We compute this if a component clause was present, otherwise we leave
-- the computation up to the back end, since we don't know what layout
-- will be chosen.
-- Note that the attribute can apply to a naked record component
-- in generated code (i.e. the prefix is an identifier that
-- references the component or discriminant entity).
when Attribute_Bit_Position => Bit_Position : declare
CE : Entity_Id;
begin
if Nkind (Pref) = N_Identifier then
CE := Entity (Pref);
else
CE := Entity (Selector_Name (Pref));
end if;
if Known_Static_Component_Bit_Offset (CE) then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => Component_Bit_Offset (CE)));
Analyze_And_Resolve (N, Typ);
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Bit_Position;
------------------
-- Body_Version --
------------------
-- A reference to P'Body_Version or P'Version is expanded to
-- Vnn : Unsigned;
-- pragma Import (C, Vnn, "uuuuT");
-- ...
-- Get_Version_String (Vnn)
-- where uuuu is the unit name (dots replaced by double underscore)
-- and T is B for the cases of Body_Version, or Version applied to a
-- subprogram acting as its own spec, and S for Version applied to a
-- subprogram spec or package. This sequence of code references the
-- unsigned constant created in the main program by the binder.
-- A special exception occurs for Standard, where the string returned
-- is a copy of the library string in gnatvsn.ads.
when Attribute_Body_Version | Attribute_Version => Version : declare
E : constant Entity_Id := Make_Temporary (Loc, 'V');
Pent : Entity_Id;
S : String_Id;
begin
-- If not library unit, get to containing library unit
Pent := Entity (Pref);
while Pent /= Standard_Standard
and then Scope (Pent) /= Standard_Standard
and then not Is_Child_Unit (Pent)
loop
Pent := Scope (Pent);
end loop;
-- Special case Standard and Standard.ASCII
if Pent = Standard_Standard or else Pent = Standard_ASCII then
Rewrite (N,
Make_String_Literal (Loc,
Strval => Verbose_Library_Version));
-- All other cases
else
-- Build required string constant
Get_Name_String (Get_Unit_Name (Pent));
Start_String;
for J in 1 .. Name_Len - 2 loop
if Name_Buffer (J) = '.' then
Store_String_Chars ("__");
else
Store_String_Char (Get_Char_Code (Name_Buffer (J)));
end if;
end loop;
-- Case of subprogram acting as its own spec, always use body
if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
and then Nkind (Parent (Declaration_Node (Pent))) =
N_Subprogram_Body
and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
then
Store_String_Chars ("B");
-- Case of no body present, always use spec
elsif not Unit_Requires_Body (Pent) then
Store_String_Chars ("S");
-- Otherwise use B for Body_Version, S for spec
elsif Id = Attribute_Body_Version then
Store_String_Chars ("B");
else
Store_String_Chars ("S");
end if;
S := End_String;
Lib.Version_Referenced (S);
-- Insert the object declaration
Insert_Actions (N, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => E,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
-- Set entity as imported with correct external name
Set_Is_Imported (E);
Set_Interface_Name (E, Make_String_Literal (Loc, S));
-- Set entity as internal to ensure proper Sprint output of its
-- implicit importation.
Set_Is_Internal (E);
-- And now rewrite original reference
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Get_Version_String), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (E, Loc))));
end if;
Analyze_And_Resolve (N, RTE (RE_Version_String));
end Version;
-------------
-- Ceiling --
-------------
-- Transforms 'Ceiling into a call to the floating-point attribute
-- function Ceiling in Fat_xxx (where xxx is the root type)
when Attribute_Ceiling =>
Expand_Fpt_Attribute_R (N);
--------------
-- Callable --
--------------
-- Transforms 'Callable attribute into a call to the Callable function
when Attribute_Callable => Callable :
begin
-- We have an object of a task interface class-wide type as a prefix
-- to Callable. Generate:
-- callable (Task_Id (Pref._disp_get_task_id));
if Ada_Version >= Ada_2005
and then Ekind (Ptyp) = E_Class_Wide_Type
and then Is_Interface (Ptyp)
and then Is_Task_Interface (Ptyp)
then
Rewrite (N,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Callable), Loc),
Parameter_Associations => New_List (
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (RTE (RO_ST_Task_Id), Loc),
Expression =>
Make_Selected_Component (Loc,
Prefix =>
New_Copy_Tree (Pref),
Selector_Name =>
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
else
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Callable)));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Callable;
------------
-- Caller --
------------
-- Transforms 'Caller attribute into a call to either the
-- Task_Entry_Caller or the Protected_Entry_Caller function.
when Attribute_Caller => Caller : declare
Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
Ent : constant Entity_Id := Entity (Pref);
Conctype : constant Entity_Id := Scope (Ent);
Nest_Depth : Integer := 0;
Name : Node_Id;
S : Entity_Id;
begin
-- Protected case
if Is_Protected_Type (Conctype) then
case Corresponding_Runtime_Package (Conctype) is
when System_Tasking_Protected_Objects_Entries =>
Name :=
New_Occurrence_Of
(RTE (RE_Protected_Entry_Caller), Loc);
when System_Tasking_Protected_Objects_Single_Entry =>
Name :=
New_Occurrence_Of
(RTE (RE_Protected_Single_Entry_Caller), Loc);
when others =>
raise Program_Error;
end case;
Rewrite (N,
Unchecked_Convert_To (Id_Kind,
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Occurrence_Of
(Find_Protection_Object (Current_Scope), Loc)))));
-- Task case
else
-- Determine the nesting depth of the E'Caller attribute, that
-- is, how many accept statements are nested within the accept
-- statement for E at the point of E'Caller. The runtime uses
-- this depth to find the specified entry call.
for J in reverse 0 .. Scope_Stack.Last loop
S := Scope_Stack.Table (J).Entity;
-- We should not reach the scope of the entry, as it should
-- already have been checked in Sem_Attr that this attribute
-- reference is within a matching accept statement.
pragma Assert (S /= Conctype);
if S = Ent then
exit;
elsif Is_Entry (S) then
Nest_Depth := Nest_Depth + 1;
end if;
end loop;
Rewrite (N,
Unchecked_Convert_To (Id_Kind,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Task_Entry_Caller), Loc),
Parameter_Associations => New_List (
Make_Integer_Literal (Loc,
Intval => Int (Nest_Depth))))));
end if;
Analyze_And_Resolve (N, Id_Kind);
end Caller;
-------------
-- Compose --
-------------
-- Transforms 'Compose into a call to the floating-point attribute
-- function Compose in Fat_xxx (where xxx is the root type)
-- Note: we strictly should have special code here to deal with the
-- case of absurdly negative arguments (less than Integer'First)
-- which will return a (signed) zero value, but it hardly seems
-- worth the effort. Absurdly large positive arguments will raise
-- constraint error which is fine.
when Attribute_Compose =>
Expand_Fpt_Attribute_RI (N);
-----------------
-- Constrained --
-----------------
when Attribute_Constrained => Constrained : declare
Formal_Ent : constant Entity_Id := Param_Entity (Pref);
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
-- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
-- view of an aliased object whose subtype is constrained.
---------------------------------
-- Is_Constrained_Aliased_View --
---------------------------------
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
E : Entity_Id;
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
if Present (Renamed_Object (E)) then
return Is_Constrained_Aliased_View (Renamed_Object (E));
else
return Is_Aliased (E) and then Is_Constrained (Etype (E));
end if;
else
return Is_Aliased_View (Obj)
and then
(Is_Constrained (Etype (Obj))
or else
(Nkind (Obj) = N_Explicit_Dereference
and then
not Object_Type_Has_Constrained_Partial_View
(Typ => Base_Type (Etype (Obj)),
Scop => Current_Scope)));
end if;
end Is_Constrained_Aliased_View;
-- Start of processing for Constrained
begin
-- Reference to a parameter where the value is passed as an extra
-- actual, corresponding to the extra formal referenced by the
-- Extra_Constrained field of the corresponding formal. If this
-- is an entry in-parameter, it is replaced by a constant renaming
-- for which Extra_Constrained is never created.
if Present (Formal_Ent)
and then Ekind (Formal_Ent) /= E_Constant
and then Present (Extra_Constrained (Formal_Ent))
then
Rewrite (N,
New_Occurrence_Of
(Extra_Constrained (Formal_Ent), Sloc (N)));
-- For variables with a Extra_Constrained field, we use the
-- corresponding entity.
elsif Nkind (Pref) = N_Identifier
and then Ekind (Entity (Pref)) = E_Variable
and then Present (Extra_Constrained (Entity (Pref)))
then
Rewrite (N,
New_Occurrence_Of
(Extra_Constrained (Entity (Pref)), Sloc (N)));
-- For all other entity names, we can tell at compile time
elsif Is_Entity_Name (Pref) then
declare
Ent : constant Entity_Id := Entity (Pref);
Res : Boolean;
begin
-- (RM J.4) obsolescent cases
if Is_Type (Ent) then
-- Private type
if Is_Private_Type (Ent) then
Res := not Has_Discriminants (Ent)
or else Is_Constrained (Ent);
-- It not a private type, must be a generic actual type
-- that corresponded to a private type. We know that this
-- correspondence holds, since otherwise the reference
-- within the generic template would have been illegal.
else
if Is_Composite_Type (Underlying_Type (Ent)) then
Res := Is_Constrained (Ent);
else
Res := True;
end if;
end if;
-- If the prefix is not a variable or is aliased, then
-- definitely true; if it's a formal parameter without an
-- associated extra formal, then treat it as constrained.
-- Ada 2005 (AI-363): An aliased prefix must be known to be
-- constrained in order to set the attribute to True.
elsif not Is_Variable (Pref)
or else Present (Formal_Ent)
or else (Ada_Version < Ada_2005
and then Is_Aliased_View (Pref))
or else (Ada_Version >= Ada_2005
and then Is_Constrained_Aliased_View (Pref))
then
Res := True;
-- Variable case, look at type to see if it is constrained.
-- Note that the one case where this is not accurate (the
-- procedure formal case), has been handled above.
-- We use the Underlying_Type here (and below) in case the
-- type is private without discriminants, but the full type
-- has discriminants. This case is illegal, but we generate it
-- internally for passing to the Extra_Constrained parameter.
else
-- In Ada 2012, test for case of a limited tagged type, in
-- which case the attribute is always required to return
-- True. The underlying type is tested, to make sure we also
-- return True for cases where there is an unconstrained
-- object with an untagged limited partial view which has
-- defaulted discriminants (such objects always produce a
-- False in earlier versions of Ada). (Ada 2012: AI05-0214)
Res := Is_Constrained (Underlying_Type (Etype (Ent)))
or else
(Ada_Version >= Ada_2012
and then Is_Tagged_Type (Underlying_Type (Ptyp))
and then Is_Limited_Type (Ptyp));
end if;
Rewrite (N, New_Occurrence_Of (Boolean_Literals (Res), Loc));
end;
-- Prefix is not an entity name. These are also cases where we can
-- always tell at compile time by looking at the form and type of the
-- prefix. If an explicit dereference of an object with constrained
-- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
-- underlying type is a limited tagged type, then Constrained is
-- required to always return True (Ada 2012: AI05-0214).
else
Rewrite (N,
New_Occurrence_Of (
Boolean_Literals (
not Is_Variable (Pref)
or else
(Nkind (Pref) = N_Explicit_Dereference
and then
not Object_Type_Has_Constrained_Partial_View
(Typ => Base_Type (Ptyp),
Scop => Current_Scope))
or else Is_Constrained (Underlying_Type (Ptyp))
or else (Ada_Version >= Ada_2012
and then Is_Tagged_Type (Underlying_Type (Ptyp))
and then Is_Limited_Type (Ptyp))),
Loc));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Constrained;
---------------
-- Copy_Sign --
---------------
-- Transforms 'Copy_Sign into a call to the floating-point attribute
-- function Copy_Sign in Fat_xxx (where xxx is the root type)
when Attribute_Copy_Sign =>
Expand_Fpt_Attribute_RR (N);
-----------
-- Count --
-----------
-- Transforms 'Count attribute into a call to the Count function
when Attribute_Count => Count : declare
Call : Node_Id;
Conctyp : Entity_Id;
Entnam : Node_Id;
Entry_Id : Entity_Id;
Index : Node_Id;
Name : Node_Id;
begin
-- If the prefix is a member of an entry family, retrieve both
-- entry name and index. For a simple entry there is no index.
if Nkind (Pref) = N_Indexed_Component then
Entnam := Prefix (Pref);
Index := First (Expressions (Pref));
else
Entnam := Pref;
Index := Empty;
end if;
Entry_Id := Entity (Entnam);
-- Find the concurrent type in which this attribute is referenced
-- (there had better be one).
Conctyp := Current_Scope;
while not Is_Concurrent_Type (Conctyp) loop
Conctyp := Scope (Conctyp);
end loop;
-- Protected case
if Is_Protected_Type (Conctyp) then
case Corresponding_Runtime_Package (Conctyp) is
when System_Tasking_Protected_Objects_Entries =>
Name := New_Occurrence_Of (RTE (RE_Protected_Count), Loc);
Call :=
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Occurrence_Of
(Find_Protection_Object (Current_Scope), Loc),
Entry_Index_Expression
(Loc, Entry_Id, Index, Scope (Entry_Id))));
when System_Tasking_Protected_Objects_Single_Entry =>
Name :=
New_Occurrence_Of (RTE (RE_Protected_Count_Entry), Loc);
Call :=
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Occurrence_Of
(Find_Protection_Object (Current_Scope), Loc)));
when others =>
raise Program_Error;
end case;
-- Task case
else
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Task_Count), Loc),
Parameter_Associations => New_List (
Entry_Index_Expression (Loc,
Entry_Id, Index, Scope (Entry_Id))));
end if;
-- The call returns type Natural but the context is universal integer
-- so any integer type is allowed. The attribute was already resolved
-- so its Etype is the required result type. If the base type of the
-- context type is other than Standard.Integer we put in a conversion
-- to the required type. This can be a normal typed conversion since
-- both input and output types of the conversion are integer types
if Base_Type (Typ) /= Base_Type (Standard_Integer) then
Rewrite (N, Convert_To (Typ, Call));
else
Rewrite (N, Call);
end if;
Analyze_And_Resolve (N, Typ);
end Count;
---------------------
-- Descriptor_Size --
---------------------
when Attribute_Descriptor_Size =>
-- Attribute Descriptor_Size is handled by the back end when applied
-- to an unconstrained array type.
if Is_Array_Type (Ptyp)
and then not Is_Constrained (Ptyp)
then
Apply_Universal_Integer_Attribute_Checks (N);
-- For any other type, the descriptor size is 0 because there is no
-- actual descriptor, but the result is not formally static.
else
Rewrite (N, Make_Integer_Literal (Loc, 0));
Analyze (N);
Set_Is_Static_Expression (N, False);
end if;
---------------
-- Elab_Body --
---------------
-- This processing is shared by Elab_Spec
-- What we do is to insert the following declarations
-- procedure tnn;
-- pragma Import (C, enn, "name___elabb/s");
-- and then the Elab_Body/Spec attribute is replaced by a reference
-- to this defining identifier.
when Attribute_Elab_Body |
Attribute_Elab_Spec =>
-- Leave attribute unexpanded in CodePeer mode: the gnat2scil
-- back-end knows how to handle these attributes directly.
if CodePeer_Mode then
return;
end if;
Elab_Body : declare
Ent : constant Entity_Id := Make_Temporary (Loc, 'E');
Str : String_Id;
Lang : Node_Id;
procedure Make_Elab_String (Nod : Node_Id);
-- Given Nod, an identifier, or a selected component, put the
-- image into the current string literal, with double underline
-- between components.
----------------------
-- Make_Elab_String --
----------------------
procedure Make_Elab_String (Nod : Node_Id) is
begin
if Nkind (Nod) = N_Selected_Component then
Make_Elab_String (Prefix (Nod));
case VM_Target is
when JVM_Target =>
Store_String_Char ('$');
when CLI_Target =>
Store_String_Char ('.');
when No_VM =>
Store_String_Char ('_');
Store_String_Char ('_');
end case;
Get_Name_String (Chars (Selector_Name (Nod)));
else
pragma Assert (Nkind (Nod) = N_Identifier);
Get_Name_String (Chars (Nod));
end if;
Store_String_Chars (Name_Buffer (1 .. Name_Len));
end Make_Elab_String;
-- Start of processing for Elab_Body/Elab_Spec
begin
-- First we need to prepare the string literal for the name of
-- the elaboration routine to be referenced.
Start_String;
Make_Elab_String (Pref);
if VM_Target = No_VM then
Store_String_Chars ("___elab");
Lang := Make_Identifier (Loc, Name_C);
else
Store_String_Chars ("._elab");
Lang := Make_Identifier (Loc, Name_Ada);
end if;
if Id = Attribute_Elab_Body then
Store_String_Char ('b');
else
Store_String_Char ('s');
end if;
Str := End_String;
Insert_Actions (N, New_List (
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Ent)),
Make_Pragma (Loc,
Chars => Name_Import,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc, Expression => Lang),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Chars (Ent))),
Make_Pragma_Argument_Association (Loc,
Expression => Make_String_Literal (Loc, Str))))));
Set_Entity (N, Ent);
Rewrite (N, New_Occurrence_Of (Ent, Loc));
end Elab_Body;
--------------------
-- Elab_Subp_Body --
--------------------
-- Always ignored. In CodePeer mode, gnat2scil knows how to handle
-- this attribute directly, and if we are not in CodePeer mode it is
-- entirely ignored ???
when Attribute_Elab_Subp_Body =>
return;
----------------
-- Elaborated --
----------------
-- Elaborated is always True for preelaborated units, predefined units,
-- pure units and units which have Elaborate_Body pragmas. These units
-- have no elaboration entity.
-- Note: The Elaborated attribute is never passed to the back end
when Attribute_Elaborated => Elaborated : declare
Ent : constant Entity_Id := Entity (Pref);
begin
if Present (Elaboration_Entity (Ent)) then
Rewrite (N,
Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of (Elaboration_Entity (Ent), Loc),
Right_Opnd =>
Make_Integer_Literal (Loc, Uint_0)));
Analyze_And_Resolve (N, Typ);
else
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
end if;
end Elaborated;
--------------
-- Enum_Rep --
--------------
when Attribute_Enum_Rep => Enum_Rep :
begin
-- X'Enum_Rep (Y) expands to
-- target-type (Y)
-- This is simply a direct conversion from the enumeration type to
-- the target integer type, which is treated by the back end as a
-- normal integer conversion, treating the enumeration type as an
-- integer, which is exactly what we want. We set Conversion_OK to
-- make sure that the analyzer does not complain about what otherwise
-- might be an illegal conversion.
if Is_Non_Empty_List (Exprs) then
Rewrite (N,
OK_Convert_To (Typ, Relocate_Node (First (Exprs))));
-- X'Enum_Rep where X is an enumeration literal is replaced by
-- the literal value.
elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then
Rewrite (N,
Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref))));
-- If this is a renaming of a literal, recover the representation
-- of the original.
elsif Ekind (Entity (Pref)) = E_Constant
and then Present (Renamed_Object (Entity (Pref)))
and then
Ekind (Entity (Renamed_Object (Entity (Pref))))
= E_Enumeration_Literal
then
Rewrite (N,
Make_Integer_Literal (Loc,
Enumeration_Rep (Entity (Renamed_Object (Entity (Pref))))));
-- X'Enum_Rep where X is an object does a direct unchecked conversion
-- of the object value, as described for the type case above.
else
Rewrite (N,
OK_Convert_To (Typ, Relocate_Node (Pref)));
end if;
Set_Etype (N, Typ);
Analyze_And_Resolve (N, Typ);
end Enum_Rep;
--------------
-- Enum_Val --
--------------
when Attribute_Enum_Val => Enum_Val : declare
Expr : Node_Id;
Btyp : constant Entity_Id := Base_Type (Ptyp);
begin
-- X'Enum_Val (Y) expands to
-- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
-- X!(Y);
Expr := Unchecked_Convert_To (Ptyp, First (Exprs));
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => New_List (
Relocate_Node (Duplicate_Subexpr (Expr)),
New_Occurrence_Of (Standard_False, Loc))),
Right_Opnd => Make_Integer_Literal (Loc, -1)),
Reason => CE_Range_Check_Failed));
Rewrite (N, Expr);
Analyze_And_Resolve (N, Ptyp);
end Enum_Val;
--------------
-- Exponent --
--------------
-- Transforms 'Exponent into a call to the floating-point attribute
-- function Exponent in Fat_xxx (where xxx is the root type)
when Attribute_Exponent =>
Expand_Fpt_Attribute_R (N);
------------------
-- External_Tag --
------------------
-- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
when Attribute_External_Tag => External_Tag :
begin
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_External_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Tag,
Prefix => Prefix (N)))));
Analyze_And_Resolve (N, Standard_String);
end External_Tag;
-----------
-- First --
-----------
when Attribute_First =>
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Type representation defined, then
-- replace this attribute with a direct reference to 'First of the
-- appropriate index subtype (since otherwise the back end will try
-- to give us the value of 'First for this implementation type).
if Is_Constrained_Packed_Array (Ptyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Get_Index_Subtype (N), Loc)));
Analyze_And_Resolve (N, Typ);
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
end if;
---------------
-- First_Bit --
---------------
-- Compute this if component clause was present, otherwise we leave the
-- computation to be completed in the back-end, since we don't know what
-- layout will be chosen.
when Attribute_First_Bit => First_Bit_Attr : declare
CE : constant Entity_Id := Entity (Selector_Name (Pref));
begin
-- In Ada 2005 (or later) if we have the non-default bit order, then
-- we return the original value as given in the component clause
-- (RM 2005 13.5.2(3/2)).
if Present (Component_Clause (CE))
and then Ada_Version >= Ada_2005
and then Reverse_Bit_Order (Scope (CE))
then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => Expr_Value (First_Bit (Component_Clause (CE)))));
Analyze_And_Resolve (N, Typ);
-- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
-- rewrite with normalized value if we know it statically.
elsif Known_Static_Component_Bit_Offset (CE) then
Rewrite (N,
Make_Integer_Literal (Loc,
Component_Bit_Offset (CE) mod System_Storage_Unit));
Analyze_And_Resolve (N, Typ);
-- Otherwise left to back end, just do universal integer checks
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end First_Bit_Attr;
-----------------
-- Fixed_Value --
-----------------
-- We transform:
-- fixtype'Fixed_Value (integer-value)
-- into
-- fixtype(integer-value)
-- We do all the required analysis of the conversion here, because we do
-- not want this to go through the fixed-point conversion circuits. Note
-- that the back end always treats fixed-point as equivalent to the
-- corresponding integer type anyway.
when Attribute_Fixed_Value => Fixed_Value :
begin
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
Expression => Relocate_Node (First (Exprs))));
Set_Etype (N, Entity (Pref));
Set_Analyzed (N);
-- Note: it might appear that a properly analyzed unchecked conversion
-- would be just fine here, but that's not the case, since the full
-- range checks performed by the following call are critical.
Apply_Type_Conversion_Checks (N);
end Fixed_Value;
-----------
-- Floor --
-----------
-- Transforms 'Floor into a call to the floating-point attribute
-- function Floor in Fat_xxx (where xxx is the root type)
when Attribute_Floor =>
Expand_Fpt_Attribute_R (N);
----------
-- Fore --
----------
-- For the fixed-point type Typ:
-- Typ'Fore
-- expands into
-- Result_Type (System.Fore (Universal_Real (Type'First)),
-- Universal_Real (Type'Last))
-- Note that we know that the type is a non-static subtype, or Fore
-- would have itself been computed dynamically in Eval_Attribute.
when Attribute_Fore => Fore : begin
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Fore), Loc),
Parameter_Associations => New_List (
Convert_To (Universal_Real,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_First)),
Convert_To (Universal_Real,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Last))))));
Analyze_And_Resolve (N, Typ);
end Fore;
--------------
-- Fraction --
--------------
-- Transforms 'Fraction into a call to the floating-point attribute
-- function Fraction in Fat_xxx (where xxx is the root type)
when Attribute_Fraction =>
Expand_Fpt_Attribute_R (N);
--------------
-- From_Any --
--------------
when Attribute_From_Any => From_Any : declare
P_Type : constant Entity_Id := Etype (Pref);
Decls : constant List_Id := New_List;
begin
Rewrite (N,
Build_From_Any_Call (P_Type,
Relocate_Node (First (Exprs)),
Decls));
Insert_Actions (N, Decls);
Analyze_And_Resolve (N, P_Type);
end From_Any;
--------------
-- Identity --
--------------
-- For an exception returns a reference to the exception data:
-- Exception_Id!(Prefix'Reference)
-- For a task it returns a reference to the _task_id component of
-- corresponding record:
-- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
-- in Ada.Task_Identification
when Attribute_Identity => Identity : declare
Id_Kind : Entity_Id;
begin
if Ptyp = Standard_Exception_Type then
Id_Kind := RTE (RE_Exception_Id);
if Present (Renamed_Object (Entity (Pref))) then
Set_Entity (Pref, Renamed_Object (Entity (Pref)));
end if;
Rewrite (N,
Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
else
Id_Kind := RTE (RO_AT_Task_Id);
-- If the prefix is a task interface, the Task_Id is obtained
-- dynamically through a dispatching call, as for other task
-- attributes applied to interfaces.
if Ada_Version >= Ada_2005
and then Ekind (Ptyp) = E_Class_Wide_Type
and then Is_Interface (Ptyp)
and then Is_Task_Interface (Ptyp)
then
Rewrite (N,
Unchecked_Convert_To (Id_Kind,
Make_Selected_Component (Loc,
Prefix =>
New_Copy_Tree (Pref),
Selector_Name =>
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))));
else
Rewrite (N,
Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
end if;
end if;
Analyze_And_Resolve (N, Id_Kind);
end Identity;
-----------
-- Image --
-----------
-- Image attribute is handled in separate unit Exp_Imgv
when Attribute_Image =>
Exp_Imgv.Expand_Image_Attribute (N);
---------
-- Img --
---------
-- X'Img is expanded to typ'Image (X), where typ is the type of X
when Attribute_Img => Img :
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Image,
Expressions => New_List (Relocate_Node (Pref))));
Analyze_And_Resolve (N, Standard_String);
end Img;
-----------
-- Input --
-----------
when Attribute_Input => Input : declare
P_Type : constant Entity_Id := Entity (Pref);
B_Type : constant Entity_Id := Base_Type (P_Type);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Strm : constant Node_Id := First (Exprs);
Fname : Entity_Id;
Decl : Node_Id;
Call : Node_Id;
Prag : Node_Id;
Arg2 : Node_Id;
Rfunc : Node_Id;
Cntrl : Node_Id := Empty;
-- Value for controlling argument in call. Always Empty except in
-- the dispatching (class-wide type) case, where it is a reference
-- to the dummy object initialized to the right internal tag.
procedure Freeze_Stream_Subprogram (F : Entity_Id);
-- The expansion of the attribute reference may generate a call to
-- a user-defined stream subprogram that is frozen by the call. This
-- can lead to access-before-elaboration problem if the reference
-- appears in an object declaration and the subprogram body has not
-- been seen. The freezing of the subprogram requires special code
-- because it appears in an expanded context where expressions do
-- not freeze their constituents.
------------------------------
-- Freeze_Stream_Subprogram --
------------------------------
procedure Freeze_Stream_Subprogram (F : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (F);
Bod : Node_Id;
begin
-- If this is user-defined subprogram, the corresponding
-- stream function appears as a renaming-as-body, and the
-- user subprogram must be retrieved by tree traversal.
if Present (Decl)
and then Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Bod := Corresponding_Body (Decl);
if Nkind (Unit_Declaration_Node (Bod)) =
N_Subprogram_Renaming_Declaration
then
Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
end if;
end if;
end Freeze_Stream_Subprogram;
-- Start of processing for Input
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- If there is a TSS for Input, just call it
Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
if Present (Fname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Input (stream)
-- as
-- sourcetyp (streamread (strmtyp'Input (stream)));
-- where streamread is the given Read function that converts an
-- argument of type strmtyp to type sourcetyp or a type from which
-- it is derived (extra conversion required for the derived case).
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
Rfunc := Entity (Expression (Arg2));
Rewrite (N,
Convert_To (B_Type,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Rfunc, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Formal (Rfunc)), Loc),
Attribute_Name => Name_Input,
Expressions => Exprs)))));
Analyze_And_Resolve (N, B_Type);
return;
-- Elementary types
elsif Is_Elementary_Type (U_Type) then
-- A special case arises if we have a defined _Read routine,
-- since in this case we are required to call this routine.
if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then
Build_Record_Or_Elementary_Input_Function
(Loc, U_Type, Decl, Fname);
Insert_Action (N, Decl);
-- For normal cases, we call the I_xxx routine directly
else
Rewrite (N, Build_Elementary_Input_Call (N));
Analyze_And_Resolve (N, P_Type);
return;
end if;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Dispatching case with class-wide type
elsif Is_Class_Wide_Type (P_Type) then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already notified such violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
declare
Rtyp : constant Entity_Id := Root_Type (P_Type);
Dnn : Entity_Id;
Decl : Node_Id;
Expr : Node_Id;
begin
-- Read the internal tag (RM 13.13.2(34)) and use it to
-- initialize a dummy tag object:
-- Dnn : Ada.Tags.Tag :=
-- Descendant_Tag (String'Input (Strm), P_Type);
-- This dummy object is used only to provide a controlling
-- argument for the eventual _Input call. Descendant_Tag is
-- called rather than Internal_Tag to ensure that we have a
-- tag for a type that is descended from the prefix type and
-- declared at the same accessibility level (the exception
-- Tag_Error will be raised otherwise). The level check is
-- required for Ada 2005 because tagged types can be
-- extended in nested scopes (AI-344).
Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_String, Loc),
Attribute_Name => Name_Input,
Expressions => New_List (
Relocate_Node (Duplicate_Subexpr (Strm)))),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (P_Type, Loc),
Attribute_Name => Name_Tag)));
Dnn := Make_Temporary (Loc, 'D', Expr);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Tag), Loc),
Expression => Expr);
Insert_Action (N, Decl);
-- Now we need to get the entity for the call, and construct
-- a function call node, where we preset a reference to Dnn
-- as the controlling argument (doing an unchecked convert
-- to the class-wide tagged type to make it look like a real
-- tagged object).
Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
Cntrl :=
Unchecked_Convert_To (P_Type,
New_Occurrence_Of (Dnn, Loc));
Set_Etype (Cntrl, P_Type);
Set_Parent (Cntrl, N);
end;
-- For tagged types, use the primitive Input function
elsif Is_Tagged_Type (U_Type) then
Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
-- All other record type cases, including protected records. The
-- latter only arise for expander generated code for handling
-- shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised executing default
-- implementation of the Input attribute of an unchecked union
-- type if the type lacks default discriminant values.
if Is_Unchecked_Union (Base_Type (U_Type))
and then No (Discriminant_Constraint (U_Type))
then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
return;
end if;
-- Build the type's Input function, passing the subtype rather
-- than its base type, because checks are needed in the case of
-- constrained discriminants (see Ada 2012 AI05-0192).
Build_Record_Or_Elementary_Input_Function
(Loc, U_Type, Decl, Fname);
Insert_Action (N, Decl);
if Nkind (Parent (N)) = N_Object_Declaration
and then Is_Record_Type (U_Type)
then
-- The stream function may contain calls to user-defined
-- Read procedures for individual components.
declare
Comp : Entity_Id;
Func : Entity_Id;
begin
Comp := First_Component (U_Type);
while Present (Comp) loop
Func :=
Find_Stream_Subprogram
(Etype (Comp), TSS_Stream_Read);
if Present (Func) then
Freeze_Stream_Subprogram (Func);
end if;
Next_Component (Comp);
end loop;
end;
end if;
end if;
end if;
-- If we fall through, Fname is the function to be called. The result
-- is obtained by calling the appropriate function, then converting
-- the result. The conversion does a subtype check.
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Fname, Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm)));
Set_Controlling_Argument (Call, Cntrl);
Rewrite (N, Unchecked_Convert_To (P_Type, Call));
Analyze_And_Resolve (N, P_Type);
if Nkind (Parent (N)) = N_Object_Declaration then
Freeze_Stream_Subprogram (Fname);
end if;
end Input;
-------------------
-- Integer_Value --
-------------------
-- We transform
-- inttype'Fixed_Value (fixed-value)
-- into
-- inttype(integer-value))
-- we do all the required analysis of the conversion here, because we do
-- not want this to go through the fixed-point conversion circuits. Note
-- that the back end always treats fixed-point as equivalent to the
-- corresponding integer type anyway.
when Attribute_Integer_Value => Integer_Value :
begin
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
Expression => Relocate_Node (First (Exprs))));
Set_Etype (N, Entity (Pref));
Set_Analyzed (N);
-- Note: it might appear that a properly analyzed unchecked conversion
-- would be just fine here, but that's not the case, since the full
-- range checks performed by the following call are critical.
Apply_Type_Conversion_Checks (N);
end Integer_Value;
-------------------
-- Invalid_Value --
-------------------
when Attribute_Invalid_Value =>
Rewrite (N, Get_Simple_Init_Val (Ptyp, N));
----------
-- Last --
----------
when Attribute_Last =>
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Type representation defined, then
-- replace this attribute with a direct reference to 'Last of the
-- appropriate index subtype (since otherwise the back end will try
-- to give us the value of 'Last for this implementation type).
if Is_Constrained_Packed_Array (Ptyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (Get_Index_Subtype (N), Loc)));
Analyze_And_Resolve (N, Typ);
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
end if;
--------------
-- Last_Bit --
--------------
-- We compute this if a component clause was present, otherwise we leave
-- the computation up to the back end, since we don't know what layout
-- will be chosen.
when Attribute_Last_Bit => Last_Bit_Attr : declare
CE : constant Entity_Id := Entity (Selector_Name (Pref));
begin
-- In Ada 2005 (or later) if we have the non-default bit order, then
-- we return the original value as given in the component clause
-- (RM 2005 13.5.2(3/2)).
if Present (Component_Clause (CE))
and then Ada_Version >= Ada_2005
and then Reverse_Bit_Order (Scope (CE))
then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => Expr_Value (Last_Bit (Component_Clause (CE)))));
Analyze_And_Resolve (N, Typ);
-- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
-- rewrite with normalized value if we know it statically.
elsif Known_Static_Component_Bit_Offset (CE)
and then Known_Static_Esize (CE)
then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
+ Esize (CE) - 1));
Analyze_And_Resolve (N, Typ);
-- Otherwise leave to back end, just apply universal integer checks
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Last_Bit_Attr;
------------------
-- Leading_Part --
------------------
-- Transforms 'Leading_Part into a call to the floating-point attribute
-- function Leading_Part in Fat_xxx (where xxx is the root type)
-- Note: strictly, we should generate special case code to deal with
-- absurdly large positive arguments (greater than Integer'Last), which
-- result in returning the first argument unchanged, but it hardly seems
-- worth the effort. We raise constraint error for absurdly negative
-- arguments which is fine.
when Attribute_Leading_Part =>
Expand_Fpt_Attribute_RI (N);
------------
-- Length --
------------
when Attribute_Length => Length : declare
Ityp : Entity_Id;
Xnum : Uint;
begin
-- Processing for packed array types
if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
Ityp := Get_Index_Subtype (N);
-- If the index type, Ityp, is an enumeration type with holes,
-- then we calculate X'Length explicitly using
-- Typ'Max
-- (0, Ityp'Pos (X'Last (N)) -
-- Ityp'Pos (X'First (N)) + 1);
-- Since the bounds in the template are the representation values
-- and the back end would get the wrong value.
if Is_Enumeration_Type (Ityp)
and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
then
if No (Exprs) then
Xnum := Uint_1;
else
Xnum := Expr_Value (First (Expressions (N)));
end if;
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List
(Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, Xnum))))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Pref),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, Xnum)))))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
return;
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Type representation defined, then
-- replace this attribute with a direct reference to 'Range_Length
-- of the appropriate index subtype (since otherwise the back end
-- will try to give us the value of 'Length for this
-- implementation type).
elsif Is_Constrained (Ptyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Range_Length,
Prefix => New_Occurrence_Of (Ityp, Loc)));
Analyze_And_Resolve (N, Typ);
end if;
-- Access type case
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
-- If the designated type is a packed array type, then we convert
-- the reference to:
-- typ'Max (0, 1 +
-- xtyp'Pos (Pref'Last (Expr)) -
-- xtyp'Pos (Pref'First (Expr)));
-- This is a bit complex, but it is the easiest thing to do that
-- works in all cases including enum types with holes xtyp here
-- is the appropriate index type.
declare
Dtyp : constant Entity_Id := Designated_Type (Ptyp);
Xtyp : Entity_Id;
begin
if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
Xtyp := Get_Index_Subtype (N);
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List (
Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Make_Integer_Literal (Loc, 1),
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Xtyp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref),
Attribute_Name => Name_Last,
Expressions =>
New_Copy_List (Exprs)))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Xtyp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Pref),
Attribute_Name => Name_First,
Expressions =>
New_Copy_List (Exprs)))))))));
Analyze_And_Resolve (N, Typ);
end if;
end;
-- Otherwise leave it to the back end
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Length;
-- Attribute Loop_Entry is replaced with a reference to a constant value
-- which captures the prefix at the entry point of the related loop. The
-- loop itself may be transformed into a conditional block.
when Attribute_Loop_Entry =>
Expand_Loop_Entry_Attribute (N);
-------------
-- Machine --
-------------
-- Transforms 'Machine into a call to the floating-point attribute
-- function Machine in Fat_xxx (where xxx is the root type)
when Attribute_Machine =>
Expand_Fpt_Attribute_R (N);
----------------------
-- Machine_Rounding --
----------------------
-- Transforms 'Machine_Rounding into a call to the floating-point
-- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
-- type). Expansion is avoided for cases the back end can handle
-- directly.
when Attribute_Machine_Rounding =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
------------------
-- Machine_Size --
------------------
-- Machine_Size is equivalent to Object_Size, so transform it into
-- Object_Size and that way the back end never sees Machine_Size.
when Attribute_Machine_Size =>
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Prefix (N),
Attribute_Name => Name_Object_Size));
Analyze_And_Resolve (N, Typ);
--------------
-- Mantissa --
--------------
-- The only case that can get this far is the dynamic case of the old
-- Ada 83 Mantissa attribute for the fixed-point case. For this case,
-- we expand:
-- typ'Mantissa
-- into
-- ityp (System.Mantissa.Mantissa_Value
-- (Integer'Integer_Value (typ'First),
-- Integer'Integer_Value (typ'Last)));
when Attribute_Mantissa => Mantissa : begin
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
Attribute_Name => Name_Integer_Value,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_First))),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
Attribute_Name => Name_Integer_Value,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Last)))))));
Analyze_And_Resolve (N, Typ);
end Mantissa;
---------
-- Max --
---------
when Attribute_Max =>
Expand_Min_Max_Attribute (N);
----------------------------------
-- Max_Size_In_Storage_Elements --
----------------------------------
when Attribute_Max_Size_In_Storage_Elements => declare
Typ : constant Entity_Id := Etype (N);
Attr : Node_Id;
Conversion_Added : Boolean := False;
-- A flag which tracks whether the original attribute has been
-- wrapped inside a type conversion.
begin
Apply_Universal_Integer_Attribute_Checks (N);
-- The universal integer check may sometimes add a type conversion,
-- retrieve the original attribute reference from the expression.
Attr := N;
if Nkind (Attr) = N_Type_Conversion then
Attr := Expression (Attr);
Conversion_Added := True;
end if;
-- Heap-allocated controlled objects contain two extra pointers which
-- are not part of the actual type. Transform the attribute reference
-- into a runtime expression to add the size of the hidden header.
-- Do not perform this expansion on .NET/JVM targets because the
-- two pointers are already present in the type.
if VM_Target = No_VM
and then Nkind (Attr) = N_Attribute_Reference
and then Needs_Finalization (Ptyp)
and then not Header_Size_Added (Attr)
then
Set_Header_Size_Added (Attr);
-- Generate:
-- P'Max_Size_In_Storage_Elements +
-- Universal_Integer
-- (Header_Size_With_Padding (Ptyp'Alignment))
Rewrite (Attr,
Make_Op_Add (Loc,
Left_Opnd => Relocate_Node (Attr),
Right_Opnd =>
Convert_To (Universal_Integer,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Header_Size_With_Padding), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Alignment))))));
-- Add a conversion to the target type
if not Conversion_Added then
Rewrite (Attr,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (Attr)));
end if;
Analyze (Attr);
return;
end if;
end;
--------------------
-- Mechanism_Code --
--------------------
when Attribute_Mechanism_Code =>
-- We must replace the prefix i the renamed case
if Is_Entity_Name (Pref)
and then Present (Alias (Entity (Pref)))
then
Set_Renamed_Subprogram (Pref, Alias (Entity (Pref)));
end if;
---------
-- Min --
---------
when Attribute_Min =>
Expand_Min_Max_Attribute (N);
---------
-- Mod --
---------
when Attribute_Mod => Mod_Case : declare
Arg : constant Node_Id := Relocate_Node (First (Exprs));
Hi : constant Node_Id := Type_High_Bound (Etype (Arg));
Modv : constant Uint := Modulus (Btyp);
begin
-- This is not so simple. The issue is what type to use for the
-- computation of the modular value.
-- The easy case is when the modulus value is within the bounds
-- of the signed integer type of the argument. In this case we can
-- just do the computation in that signed integer type, and then
-- do an ordinary conversion to the target type.
if Modv <= Expr_Value (Hi) then
Rewrite (N,
Convert_To (Btyp,
Make_Op_Mod (Loc,
Left_Opnd => Arg,
Right_Opnd => Make_Integer_Literal (Loc, Modv))));
-- Here we know that the modulus is larger than type'Last of the
-- integer type. There are two cases to consider:
-- a) The integer value is non-negative. In this case, it is
-- returned as the result (since it is less than the modulus).
-- b) The integer value is negative. In this case, we know that the
-- result is modulus + value, where the value might be as small as
-- -modulus. The trouble is what type do we use to do the subtract.
-- No type will do, since modulus can be as big as 2**64, and no
-- integer type accommodates this value. Let's do bit of algebra
-- modulus + value
-- = modulus - (-value)
-- = (modulus - 1) - (-value - 1)
-- Now modulus - 1 is certainly in range of the modular type.
-- -value is in the range 1 .. modulus, so -value -1 is in the
-- range 0 .. modulus-1 which is in range of the modular type.
-- Furthermore, (-value - 1) can be expressed as -(value + 1)
-- which we can compute using the integer base type.
-- Once this is done we analyze the if expression without range
-- checks, because we know everything is in range, and we want
-- to prevent spurious warnings on either branch.
else
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr (Arg),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Convert_To (Btyp,
Duplicate_Subexpr_No_Checks (Arg)),
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => Modv - 1),
Right_Opnd =>
Convert_To (Btyp,
Make_Op_Minus (Loc,
Right_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
Right_Opnd =>
Make_Integer_Literal (Loc,
Intval => 1))))))));
end if;
Analyze_And_Resolve (N, Btyp, Suppress => All_Checks);
end Mod_Case;
-----------
-- Model --
-----------
-- Transforms 'Model into a call to the floating-point attribute
-- function Model in Fat_xxx (where xxx is the root type)
when Attribute_Model =>
Expand_Fpt_Attribute_R (N);
-----------------
-- Object_Size --
-----------------
-- The processing for Object_Size shares the processing for Size
---------
-- Old --
---------
when Attribute_Old => Old : declare
Asn_Stm : Node_Id;
Subp : Node_Id;
Temp : Entity_Id;
begin
Temp := Make_Temporary (Loc, 'T', Pref);
-- Climb the parent chain looking for subprogram _Postconditions
Subp := N;
while Present (Subp) loop
exit when Nkind (Subp) = N_Subprogram_Body
and then Chars (Defining_Entity (Subp)) = Name_uPostconditions;
-- If assertions are disabled, no need to create the declaration
-- that preserves the value. The postcondition pragma in which
-- 'Old appears will be checked or disabled according to the
-- current policy in effect.
if Nkind (Subp) = N_Pragma and then not Is_Checked (Subp) then
return;
end if;
Subp := Parent (Subp);
end loop;
-- 'Old can only appear in a postcondition, the generated body of
-- _Postconditions must be in the tree.
pragma Assert (Present (Subp));
-- Generate:
-- Temp : constant <Pref type> := <Pref>;
Asn_Stm :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Etype (N), Loc),
Expression => Pref);
-- Push the scope of the related subprogram where _Postcondition
-- resides as this ensures that the object will be analyzed in the
-- proper context.
Push_Scope (Scope (Defining_Entity (Subp)));
-- The object declaration is inserted before the body of subprogram
-- _Postconditions. This ensures that any precondition-like actions
-- are still executed before any parameter values are captured and
-- the multiple 'Old occurrences appear in order of declaration.
Insert_Before_And_Analyze (Subp, Asn_Stm);
Pop_Scope;
-- Ensure that the prefix of attribute 'Old is valid. The check must
-- be inserted after the expansion of the attribute has taken place
-- to reflect the new placement of the prefix.
if Validity_Checks_On and then Validity_Check_Operands then
Ensure_Valid (Pref);
end if;
Rewrite (N, New_Occurrence_Of (Temp, Loc));
end Old;
----------------------
-- Overlaps_Storage --
----------------------
when Attribute_Overlaps_Storage => Overlaps_Storage : declare
Loc : constant Source_Ptr := Sloc (N);
X : constant Node_Id := Prefix (N);
Y : constant Node_Id := First (Expressions (N));
-- The argumens
X_Addr, Y_Addr : Node_Id;
-- the expressions for their integer addresses
X_Size, Y_Size : Node_Id;
-- the expressions for their sizes
Cond : Node_Id;
begin
-- Attribute expands into:
-- if X'Address < Y'address then
-- (X'address + X'Size - 1) >= Y'address
-- else
-- (Y'address + Y'size - 1) >= X'Address
-- end if;
-- with the proper address operations. We convert addresses to
-- integer addresses to use predefined arithmetic. The size is
-- expressed in storage units.
X_Addr :=
Unchecked_Convert_To (RTE (RE_Integer_Address),
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (X)));
Y_Addr :=
Unchecked_Convert_To (RTE (RE_Integer_Address),
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (Y)));
X_Size :=
Make_Op_Divide (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (X)),
Right_Opnd =>
Make_Integer_Literal (Loc, System_Storage_Unit));
Y_Size :=
Make_Op_Divide (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (Y)),
Right_Opnd =>
Make_Integer_Literal (Loc, System_Storage_Unit));
Cond :=
Make_Op_Le (Loc,
Left_Opnd => X_Addr,
Right_Opnd => Y_Addr);
Rewrite (N,
Make_If_Expression (Loc,
New_List (
Cond,
Make_Op_Ge (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => X_Addr,
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => X_Size,
Right_Opnd => Make_Integer_Literal (Loc, 1))),
Right_Opnd => Y_Addr),
Make_Op_Ge (Loc,
Make_Op_Add (Loc,
Left_Opnd => Y_Addr,
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Y_Size,
Right_Opnd => Make_Integer_Literal (Loc, 1))),
Right_Opnd => X_Addr))));
Analyze_And_Resolve (N, Standard_Boolean);
end Overlaps_Storage;
------------
-- Output --
------------
when Attribute_Output => Output : declare
P_Type : constant Entity_Id := Entity (Pref);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg3 : Node_Id;
Wfunc : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- If TSS for Output is present, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
if Present (Pname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Output (stream, Item)
-- as
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
-- where strmwrite is the given Write function that converts an
-- argument of type sourcetyp or a type acctyp, from which it is
-- derived to type strmtyp. The conversion to acttyp is required
-- for the derived case.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg3 :=
Next (Next (First (Pragma_Argument_Associations (Prag))));
Wfunc := Entity (Expression (Arg3));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (First (Exprs)),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Wfunc, Loc),
Parameter_Associations => New_List (
OK_Convert_To (Etype (First_Formal (Wfunc)),
Relocate_Node (Next (First (Exprs)))))))));
Analyze (N);
return;
-- For elementary types, we call the W_xxx routine directly. Note
-- that the effect of Write and Output is identical for the case
-- of an elementary type (there are no discriminants or bounds).
elsif Is_Elementary_Type (U_Type) then
-- A special case arises if we have a defined _Write routine,
-- since in this case we are required to call this routine.
if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then
Build_Record_Or_Elementary_Output_Procedure
(Loc, U_Type, Decl, Pname);
Insert_Action (N, Decl);
-- For normal cases, we call the W_xxx routine directly
else
Rewrite (N, Build_Elementary_Write_Call (N));
Analyze (N);
return;
end if;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Class-wide case, first output external tag, then dispatch
-- to the appropriate primitive Output function (RM 13.13.2(31)).
elsif Is_Class_Wide_Type (P_Type) then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already notified such violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
Tag_Write : declare
Strm : constant Node_Id := First (Exprs);
Item : constant Node_Id := Next (Strm);
begin
-- Ada 2005 (AI-344): Check that the accessibility level
-- of the type of the output object is not deeper than
-- that of the attribute's prefix type.
-- if Get_Access_Level (Item'Tag)
-- /= Get_Access_Level (P_Type'Tag)
-- then
-- raise Tag_Error;
-- end if;
-- String'Output (Strm, External_Tag (Item'Tag));
-- We cannot figure out a practical way to implement this
-- accessibility check on virtual machines, so we omit it.
if Ada_Version >= Ada_2005
and then Tagged_Type_Expansion
then
Insert_Action (N,
Make_Implicit_If_Statement (N,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd =>
Build_Get_Access_Level (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Relocate_Node (
Duplicate_Subexpr (Item,
Name_Req => True)),
Attribute_Name => Name_Tag)),
Right_Opnd =>
Make_Integer_Literal (Loc,
Type_Access_Level (P_Type))),
Then_Statements =>
New_List (Make_Raise_Statement (Loc,
New_Occurrence_Of (
RTE (RE_Tag_Error), Loc)))));
end if;
Insert_Action (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_String, Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (Duplicate_Subexpr (Strm)),
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_External_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Relocate_Node
(Duplicate_Subexpr (Item, Name_Req => True)),
Attribute_Name => Name_Tag))))));
end Tag_Write;
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
-- Tagged type case, use the primitive Output function
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
-- All other record type cases, including protected records.
-- The latter only arise for expander generated code for
-- handling shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Output attribute of an
-- unchecked union type if the type lacks default discriminant
-- values.
if Is_Unchecked_Union (Base_Type (U_Type))
and then No (Discriminant_Constraint (U_Type))
then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
return;
end if;
Build_Record_Or_Elementary_Output_Procedure
(Loc, Base_Type (U_Type), Decl, Pname);
Insert_Action (N, Decl);
end if;
end if;
-- If we fall through, Pname is the name of the procedure to call
Rewrite_Stream_Proc_Call (Pname);
end Output;
---------
-- Pos --
---------
-- For enumeration types with a standard representation, Pos is
-- handled by the back end.
-- For enumeration types, with a non-standard representation we generate
-- a call to the _Rep_To_Pos function created when the type was frozen.
-- The call has the form
-- _rep_to_pos (expr, flag)
-- The parameter flag is True if range checks are enabled, causing
-- Program_Error to be raised if the expression has an invalid
-- representation, and False if range checks are suppressed.
-- For integer types, Pos is equivalent to a simple integer
-- conversion and we rewrite it as such
when Attribute_Pos => Pos :
declare
Etyp : Entity_Id := Base_Type (Entity (Pref));
begin
-- Deal with zero/non-zero boolean values
if Is_Boolean_Type (Etyp) then
Adjust_Condition (First (Exprs));
Etyp := Standard_Boolean;
Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
end if;
-- Case of enumeration type
if Is_Enumeration_Type (Etyp) then
-- Non-standard enumeration type (generate call)
if Present (Enum_Pos_To_Rep (Etyp)) then
Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs)));
Analyze_And_Resolve (N, Typ);
-- Standard enumeration type (do universal integer check)
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
-- Deal with integer types (replace by conversion)
elsif Is_Integer_Type (Etyp) then
Rewrite (N, Convert_To (Typ, First (Exprs)));
Analyze_And_Resolve (N, Typ);
end if;
end Pos;
--------------
-- Position --
--------------
-- We compute this if a component clause was present, otherwise we leave
-- the computation up to the back end, since we don't know what layout
-- will be chosen.
when Attribute_Position => Position_Attr :
declare
CE : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (CE)) then
-- In Ada 2005 (or later) if we have the non-default bit order,
-- then we return the original value as given in the component
-- clause (RM 2005 13.5.2(2/2)).
if Ada_Version >= Ada_2005
and then Reverse_Bit_Order (Scope (CE))
then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => Expr_Value (Position (Component_Clause (CE)))));
-- Otherwise (Ada 83 or 95, or default bit order specified in
-- later Ada version), return the normalized value.
else
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
end if;
Analyze_And_Resolve (N, Typ);
-- If back end is doing things, just apply universal integer checks
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Position_Attr;
----------
-- Pred --
----------
-- 1. Deal with enumeration types with holes
-- 2. For floating-point, generate call to attribute function and deal
-- with range checking if Check_Float_Overflow modde.
-- 3. For other cases, deal with constraint checking
when Attribute_Pred => Pred :
declare
Etyp : constant Entity_Id := Base_Type (Ptyp);
begin
-- For enumeration types with non-standard representations, we
-- expand typ'Pred (x) into
-- Pos_To_Rep (Rep_To_Pos (x) - 1)
-- If the representation is contiguous, we compute instead
-- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
-- The conversion function Enum_Pos_To_Rep is defined on the
-- base type, not the subtype, so we have to use the base type
-- explicitly for this and other enumeration attributes.
if Is_Enumeration_Type (Ptyp)
and then Present (Enum_Pos_To_Rep (Etyp))
then
if Has_Contiguous_Rep (Etyp) then
Rewrite (N,
Unchecked_Convert_To (Ptyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Ptyp))),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations =>
New_List (
Unchecked_Convert_To (Ptyp,
Make_Op_Subtract (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))),
Right_Opnd =>
Make_Integer_Literal (Loc, 1))),
Rep_To_Pos_Flag (Ptyp, Loc))))));
else
-- Add Boolean parameter True, to request program errror if
-- we have a bad representation on our hands. If checks are
-- suppressed, then add False instead
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix =>
New_Occurrence_Of
(Enum_Pos_To_Rep (Etyp), Loc),
Expressions => New_List (
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
end if;
Analyze_And_Resolve (N, Typ);
-- For floating-point, we transform 'Pred into a call to the Pred
-- floating-point attribute function in Fat_xxx (xxx is root type).
elsif Is_Floating_Point_Type (Ptyp) then
-- Handle case of range check. The Do_Range_Check flag is set only
-- in Check_Float_Overflow mode, and what we need is a specific
-- check against typ'First, since that is the only overflow case.
declare
Expr : constant Node_Id := First (Exprs);
begin
if Do_Range_Check (Expr) then
Set_Do_Range_Check (Expr, False);
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Expr),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (Base_Type (Ptyp), Loc))),
Reason => CE_Range_Check_Failed),
Suppress => All_Checks);
end if;
end;
-- Transform into call to attribute function
Expand_Fpt_Attribute_R (N);
Analyze_And_Resolve (N, Typ);
-- For modular types, nothing to do (no overflow, since wraps)
elsif Is_Modular_Integer_Type (Ptyp) then
null;
-- For other types, if argument is marked as needing a range check or
-- overflow checking is enabled, we must generate a check.
elsif not Overflow_Checks_Suppressed (Ptyp)
or else Do_Range_Check (First (Exprs))
then
Set_Do_Range_Check (First (Exprs), False);
Expand_Pred_Succ_Attribute (N);
end if;
end Pred;
--------------
-- Priority --
--------------
-- Ada 2005 (AI-327): Dynamic ceiling priorities
-- We rewrite X'Priority as the following run-time call:
-- Get_Ceiling (X._Object)
-- Note that although X'Priority is notionally an object, it is quite
-- deliberately not defined as an aliased object in the RM. This means
-- that it works fine to rewrite it as a call, without having to worry
-- about complications that would other arise from X'Priority'Access,
-- which is illegal, because of the lack of aliasing.
when Attribute_Priority =>
declare
Call : Node_Id;
Conctyp : Entity_Id;
Object_Parm : Node_Id;
Subprg : Entity_Id;
RT_Subprg_Name : Node_Id;
begin
-- Look for the enclosing concurrent type
Conctyp := Current_Scope;
while not Is_Concurrent_Type (Conctyp) loop
Conctyp := Scope (Conctyp);
end loop;
pragma Assert (Is_Protected_Type (Conctyp));
-- Generate the actual of the call
Subprg := Current_Scope;
while not Present (Protected_Body_Subprogram (Subprg)) loop
Subprg := Scope (Subprg);
end loop;
-- Use of 'Priority inside protected entries and barriers (in
-- both cases the type of the first formal of their expanded
-- subprogram is Address)
if Etype (First_Entity (Protected_Body_Subprogram (Subprg)))
= RTE (RE_Address)
then
declare
New_Itype : Entity_Id;
begin
-- In the expansion of protected entries the type of the
-- first formal of the Protected_Body_Subprogram is an
-- Address. In order to reference the _object component
-- we generate:
-- type T is access p__ptTV;
-- freeze T []
New_Itype := Create_Itype (E_Access_Type, N);
Set_Etype (New_Itype, New_Itype);
Set_Directly_Designated_Type (New_Itype,
Corresponding_Record_Type (Conctyp));
Freeze_Itype (New_Itype, N);
-- Generate:
-- T!(O)._object'unchecked_access
Object_Parm :=
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (New_Itype,
New_Occurrence_Of
(First_Entity
(Protected_Body_Subprogram (Subprg)),
Loc)),
Selector_Name =>
Make_Identifier (Loc, Name_uObject)),
Attribute_Name => Name_Unchecked_Access);
end;
-- Use of 'Priority inside a protected subprogram
else
Object_Parm :=
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of
(First_Entity
(Protected_Body_Subprogram (Subprg)),
Loc),
Selector_Name => Make_Identifier (Loc, Name_uObject)),
Attribute_Name => Name_Unchecked_Access);
end if;
-- Select the appropriate run-time subprogram
if Number_Entries (Conctyp) = 0 then
RT_Subprg_Name :=
New_Occurrence_Of (RTE (RE_Get_Ceiling), Loc);
else
RT_Subprg_Name :=
New_Occurrence_Of (RTE (RO_PE_Get_Ceiling), Loc);
end if;
Call :=
Make_Function_Call (Loc,
Name => RT_Subprg_Name,
Parameter_Associations => New_List (Object_Parm));
Rewrite (N, Call);
-- Avoid the generation of extra checks on the pointer to the
-- protected object.
Analyze_And_Resolve (N, Typ, Suppress => Access_Check);
end;
------------------
-- Range_Length --
------------------
when Attribute_Range_Length => Range_Length : begin
-- The only special processing required is for the case where
-- Range_Length is applied to an enumeration type with holes.
-- In this case we transform
-- X'Range_Length
-- to
-- X'Pos (X'Last) - X'Pos (X'First) + 1
-- So that the result reflects the proper Pos values instead
-- of the underlying representations.
if Is_Enumeration_Type (Ptyp)
and then Has_Non_Standard_Rep (Ptyp)
then
Rewrite (N,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Expressions => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (Ptyp, Loc)))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Expressions => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Ptyp, Loc))))),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
Analyze_And_Resolve (N, Typ);
-- For all other cases, the attribute is handled by the back end, but
-- we need to deal with the case of the range check on a universal
-- integer.
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Range_Length;
----------
-- Read --
----------
when Attribute_Read => Read : declare
P_Type : constant Entity_Id := Entity (Pref);
B_Type : constant Entity_Id := Base_Type (P_Type);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg2 : Node_Id;
Rfunc : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- The simple case, if there is a TSS for Read, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
if Present (Pname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Read (stream, Item)
-- as
-- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
-- where strmread is the given Read function that converts an
-- argument of type strmtyp to type sourcetyp or a type from which
-- it is derived. The conversion to sourcetyp is required in the
-- latter case.
-- A special case arises if Item is a type conversion in which
-- case, we have to expand to:
-- Itemx := typex (strmread (strmtyp'Input (Stream)));
-- where Itemx is the expression of the type conversion (i.e.
-- the actual object), and typex is the type of Itemx.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
Rfunc := Entity (Expression (Arg2));
Lhs := Relocate_Node (Next (First (Exprs)));
Rhs :=
OK_Convert_To (B_Type,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Rfunc, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Formal (Rfunc)), Loc),
Attribute_Name => Name_Input,
Expressions => New_List (
Relocate_Node (First (Exprs)))))));
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Lhs), Rhs);
end if;
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
Set_Assignment_OK (Lhs);
Analyze (N);
return;
-- For elementary types, we call the I_xxx routine using the first
-- parameter and then assign the result into the second parameter.
-- We set Assignment_OK to deal with the conversion case.
elsif Is_Elementary_Type (U_Type) then
declare
Lhs : Node_Id;
Rhs : Node_Id;
begin
Lhs := Relocate_Node (Next (First (Exprs)));
Rhs := Build_Elementary_Input_Call (N);
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Lhs), Rhs);
end if;
Set_Assignment_OK (Lhs);
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
Analyze (N);
return;
end;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Tagged type case, use the primitive Read function. Note that
-- this will dispatch in the class-wide case which is what we want
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
-- All other record type cases, including protected records. The
-- latter only arise for expander generated code for handling
-- shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Read attribute of an
-- Unchecked_Union type.
if Is_Unchecked_Union (Base_Type (U_Type)) then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
end if;
if Has_Discriminants (U_Type)
and then Present
(Discriminant_Default_Value (First_Discriminant (U_Type)))
then
Build_Mutable_Record_Read_Procedure
(Loc, Full_Base (U_Type), Decl, Pname);
else
Build_Record_Read_Procedure
(Loc, Full_Base (U_Type), Decl, Pname);
end if;
-- Suppress checks, uninitialized or otherwise invalid
-- data does not cause constraint errors to be raised for
-- a complete record read.
Insert_Action (N, Decl, All_Checks);
end if;
end if;
Rewrite_Stream_Proc_Call (Pname);
end Read;
---------
-- Ref --
---------
-- Ref is identical to To_Address, see To_Address for processing
---------------
-- Remainder --
---------------
-- Transforms 'Remainder into a call to the floating-point attribute
-- function Remainder in Fat_xxx (where xxx is the root type)
when Attribute_Remainder =>
Expand_Fpt_Attribute_RR (N);
------------
-- Result --
------------
-- Transform 'Result into reference to _Result formal. At the point
-- where a legal 'Result attribute is expanded, we know that we are in
-- the context of a _Postcondition function with a _Result parameter.
when Attribute_Result =>
Rewrite (N, Make_Identifier (Loc, Chars => Name_uResult));
Analyze_And_Resolve (N, Typ);
-----------
-- Round --
-----------
-- The handling of the Round attribute is quite delicate. The processing
-- in Sem_Attr introduced a conversion to universal real, reflecting the
-- semantics of Round, but we do not want anything to do with universal
-- real at runtime, since this corresponds to using floating-point
-- arithmetic.
-- What we have now is that the Etype of the Round attribute correctly
-- indicates the final result type. The operand of the Round is the
-- conversion to universal real, described above, and the operand of
-- this conversion is the actual operand of Round, which may be the
-- special case of a fixed point multiplication or division (Etype =
-- universal fixed)
-- The exapander will expand first the operand of the conversion, then
-- the conversion, and finally the round attribute itself, since we
-- always work inside out. But we cannot simply process naively in this
-- order. In the semantic world where universal fixed and real really
-- exist and have infinite precision, there is no problem, but in the
-- implementation world, where universal real is a floating-point type,
-- we would get the wrong result.
-- So the approach is as follows. First, when expanding a multiply or
-- divide whose type is universal fixed, we do nothing at all, instead
-- deferring the operation till later.
-- The actual processing is done in Expand_N_Type_Conversion which
-- handles the special case of Round by looking at its parent to see if
-- it is a Round attribute, and if it is, handling the conversion (or
-- its fixed multiply/divide child) in an appropriate manner.
-- This means that by the time we get to expanding the Round attribute
-- itself, the Round is nothing more than a type conversion (and will
-- often be a null type conversion), so we just replace it with the
-- appropriate conversion operation.
when Attribute_Round =>
Rewrite (N,
Convert_To (Etype (N), Relocate_Node (First (Exprs))));
Analyze_And_Resolve (N);
--------------
-- Rounding --
--------------
-- Transforms 'Rounding into a call to the floating-point attribute
-- function Rounding in Fat_xxx (where xxx is the root type)
when Attribute_Rounding =>
Expand_Fpt_Attribute_R (N);
------------------
-- Same_Storage --
------------------
when Attribute_Same_Storage => Same_Storage : declare
Loc : constant Source_Ptr := Sloc (N);
X : constant Node_Id := Prefix (N);
Y : constant Node_Id := First (Expressions (N));
-- The arguments
X_Addr, Y_Addr : Node_Id;
-- Rhe expressions for their addresses
X_Size, Y_Size : Node_Id;
-- Rhe expressions for their sizes
begin
-- The attribute is expanded as:
-- (X'address = Y'address)
-- and then (X'Size = Y'Size)
-- If both arguments have the same Etype the second conjunct can be
-- omitted.
X_Addr :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (X));
Y_Addr :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (Y));
X_Size :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (X));
Y_Size :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (Y));
if Etype (X) = Etype (Y) then
Rewrite (N,
(Make_Op_Eq (Loc,
Left_Opnd => X_Addr,
Right_Opnd => Y_Addr)));
else
Rewrite (N,
Make_Op_And (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => X_Addr,
Right_Opnd => Y_Addr),
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => X_Size,
Right_Opnd => Y_Size)));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Same_Storage;
-------------
-- Scaling --
-------------
-- Transforms 'Scaling into a call to the floating-point attribute
-- function Scaling in Fat_xxx (where xxx is the root type)
when Attribute_Scaling =>
Expand_Fpt_Attribute_RI (N);
-------------------------
-- Simple_Storage_Pool --
-------------------------
when Attribute_Simple_Storage_Pool =>
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
Expression => New_Occurrence_Of (Entity (N), Loc)));
Analyze_And_Resolve (N, Typ);
----------
-- Size --
----------
when Attribute_Size |
Attribute_Object_Size |
Attribute_Value_Size |
Attribute_VADS_Size => Size :
declare
Siz : Uint;
New_Node : Node_Id;
begin
-- Processing for VADS_Size case. Note that this processing removes
-- all traces of VADS_Size from the tree, and completes all required
-- processing for VADS_Size by translating the attribute reference
-- to an appropriate Size or Object_Size reference.
if Id = Attribute_VADS_Size
or else (Use_VADS_Size and then Id = Attribute_Size)
then
-- If the size is specified, then we simply use the specified
-- size. This applies to both types and objects. The size of an
-- object can be specified in the following ways:
-- An explicit size object is given for an object
-- A component size is specified for an indexed component
-- A component clause is specified for a selected component
-- The object is a component of a packed composite object
-- If the size is specified, then VADS_Size of an object
if (Is_Entity_Name (Pref)
and then Present (Size_Clause (Entity (Pref))))
or else
(Nkind (Pref) = N_Component_Clause
and then (Present (Component_Clause
(Entity (Selector_Name (Pref))))
or else Is_Packed (Etype (Prefix (Pref)))))
or else
(Nkind (Pref) = N_Indexed_Component
and then (Component_Size (Etype (Prefix (Pref))) /= 0
or else Is_Packed (Etype (Prefix (Pref)))))
then
Set_Attribute_Name (N, Name_Size);
-- Otherwise if we have an object rather than a type, then the
-- VADS_Size attribute applies to the type of the object, rather
-- than the object itself. This is one of the respects in which
-- VADS_Size differs from Size.
else
if (not Is_Entity_Name (Pref)
or else not Is_Type (Entity (Pref)))
and then (Is_Scalar_Type (Ptyp) or else Is_Constrained (Ptyp))
then
Rewrite (Pref, New_Occurrence_Of (Ptyp, Loc));
end if;
-- For a scalar type for which no size was explicitly given,
-- VADS_Size means Object_Size. This is the other respect in
-- which VADS_Size differs from Size.
if Is_Scalar_Type (Ptyp) and then No (Size_Clause (Ptyp)) then
Set_Attribute_Name (N, Name_Object_Size);
-- In all other cases, Size and VADS_Size are the sane
else
Set_Attribute_Name (N, Name_Size);
end if;
end if;
end if;
-- For class-wide types, X'Class'Size is transformed into a direct
-- reference to the Size of the class type, so that the back end does
-- not have to deal with the X'Class'Size reference.
if Is_Entity_Name (Pref)
and then Is_Class_Wide_Type (Entity (Pref))
then
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
return;
-- For X'Size applied to an object of a class-wide type, transform
-- X'Size into a call to the primitive operation _Size applied to X.
elsif Is_Class_Wide_Type (Ptyp)
or else (Id = Attribute_Size
and then Is_Tagged_Type (Ptyp)
and then Has_Unknown_Discriminants (Ptyp))
then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already notified such violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
New_Node :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of
(Find_Prim_Op (Ptyp, Name_uSize), Loc),
Parameter_Associations => New_List (Pref));
if Typ /= Standard_Long_Long_Integer then
-- The context is a specific integer type with which the
-- original attribute was compatible. The function has a
-- specific type as well, so to preserve the compatibility
-- we must convert explicitly.
New_Node := Convert_To (Typ, New_Node);
end if;
Rewrite (N, New_Node);
Analyze_And_Resolve (N, Typ);
return;
-- Case of known RM_Size of a type
elsif (Id = Attribute_Size or else Id = Attribute_Value_Size)
and then Is_Entity_Name (Pref)
and then Is_Type (Entity (Pref))
and then Known_Static_RM_Size (Entity (Pref))
then
Siz := RM_Size (Entity (Pref));
-- Case of known Esize of a type
elsif Id = Attribute_Object_Size
and then Is_Entity_Name (Pref)
and then Is_Type (Entity (Pref))
and then Known_Static_Esize (Entity (Pref))
then
Siz := Esize (Entity (Pref));
-- Case of known size of object
elsif Id = Attribute_Size
and then Is_Entity_Name (Pref)
and then Is_Object (Entity (Pref))
and then Known_Esize (Entity (Pref))
and then Known_Static_Esize (Entity (Pref))
then
Siz := Esize (Entity (Pref));
-- For an array component, we can do Size in the front end
-- if the component_size of the array is set.
elsif Nkind (Pref) = N_Indexed_Component then
Siz := Component_Size (Etype (Prefix (Pref)));
-- For a record component, we can do Size in the front end if there
-- is a component clause, or if the record is packed and the
-- component's size is known at compile time.
elsif Nkind (Pref) = N_Selected_Component then
declare
Rec : constant Entity_Id := Etype (Prefix (Pref));
Comp : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Comp)) then
Siz := Esize (Comp);
elsif Is_Packed (Rec) then
Siz := RM_Size (Ptyp);
else
Apply_Universal_Integer_Attribute_Checks (N);
return;
end if;
end;
-- All other cases are handled by the back end
else
Apply_Universal_Integer_Attribute_Checks (N);
-- If Size is applied to a formal parameter that is of a packed
-- array subtype, then apply Size to the actual subtype.
if Is_Entity_Name (Pref)
and then Is_Formal (Entity (Pref))
and then Is_Array_Type (Ptyp)
and then Is_Packed (Ptyp)
then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
Attribute_Name => Name_Size));
Analyze_And_Resolve (N, Typ);
end if;
-- If Size applies to a dereference of an access to unconstrained
-- packed array, the back end needs to see its unconstrained
-- nominal type, but also a hint to the actual constrained type.
if Nkind (Pref) = N_Explicit_Dereference
and then Is_Array_Type (Ptyp)
and then not Is_Constrained (Ptyp)
and then Is_Packed (Ptyp)
then
Set_Actual_Designated_Subtype (Pref,
Get_Actual_Subtype (Pref));
end if;
return;
end if;
-- Common processing for record and array component case
if Siz /= No_Uint and then Siz /= 0 then
declare
CS : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N, Make_Integer_Literal (Loc, Siz));
-- This integer literal is not a static expression. We do not
-- call Analyze_And_Resolve here, because this would activate
-- the circuit for deciding that a static value was out of
-- range, and we don't want that.
-- So just manually set the type, mark the expression as non-
-- static, and then ensure that the result is checked properly
-- if the attribute comes from source (if it was internally
-- generated, we never need a constraint check).
Set_Etype (N, Typ);
Set_Is_Static_Expression (N, False);
if CS then
Apply_Constraint_Check (N, Typ);
end if;
end;
end if;
end Size;
------------------
-- Storage_Pool --
------------------
when Attribute_Storage_Pool =>
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
Expression => New_Occurrence_Of (Entity (N), Loc)));
Analyze_And_Resolve (N, Typ);
------------------
-- Storage_Size --
------------------
when Attribute_Storage_Size => Storage_Size : declare
Alloc_Op : Entity_Id := Empty;
begin
-- Access type case, always go to the root type
-- The case of access types results in a value of zero for the case
-- where no storage size attribute clause has been given. If a
-- storage size has been given, then the attribute is converted
-- to a reference to the variable used to hold this value.
if Is_Access_Type (Ptyp) then
if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List (
Make_Integer_Literal (Loc, 0),
Convert_To (Typ,
New_Occurrence_Of
(Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
-- If the access type is associated with a simple storage pool
-- object, then attempt to locate the optional Storage_Size
-- function of the simple storage pool type. If not found,
-- then the result will default to zero.
if Present (Get_Rep_Pragma (Root_Type (Ptyp),
Name_Simple_Storage_Pool_Type))
then
declare
Pool_Type : constant Entity_Id :=
Base_Type (Etype (Entity (N)));
begin
Alloc_Op := Get_Name_Entity_Id (Name_Storage_Size);
while Present (Alloc_Op) loop
if Scope (Alloc_Op) = Scope (Pool_Type)
and then Present (First_Formal (Alloc_Op))
and then Etype (First_Formal (Alloc_Op)) = Pool_Type
then
exit;
end if;
Alloc_Op := Homonym (Alloc_Op);
end loop;
end;
-- In the normal Storage_Pool case, retrieve the primitive
-- function associated with the pool type.
else
Alloc_Op :=
Find_Prim_Op
(Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
Attribute_Name (N));
end if;
-- If Storage_Size wasn't found (can only occur in the simple
-- storage pool case), then simply use zero for the result.
if not Present (Alloc_Op) then
Rewrite (N, Make_Integer_Literal (Loc, 0));
-- Otherwise, rewrite the allocator as a call to pool type's
-- Storage_Size function.
else
Rewrite (N,
OK_Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Alloc_Op, Loc),
Parameter_Associations => New_List (
New_Occurrence_Of
(Associated_Storage_Pool
(Root_Type (Ptyp)), Loc)))));
end if;
else
Rewrite (N, Make_Integer_Literal (Loc, 0));
end if;
Analyze_And_Resolve (N, Typ);
-- For tasks, we retrieve the size directly from the TCB. The
-- size may depend on a discriminant of the type, and therefore
-- can be a per-object expression, so type-level information is
-- not sufficient in general. There are four cases to consider:
-- a) If the attribute appears within a task body, the designated
-- TCB is obtained by a call to Self.
-- b) If the prefix of the attribute is the name of a task object,
-- the designated TCB is the one stored in the corresponding record.
-- c) If the prefix is a task type, the size is obtained from the
-- size variable created for each task type
-- d) If no storage_size was specified for the type , there is no
-- size variable, and the value is a system-specific default.
else
if In_Open_Scopes (Ptyp) then
-- Storage_Size (Self)
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
Parameter_Associations =>
New_List (
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Self), Loc))))));
elsif not Is_Entity_Name (Pref)
or else not Is_Type (Entity (Pref))
then
-- Storage_Size (Rec (Obj).Size)
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
Parameter_Associations =>
New_List (
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (
Corresponding_Record_Type (Ptyp),
New_Copy_Tree (Pref)),
Selector_Name =>
Make_Identifier (Loc, Name_uTask_Id))))));
elsif Present (Storage_Size_Variable (Ptyp)) then
-- Static storage size pragma given for type: retrieve value
-- from its allocated storage variable.
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (
RTE (RE_Adjust_Storage_Size), Loc),
Parameter_Associations =>
New_List (
New_Occurrence_Of (
Storage_Size_Variable (Ptyp), Loc)))));
else
-- Get system default
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (
RTE (RE_Default_Stack_Size), Loc))));
end if;
Analyze_And_Resolve (N, Typ);
end if;
end Storage_Size;
-----------------
-- Stream_Size --
-----------------
when Attribute_Stream_Size =>
Rewrite (N,
Make_Integer_Literal (Loc, Intval => Get_Stream_Size (Ptyp)));
Analyze_And_Resolve (N, Typ);
----------
-- Succ --
----------
-- 1. Deal with enumeration types with holes
-- 2. For floating-point, generate call to attribute function
-- 3. For other cases, deal with constraint checking
when Attribute_Succ => Succ : declare
Etyp : constant Entity_Id := Base_Type (Ptyp);
begin
-- For enumeration types with non-standard representations, we
-- expand typ'Succ (x) into
-- Pos_To_Rep (Rep_To_Pos (x) + 1)
-- If the representation is contiguous, we compute instead
-- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
if Is_Enumeration_Type (Ptyp)
and then Present (Enum_Pos_To_Rep (Etyp))
then
if Has_Contiguous_Rep (Etyp) then
Rewrite (N,
Unchecked_Convert_To (Ptyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Ptyp))),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations =>
New_List (
Unchecked_Convert_To (Ptyp,
Make_Op_Add (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))),
Right_Opnd =>
Make_Integer_Literal (Loc, 1))),
Rep_To_Pos_Flag (Ptyp, Loc))))));
else
-- Add Boolean parameter True, to request program errror if
-- we have a bad representation on our hands. Add False if
-- checks are suppressed.
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix =>
New_Occurrence_Of
(Enum_Pos_To_Rep (Etyp), Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
end if;
Analyze_And_Resolve (N, Typ);
-- For floating-point, we transform 'Succ into a call to the Succ
-- floating-point attribute function in Fat_xxx (xxx is root type)
elsif Is_Floating_Point_Type (Ptyp) then
-- Handle case of range check. The Do_Range_Check flag is set only
-- in Check_Float_Overflow mode, and what we need is a specific
-- check against typ'Last, since that is the only overflow case.
declare
Expr : constant Node_Id := First (Exprs);
begin
if Do_Range_Check (Expr) then
Set_Do_Range_Check (Expr, False);
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Expr),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (Base_Type (Ptyp), Loc))),
Reason => CE_Range_Check_Failed),
Suppress => All_Checks);
end if;
end;
-- Transform into call to attribute function
Expand_Fpt_Attribute_R (N);
Analyze_And_Resolve (N, Typ);
-- For modular types, nothing to do (no overflow, since wraps)
elsif Is_Modular_Integer_Type (Ptyp) then
null;
-- For other types, if argument is marked as needing a range check or
-- overflow checking is enabled, we must generate a check.
elsif not Overflow_Checks_Suppressed (Ptyp)
or else Do_Range_Check (First (Exprs))
then
Set_Do_Range_Check (First (Exprs), False);
Expand_Pred_Succ_Attribute (N);
end if;
end Succ;
---------
-- Tag --
---------
-- Transforms X'Tag into a direct reference to the tag of X
when Attribute_Tag => Tag : declare
Ttyp : Entity_Id;
Prefix_Is_Type : Boolean;
begin
if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
Ttyp := Entity (Pref);
Prefix_Is_Type := True;
else
Ttyp := Ptyp;
Prefix_Is_Type := False;
end if;
if Is_Class_Wide_Type (Ttyp) then
Ttyp := Root_Type (Ttyp);
end if;
Ttyp := Underlying_Type (Ttyp);
-- Ada 2005: The type may be a synchronized tagged type, in which
-- case the tag information is stored in the corresponding record.
if Is_Concurrent_Type (Ttyp) then
Ttyp := Corresponding_Record_Type (Ttyp);
end if;
if Prefix_Is_Type then
-- For VMs we leave the type attribute unexpanded because
-- there's not a dispatching table to reference.
if Tagged_Type_Expansion then
Rewrite (N,
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
-- Ada 2005 (AI-251): The use of 'Tag in the sources always
-- references the primary tag of the actual object. If 'Tag is
-- applied to class-wide interface objects we generate code that
-- displaces "this" to reference the base of the object.
elsif Comes_From_Source (N)
and then Is_Class_Wide_Type (Etype (Prefix (N)))
and then Is_Interface (Etype (Prefix (N)))
then
-- Generate:
-- (To_Tag_Ptr (Prefix'Address)).all
-- Note that Prefix'Address is recursively expanded into a call
-- to Base_Address (Obj.Tag)
-- Not needed for VM targets, since all handled by the VM
if Tagged_Type_Expansion then
Rewrite (N,
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Pref),
Attribute_Name => Name_Address))));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
else
Rewrite (N,
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Pref),
Selector_Name =>
New_Occurrence_Of (First_Tag_Component (Ttyp), Loc)));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
end Tag;
----------------
-- Terminated --
----------------
-- Transforms 'Terminated attribute into a call to Terminated function
when Attribute_Terminated => Terminated :
begin
-- The prefix of Terminated is of a task interface class-wide type.
-- Generate:
-- terminated (Task_Id (Pref._disp_get_task_id));
if Ada_Version >= Ada_2005
and then Ekind (Ptyp) = E_Class_Wide_Type
and then Is_Interface (Ptyp)
and then Is_Task_Interface (Ptyp)
then
Rewrite (N,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Terminated), Loc),
Parameter_Associations => New_List (
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (RTE (RO_ST_Task_Id), Loc),
Expression =>
Make_Selected_Component (Loc,
Prefix =>
New_Copy_Tree (Pref),
Selector_Name =>
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
elsif Restricted_Profile then
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
else
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Terminated)));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Terminated;
----------------
-- To_Address --
----------------
-- Transforms System'To_Address (X) and System.Address'Ref (X) into
-- unchecked conversion from (integral) type of X to type address.
when Attribute_To_Address | Attribute_Ref =>
Rewrite (N,
Unchecked_Convert_To (RTE (RE_Address),
Relocate_Node (First (Exprs))));
Analyze_And_Resolve (N, RTE (RE_Address));
------------
-- To_Any --
------------
when Attribute_To_Any => To_Any : declare
P_Type : constant Entity_Id := Etype (Pref);
Decls : constant List_Id := New_List;
begin
Rewrite (N,
Build_To_Any_Call
(Loc,
Convert_To (P_Type,
Relocate_Node (First (Exprs))), Decls));
Insert_Actions (N, Decls);
Analyze_And_Resolve (N, RTE (RE_Any));
end To_Any;
----------------
-- Truncation --
----------------
-- Transforms 'Truncation into a call to the floating-point attribute
-- function Truncation in Fat_xxx (where xxx is the root type).
-- Expansion is avoided for cases the back end can handle directly.
when Attribute_Truncation =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
--------------
-- TypeCode --
--------------
when Attribute_TypeCode => TypeCode : declare
P_Type : constant Entity_Id := Etype (Pref);
Decls : constant List_Id := New_List;
begin
Rewrite (N, Build_TypeCode_Call (Loc, P_Type, Decls));
Insert_Actions (N, Decls);
Analyze_And_Resolve (N, RTE (RE_TypeCode));
end TypeCode;
-----------------------
-- Unbiased_Rounding --
-----------------------
-- Transforms 'Unbiased_Rounding into a call to the floating-point
-- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
-- root type). Expansion is avoided for cases the back end can handle
-- directly.
when Attribute_Unbiased_Rounding =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
-----------------
-- UET_Address --
-----------------
when Attribute_UET_Address => UET_Address : declare
Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
begin
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Aliased_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Address), Loc)));
-- Construct name __gnat_xxx__SDP, where xxx is the unit name
-- in normal external form.
Get_External_Unit_Name_String (Get_Unit_Name (Pref));
Name_Buffer (1 + 7 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
Name_Len := Name_Len + 7;
Name_Buffer (1 .. 7) := "__gnat_";
Name_Buffer (Name_Len + 1 .. Name_Len + 5) := "__SDP";
Name_Len := Name_Len + 5;
Set_Is_Imported (Ent);
Set_Interface_Name (Ent,
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer));
-- Set entity as internal to ensure proper Sprint output of its
-- implicit importation.
Set_Is_Internal (Ent);
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Attribute_Name => Name_Address));
Analyze_And_Resolve (N, Typ);
end UET_Address;
------------
-- Update --
------------
when Attribute_Update =>
Expand_Update_Attribute (N);
---------------
-- VADS_Size --
---------------
-- The processing for VADS_Size is shared with Size
---------
-- Val --
---------
-- For enumeration types with a standard representation, and for all
-- other types, Val is handled by the back end. For enumeration types
-- with a non-standard representation we use the _Pos_To_Rep array that
-- was created when the type was frozen.
when Attribute_Val => Val : declare
Etyp : constant Entity_Id := Base_Type (Entity (Pref));
begin
if Is_Enumeration_Type (Etyp)
and then Present (Enum_Pos_To_Rep (Etyp))
then
if Has_Contiguous_Rep (Etyp) then
declare
Rep_Node : constant Node_Id :=
Unchecked_Convert_To (Etyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Etyp))),
Right_Opnd =>
(Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))))));
begin
Rewrite (N,
Unchecked_Convert_To (Etyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Etyp))),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => New_List (
Rep_Node,
Rep_To_Pos_Flag (Etyp, Loc))))));
end;
else
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Enum_Pos_To_Rep (Etyp), Loc),
Expressions => New_List (
Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))))));
end if;
Analyze_And_Resolve (N, Typ);
-- If the argument is marked as requiring a range check then generate
-- it here.
elsif Do_Range_Check (First (Exprs)) then
Set_Do_Range_Check (First (Exprs), False);
Generate_Range_Check (First (Exprs), Etyp, CE_Range_Check_Failed);
end if;
end Val;
-----------
-- Valid --
-----------
-- The code for valid is dependent on the particular types involved.
-- See separate sections below for the generated code in each case.
when Attribute_Valid => Valid : declare
Btyp : Entity_Id := Base_Type (Ptyp);
Tst : Node_Id;
Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
-- Save the validity checking mode. We always turn off validity
-- checking during process of 'Valid since this is one place
-- where we do not want the implicit validity checks to intefere
-- with the explicit validity check that the programmer is doing.
function Make_Range_Test return Node_Id;
-- Build the code for a range test of the form
-- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
---------------------
-- Make_Range_Test --
---------------------
function Make_Range_Test return Node_Id is
Temp : constant Node_Id := Duplicate_Subexpr (Pref);
begin
-- The value whose validity is being checked has been captured in
-- an object declaration. We certainly don't want this object to
-- appear valid because the declaration initializes it.
if Is_Entity_Name (Temp) then
Set_Is_Known_Valid (Entity (Temp), False);
end if;
return
Make_In (Loc,
Left_Opnd =>
Unchecked_Convert_To (Btyp, Temp),
Right_Opnd =>
Make_Range (Loc,
Low_Bound =>
Unchecked_Convert_To (Btyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_First)),
High_Bound =>
Unchecked_Convert_To (Btyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Last))));
end Make_Range_Test;
-- Start of processing for Attribute_Valid
begin
-- Do not expand sourced code 'Valid reference in CodePeer mode,
-- will be handled by the back-end directly.
if CodePeer_Mode and then Comes_From_Source (N) then
return;
end if;
-- Turn off validity checks. We do not want any implicit validity
-- checks to intefere with the explicit check from the attribute
Validity_Checks_On := False;
-- Retrieve the base type. Handle the case where the base type is a
-- private enumeration type.
if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
Btyp := Full_View (Btyp);
end if;
-- Floating-point case. This case is handled by the Valid attribute
-- code in the floating-point attribute run-time library.
if Is_Floating_Point_Type (Ptyp) then
declare
Pkg : RE_Id;
Ftp : Entity_Id;
begin
case Float_Rep (Btyp) is
-- For vax fpt types, call appropriate routine in special
-- vax floating point unit. No need to worry about loads in
-- this case, since these types have no signalling NaN's.
when VAX_Native => Expand_Vax_Valid (N);
-- The AAMP back end handles Valid for floating-point types
when AAMP =>
Analyze_And_Resolve (Pref, Ptyp);
Set_Etype (N, Standard_Boolean);
Set_Analyzed (N);
when IEEE_Binary =>
Find_Fat_Info (Ptyp, Ftp, Pkg);
-- If the floating-point object might be unaligned, we
-- need to call the special routine Unaligned_Valid,
-- which makes the needed copy, being careful not to
-- load the value into any floating-point register.
-- The argument in this case is obj'Address (see
-- Unaligned_Valid routine in Fat_Gen).
if Is_Possibly_Unaligned_Object (Pref) then
Expand_Fpt_Attribute
(N, Pkg, Name_Unaligned_Valid,
New_List (
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Pref),
Attribute_Name => Name_Address)));
-- In the normal case where we are sure the object is
-- aligned, we generate a call to Valid, and the argument
-- in this case is obj'Unrestricted_Access (after
-- converting obj to the right floating-point type).
else
Expand_Fpt_Attribute
(N, Pkg, Name_Valid,
New_List (
Make_Attribute_Reference (Loc,
Prefix => Unchecked_Convert_To (Ftp, Pref),
Attribute_Name => Name_Unrestricted_Access)));
end if;
end case;
-- One more task, we still need a range check. Required
-- only if we have a constraint, since the Valid routine
-- catches infinities properly (infinities are never valid).
-- The way we do the range check is simply to create the
-- expression: Valid (N) and then Base_Type(Pref) in Typ.
if not Subtypes_Statically_Match (Ptyp, Btyp) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd =>
Make_In (Loc,
Left_Opnd => Convert_To (Btyp, Pref),
Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
end if;
end;
-- Enumeration type with holes
-- For enumeration types with holes, the Pos value constructed by
-- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
-- second argument of False returns minus one for an invalid value,
-- and the non-negative pos value for a valid value, so the
-- expansion of X'Valid is simply:
-- type(X)'Pos (X) >= 0
-- We can't quite generate it that way because of the requirement
-- for the non-standard second argument of False in the resulting
-- rep_to_pos call, so we have to explicitly create:
-- _rep_to_pos (X, False) >= 0
-- If we have an enumeration subtype, we also check that the
-- value is in range:
-- _rep_to_pos (X, False) >= 0
-- and then
-- (X >= type(X)'First and then type(X)'Last <= X)
elsif Is_Enumeration_Type (Ptyp)
and then Present (Enum_Pos_To_Rep (Btyp))
then
Tst :=
Make_Op_Ge (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => New_List (
Pref,
New_Occurrence_Of (Standard_False, Loc))),
Right_Opnd => Make_Integer_Literal (Loc, 0));
if Ptyp /= Btyp
and then
(Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
or else
Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
then
-- The call to Make_Range_Test will create declarations
-- that need a proper insertion point, but Pref is now
-- attached to a node with no ancestor. Attach to tree
-- even if it is to be rewritten below.
Set_Parent (Tst, Parent (N));
Tst :=
Make_And_Then (Loc,
Left_Opnd => Make_Range_Test,
Right_Opnd => Tst);
end if;
Rewrite (N, Tst);
-- Fortran convention booleans
-- For the very special case of Fortran convention booleans, the
-- value is always valid, since it is an integer with the semantics
-- that non-zero is true, and any value is permissible.
elsif Is_Boolean_Type (Ptyp)
and then Convention (Ptyp) = Convention_Fortran
then
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
-- For biased representations, we will be doing an unchecked
-- conversion without unbiasing the result. That means that the range
-- test has to take this into account, and the proper form of the
-- test is:
-- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
elsif Has_Biased_Representation (Ptyp) then
Btyp := RTE (RE_Unsigned_32);
Rewrite (N,
Make_Op_Lt (Loc,
Left_Opnd =>
Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
Right_Opnd =>
Unchecked_Convert_To (Btyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Range_Length))));
-- For all other scalar types, what we want logically is a
-- range test:
-- X in type(X)'First .. type(X)'Last
-- But that's precisely what won't work because of possible
-- unwanted optimization (and indeed the basic motivation for
-- the Valid attribute is exactly that this test does not work).
-- What will work is:
-- Btyp!(X) >= Btyp!(type(X)'First)
-- and then
-- Btyp!(X) <= Btyp!(type(X)'Last)
-- where Btyp is an integer type large enough to cover the full
-- range of possible stored values (i.e. it is chosen on the basis
-- of the size of the type, not the range of the values). We write
-- this as two tests, rather than a range check, so that static
-- evaluation will easily remove either or both of the checks if
-- they can be -statically determined to be true (this happens
-- when the type of X is static and the range extends to the full
-- range of stored values).
-- Unsigned types. Note: it is safe to consider only whether the
-- subtype is unsigned, since we will in that case be doing all
-- unsigned comparisons based on the subtype range. Since we use the
-- actual subtype object size, this is appropriate.
-- For example, if we have
-- subtype x is integer range 1 .. 200;
-- for x'Object_Size use 8;
-- Now the base type is signed, but objects of this type are bits
-- unsigned, and doing an unsigned test of the range 1 to 200 is
-- correct, even though a value greater than 127 looks signed to a
-- signed comparison.
elsif Is_Unsigned_Type (Ptyp) then
if Esize (Ptyp) <= 32 then
Btyp := RTE (RE_Unsigned_32);
else
Btyp := RTE (RE_Unsigned_64);
end if;
Rewrite (N, Make_Range_Test);
-- Signed types
else
if Esize (Ptyp) <= Esize (Standard_Integer) then
Btyp := Standard_Integer;
else
Btyp := Universal_Integer;
end if;
Rewrite (N, Make_Range_Test);
end if;
-- If a predicate is present, then we do the predicate test, even if
-- within the predicate function (infinite recursion is warned about
-- in Sem_Attr in that case).
declare
Pred_Func : constant Entity_Id := Predicate_Function (Ptyp);
begin
if Present (Pred_Func) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => Make_Predicate_Call (Ptyp, Pref)));
end if;
end;
Analyze_And_Resolve (N, Standard_Boolean);
Validity_Checks_On := Save_Validity_Checks_On;
end Valid;
-------------------
-- Valid_Scalars --
-------------------
when Attribute_Valid_Scalars => Valid_Scalars : declare
Ftyp : Entity_Id;
begin
if Present (Underlying_Type (Ptyp)) then
Ftyp := Underlying_Type (Ptyp);
else
Ftyp := Ptyp;
end if;
-- For scalar types, Valid_Scalars is the same as Valid
if Is_Scalar_Type (Ftyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Valid,
Prefix => Pref));
Analyze_And_Resolve (N, Standard_Boolean);
-- For array types, we construct a function that determines if there
-- are any non-valid scalar subcomponents, and call the function.
-- We only do this for arrays whose component type needs checking
elsif Is_Array_Type (Ftyp)
and then not No_Scalar_Parts (Component_Type (Ftyp))
then
Rewrite (N,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Build_Array_VS_Func (Ftyp, N), Loc),
Parameter_Associations => New_List (Pref)));
Analyze_And_Resolve (N, Standard_Boolean);
-- For record types, we build a big if expression, applying Valid or
-- Valid_Scalars as appropriate to all relevant components.
elsif (Is_Record_Type (Ptyp) or else Has_Discriminants (Ptyp))
and then not No_Scalar_Parts (Ptyp)
then
declare
C : Entity_Id;
X : Node_Id;
A : Name_Id;
begin
X := New_Occurrence_Of (Standard_True, Loc);
C := First_Component_Or_Discriminant (Ptyp);
while Present (C) loop
if No_Scalar_Parts (Etype (C)) then
goto Continue;
elsif Is_Scalar_Type (Etype (C)) then
A := Name_Valid;
else
A := Name_Valid_Scalars;
end if;
X :=
Make_And_Then (Loc,
Left_Opnd => X,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => A,
Prefix =>
Make_Selected_Component (Loc,
Prefix =>
Duplicate_Subexpr (Pref, Name_Req => True),
Selector_Name =>
New_Occurrence_Of (C, Loc))));
<<Continue>>
Next_Component_Or_Discriminant (C);
end loop;
Rewrite (N, X);
Analyze_And_Resolve (N, Standard_Boolean);
end;
-- For all other types, result is True (but not static)
else
Rewrite (N, New_Occurrence_Of (Standard_Boolean, Loc));
Analyze_And_Resolve (N, Standard_Boolean);
Set_Is_Static_Expression (N, False);
end if;
end Valid_Scalars;
-----------
-- Value --
-----------
-- Value attribute is handled in separate unit Exp_Imgv
when Attribute_Value =>
Exp_Imgv.Expand_Value_Attribute (N);
-----------------
-- Value_Size --
-----------------
-- The processing for Value_Size shares the processing for Size
-------------
-- Version --
-------------
-- The processing for Version shares the processing for Body_Version
----------------
-- Wide_Image --
----------------
-- Wide_Image attribute is handled in separate unit Exp_Imgv
when Attribute_Wide_Image =>
Exp_Imgv.Expand_Wide_Image_Attribute (N);
---------------------
-- Wide_Wide_Image --
---------------------
-- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
when Attribute_Wide_Wide_Image =>
Exp_Imgv.Expand_Wide_Wide_Image_Attribute (N);
----------------
-- Wide_Value --
----------------
-- We expand typ'Wide_Value (X) into
-- typ'Value
-- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
-- Wide_String_To_String is a runtime function that converts its wide
-- string argument to String, converting any non-translatable characters
-- into appropriate escape sequences. This preserves the required
-- semantics of Wide_Value in all cases, and results in a very simple
-- implementation approach.
-- Note: for this approach to be fully standard compliant for the cases
-- where typ is Wide_Character and Wide_Wide_Character, the encoding
-- method must cover the entire character range (e.g. UTF-8). But that
-- is a reasonable requirement when dealing with encoded character
-- sequences. Presumably if one of the restrictive encoding mechanisms
-- is in use such as Shift-JIS, then characters that cannot be
-- represented using this encoding will not appear in any case.
when Attribute_Wide_Value => Wide_Value :
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Value,
Expressions => New_List (
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Wide_String_To_String), Loc),
Parameter_Associations => New_List (
Relocate_Node (First (Exprs)),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))))));
Analyze_And_Resolve (N, Typ);
end Wide_Value;
---------------------
-- Wide_Wide_Value --
---------------------
-- We expand typ'Wide_Value_Value (X) into
-- typ'Value
-- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
-- Wide_Wide_String_To_String is a runtime function that converts its
-- wide string argument to String, converting any non-translatable
-- characters into appropriate escape sequences. This preserves the
-- required semantics of Wide_Wide_Value in all cases, and results in a
-- very simple implementation approach.
-- It's not quite right where typ = Wide_Wide_Character, because the
-- encoding method may not cover the whole character type ???
when Attribute_Wide_Wide_Value => Wide_Wide_Value :
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Value,
Expressions => New_List (
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Wide_Wide_String_To_String), Loc),
Parameter_Associations => New_List (
Relocate_Node (First (Exprs)),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))))));
Analyze_And_Resolve (N, Typ);
end Wide_Wide_Value;
---------------------
-- Wide_Wide_Width --
---------------------
-- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
when Attribute_Wide_Wide_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
----------------
-- Wide_Width --
----------------
-- Wide_Width attribute is handled in separate unit Exp_Imgv
when Attribute_Wide_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Wide);
-----------
-- Width --
-----------
-- Width attribute is handled in separate unit Exp_Imgv
when Attribute_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Normal);
-----------
-- Write --
-----------
when Attribute_Write => Write : declare
P_Type : constant Entity_Id := Entity (Pref);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg3 : Node_Id;
Wfunc : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- The simple case, if there is a TSS for Write, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
if Present (Pname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Output (stream, Item)
-- as
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
-- where strmwrite is the given Write function that converts an
-- argument of type sourcetyp or a type acctyp, from which it is
-- derived to type strmtyp. The conversion to acttyp is required
-- for the derived case.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg3 :=
Next (Next (First (Pragma_Argument_Associations (Prag))));
Wfunc := Entity (Expression (Arg3));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (First (Exprs)),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Wfunc, Loc),
Parameter_Associations => New_List (
OK_Convert_To (Etype (First_Formal (Wfunc)),
Relocate_Node (Next (First (Exprs)))))))));
Analyze (N);
return;
-- For elementary types, we call the W_xxx routine directly
elsif Is_Elementary_Type (U_Type) then
Rewrite (N, Build_Elementary_Write_Call (N));
Analyze (N);
return;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Tagged type case, use the primitive Write function. Note that
-- this will dispatch in the class-wide case which is what we want
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
-- All other record type cases, including protected records.
-- The latter only arise for expander generated code for
-- handling shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Write attribute of an
-- Unchecked_Union type. However, if the 'Write reference is
-- within the generated Output stream procedure, Write outputs
-- the components, and the default values of the discriminant
-- are streamed by the Output procedure itself.
if Is_Unchecked_Union (Base_Type (U_Type))
and not Is_TSS (Current_Scope, TSS_Stream_Output)
then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
end if;
if Has_Discriminants (U_Type)
and then Present
(Discriminant_Default_Value (First_Discriminant (U_Type)))
then
Build_Mutable_Record_Write_Procedure
(Loc, Full_Base (U_Type), Decl, Pname);
else
Build_Record_Write_Procedure
(Loc, Full_Base (U_Type), Decl, Pname);
end if;
Insert_Action (N, Decl);
end if;
end if;
-- If we fall through, Pname is the procedure to be called
Rewrite_Stream_Proc_Call (Pname);
end Write;
-- Component_Size is handled by the back end, unless the component size
-- is known at compile time, which is always true in the packed array
-- case. It is important that the packed array case is handled in the
-- front end (see Eval_Attribute) since the back end would otherwise get
-- confused by the equivalent packed array type.
when Attribute_Component_Size =>
null;
-- The following attributes are handled by the back end (except that
-- static cases have already been evaluated during semantic processing,
-- but in any case the back end should not count on this).
-- The back end also handles the non-class-wide cases of Size
when Attribute_Bit_Order |
Attribute_Code_Address |
Attribute_Definite |
Attribute_Null_Parameter |
Attribute_Passed_By_Reference |
Attribute_Pool_Address |
Attribute_Scalar_Storage_Order =>
null;
-- The following attributes are also handled by the back end, but return
-- a universal integer result, so may need a conversion for checking
-- that the result is in range.
when Attribute_Aft |
Attribute_Max_Alignment_For_Allocation =>
Apply_Universal_Integer_Attribute_Checks (N);
-- The following attributes should not appear at this stage, since they
-- have already been handled by the analyzer (and properly rewritten
-- with corresponding values or entities to represent the right values)
when Attribute_Abort_Signal |
Attribute_Address_Size |
Attribute_Atomic_Always_Lock_Free |
Attribute_Base |
Attribute_Class |
Attribute_Compiler_Version |
Attribute_Default_Bit_Order |
Attribute_Delta |
Attribute_Denorm |
Attribute_Digits |
Attribute_Emax |
Attribute_Enabled |
Attribute_Epsilon |
Attribute_Fast_Math |
Attribute_First_Valid |
Attribute_Has_Access_Values |
Attribute_Has_Discriminants |
Attribute_Has_Tagged_Values |
Attribute_Large |
Attribute_Last_Valid |
Attribute_Library_Level |
Attribute_Lock_Free |
Attribute_Machine_Emax |
Attribute_Machine_Emin |
Attribute_Machine_Mantissa |
Attribute_Machine_Overflows |
Attribute_Machine_Radix |
Attribute_Machine_Rounds |
Attribute_Maximum_Alignment |
Attribute_Model_Emin |
Attribute_Model_Epsilon |
Attribute_Model_Mantissa |
Attribute_Model_Small |
Attribute_Modulus |
Attribute_Partition_ID |
Attribute_Range |
Attribute_Restriction_Set |
Attribute_Safe_Emax |
Attribute_Safe_First |
Attribute_Safe_Large |
Attribute_Safe_Last |
Attribute_Safe_Small |
Attribute_Scale |
Attribute_Signed_Zeros |
Attribute_Small |
Attribute_Storage_Unit |
Attribute_Stub_Type |
Attribute_System_Allocator_Alignment |
Attribute_Target_Name |
Attribute_Type_Class |
Attribute_Type_Key |
Attribute_Unconstrained_Array |
Attribute_Universal_Literal_String |
Attribute_Wchar_T_Size |
Attribute_Word_Size =>
raise Program_Error;
-- The Asm_Input and Asm_Output attributes are not expanded at this
-- stage, but will be eliminated in the expansion of the Asm call, see
-- Exp_Intr for details. So the back end will never see these either.
when Attribute_Asm_Input |
Attribute_Asm_Output =>
null;
end case;
-- Note: as mentioned earlier, individual sections of the above case
-- statement assume there is no code after the case statement, and are
-- legitimately allowed to execute return statements if they have nothing
-- more to do, so DO NOT add code at this point.
exception
when RE_Not_Available =>
return;
end Expand_N_Attribute_Reference;
--------------------------------
-- Expand_Pred_Succ_Attribute --
--------------------------------
-- For typ'Pred (exp), we generate the check
-- [constraint_error when exp = typ'Base'First]
-- Similarly, for typ'Succ (exp), we generate the check
-- [constraint_error when exp = typ'Base'Last]
-- These checks are not generated for modular types, since the proper
-- semantics for Succ and Pred on modular types is to wrap, not raise CE.
-- We also suppress these checks if we are the right side of an assignment
-- statement or the expression of an object declaration, where the flag
-- Suppress_Assignment_Checks is set for the assignment/declaration.
procedure Expand_Pred_Succ_Attribute (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Parent (N);
Cnam : Name_Id;
begin
if Attribute_Name (N) = Name_Pred then
Cnam := Name_First;
else
Cnam := Name_Last;
end if;
if not Nkind_In (P, N_Assignment_Statement, N_Object_Declaration)
or else not Suppress_Assignment_Checks (P)
then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Base_Type (Etype (Prefix (N))), Loc),
Attribute_Name => Cnam)),
Reason => CE_Overflow_Check_Failed));
end if;
end Expand_Pred_Succ_Attribute;
-----------------------------
-- Expand_Update_Attribute --
-----------------------------
procedure Expand_Update_Attribute (N : Node_Id) is
procedure Process_Component_Or_Element_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id);
-- Generate the statements necessary to update a single component or an
-- element of the prefix. The code is inserted before the attribute N.
-- Temp denotes the entity of the anonymous object created to reflect
-- the changes in values. Comp is the component/index expression to be
-- updated. Expr is an expression yielding the new value of Comp. Typ
-- is the type of the prefix of attribute Update.
procedure Process_Range_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id);
-- Generate the statements necessary to update a slice of the prefix.
-- The code is inserted before the attribute N. Temp denotes the entity
-- of the anonymous object created to reflect the changes in values.
-- Comp is range of the slice to be updated. Expr is an expression
-- yielding the new value of Comp. Typ is the type of the prefix of
-- attribute Update.
-----------------------------------------
-- Process_Component_Or_Element_Update --
-----------------------------------------
procedure Process_Component_Or_Element_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Comp);
Exprs : List_Id;
LHS : Node_Id;
begin
-- An array element may be modified by the following relations
-- depending on the number of dimensions:
-- 1 => Expr -- one dimensional update
-- (1, ..., N) => Expr -- multi dimensional update
-- The above forms are converted in assignment statements where the
-- left hand side is an indexed component:
-- Temp (1) := Expr; -- one dimensional update
-- Temp (1, ..., N) := Expr; -- multi dimensional update
if Is_Array_Type (Typ) then
-- The index expressions of a multi dimensional array update
-- appear as an aggregate.
if Nkind (Comp) = N_Aggregate then
Exprs := New_Copy_List_Tree (Expressions (Comp));
else
Exprs := New_List (Relocate_Node (Comp));
end if;
LHS :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Expressions => Exprs);
-- A record component update appears in the following form:
-- Comp => Expr
-- The above relation is transformed into an assignment statement
-- where the left hand side is a selected component:
-- Temp.Comp := Expr;
else pragma Assert (Is_Record_Type (Typ));
LHS :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Selector_Name => Relocate_Node (Comp));
end if;
Insert_Action (N,
Make_Assignment_Statement (Loc,
Name => LHS,
Expression => Relocate_Node (Expr)));
end Process_Component_Or_Element_Update;
--------------------------
-- Process_Range_Update --
--------------------------
procedure Process_Range_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id)
is
Index_Typ : constant Entity_Id := Etype (First_Index (Typ));
Loc : constant Source_Ptr := Sloc (Comp);
Index : Entity_Id;
begin
-- A range update appears as
-- (Low .. High => Expr)
-- The above construct is transformed into a loop that iterates over
-- the given range and modifies the corresponding array values to the
-- value of Expr:
-- for Index in Low .. High loop
-- Temp (<Index_Typ> (Index)) := Expr;
-- end loop;
Index := Make_Temporary (Loc, 'I');
Insert_Action (N,
Make_Loop_Statement (Loc,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition => Relocate_Node (Comp))),
Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Expressions => New_List (
Convert_To (Index_Typ,
New_Occurrence_Of (Index, Loc)))),
Expression => Relocate_Node (Expr))),
End_Label => Empty));
end Process_Range_Update;
-- Local variables
Aggr : constant Node_Id := First (Expressions (N));
Loc : constant Source_Ptr := Sloc (N);
Pref : constant Node_Id := Prefix (N);
Typ : constant Entity_Id := Etype (Pref);
Assoc : Node_Id;
Comp : Node_Id;
Expr : Node_Id;
Temp : Entity_Id;
-- Start of processing for Expand_Update_Attribute
begin
-- Create the anonymous object that stores the value of the prefix and
-- reflects subsequent changes in value. Generate:
-- Temp : <type of Pref> := Pref;
Temp := Make_Temporary (Loc, 'T');
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (Pref)));
-- Process the update aggregate
Assoc := First (Component_Associations (Aggr));
while Present (Assoc) loop
Comp := First (Choices (Assoc));
Expr := Expression (Assoc);
while Present (Comp) loop
if Nkind (Comp) = N_Range then
Process_Range_Update (Temp, Comp, Expr, Typ);
else
Process_Component_Or_Element_Update (Temp, Comp, Expr, Typ);
end if;
Next (Comp);
end loop;
Next (Assoc);
end loop;
-- The attribute is replaced by a reference to the anonymous object
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze (N);
end Expand_Update_Attribute;
-------------------
-- Find_Fat_Info --
-------------------
procedure Find_Fat_Info
(T : Entity_Id;
Fat_Type : out Entity_Id;
Fat_Pkg : out RE_Id)
is
Btyp : constant Entity_Id := Base_Type (T);
Rtyp : constant Entity_Id := Root_Type (T);
Digs : constant Nat := UI_To_Int (Digits_Value (Btyp));
begin
-- If the base type is VAX float, then get appropriate VAX float type
if Vax_Float (Btyp) then
case Digs is
when 6 =>
Fat_Type := RTE (RE_Fat_VAX_F);
Fat_Pkg := RE_Attr_VAX_F_Float;
when 9 =>
Fat_Type := RTE (RE_Fat_VAX_D);
Fat_Pkg := RE_Attr_VAX_D_Float;
when 15 =>
Fat_Type := RTE (RE_Fat_VAX_G);
Fat_Pkg := RE_Attr_VAX_G_Float;
when others =>
raise Program_Error;
end case;
-- If root type is VAX float, this is the case where the library has
-- been recompiled in VAX float mode, and we have an IEEE float type.
-- This is when we use the special IEEE Fat packages.
elsif Vax_Float (Rtyp) then
case Digs is
when 6 =>
Fat_Type := RTE (RE_Fat_IEEE_Short);
Fat_Pkg := RE_Attr_IEEE_Short;
when 15 =>
Fat_Type := RTE (RE_Fat_IEEE_Long);
Fat_Pkg := RE_Attr_IEEE_Long;
when others =>
raise Program_Error;
end case;
-- If neither the base type nor the root type is VAX_Native then VAX
-- float is out of the picture, and we can just use the root type.
else
Fat_Type := Rtyp;
if Fat_Type = Standard_Short_Float then
Fat_Pkg := RE_Attr_Short_Float;
elsif Fat_Type = Standard_Float then
Fat_Pkg := RE_Attr_Float;
elsif Fat_Type = Standard_Long_Float then
Fat_Pkg := RE_Attr_Long_Float;
elsif Fat_Type = Standard_Long_Long_Float then
Fat_Pkg := RE_Attr_Long_Long_Float;
-- Universal real (which is its own root type) is treated as being
-- equivalent to Standard.Long_Long_Float, since it is defined to
-- have the same precision as the longest Float type.
elsif Fat_Type = Universal_Real then
Fat_Type := Standard_Long_Long_Float;
Fat_Pkg := RE_Attr_Long_Long_Float;
else
raise Program_Error;
end if;
end if;
end Find_Fat_Info;
----------------------------
-- Find_Stream_Subprogram --
----------------------------
function Find_Stream_Subprogram
(Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id
is
Base_Typ : constant Entity_Id := Base_Type (Typ);
Ent : constant Entity_Id := TSS (Typ, Nam);
function Is_Available (Entity : RE_Id) return Boolean;
pragma Inline (Is_Available);
-- Function to check whether the specified run-time call is available
-- in the run time used. In the case of a configurable run time, it
-- is normal that some subprograms are not there.
--
-- I don't understand this routine at all, why is this not just a
-- call to RTE_Available? And if for some reason we need a different
-- routine with different semantics, why is not in Rtsfind ???
------------------
-- Is_Available --
------------------
function Is_Available (Entity : RE_Id) return Boolean is
begin
-- Assume that the unit will always be available when using a
-- "normal" (not configurable) run time.
return not Configurable_Run_Time_Mode or else RTE_Available (Entity);
end Is_Available;
-- Start of processing for Find_Stream_Subprogram
begin
if Present (Ent) then
return Ent;
end if;
-- Stream attributes for strings are expanded into library calls. The
-- following checks are disabled when the run-time is not available or
-- when compiling predefined types due to bootstrap issues. As a result,
-- the compiler will generate in-place stream routines for string types
-- that appear in GNAT's library, but will generate calls via rtsfind
-- to library routines for user code.
-- ??? For now, disable this code for JVM, since this generates a
-- VerifyError exception at run time on e.g. c330001.
-- This is disabled for AAMP, to avoid creating dependences on files not
-- supported in the AAMP library (such as s-fileio.adb).
-- Note: In the case of using a configurable run time, it is very likely
-- that stream routines for string types are not present (they require
-- file system support). In this case, the specific stream routines for
-- strings are not used, relying on the regular stream mechanism
-- instead. That is why we include the test Is_Available when dealing
-- with these cases.
if VM_Target /= JVM_Target
and then not AAMP_On_Target
and then
not Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
then
-- Storage_Array as defined in package System.Storage_Elements
if Is_RTE (Base_Typ, RE_Storage_Array) then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then Is_Available (RE_Storage_Array_Input)
then
return RTE (RE_Storage_Array_Input);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Storage_Array_Output)
then
return RTE (RE_Storage_Array_Output);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Storage_Array_Read)
then
return RTE (RE_Storage_Array_Read);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Storage_Array_Write)
then
return RTE (RE_Storage_Array_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then Is_Available (RE_Storage_Array_Input_Blk_IO)
then
return RTE (RE_Storage_Array_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Storage_Array_Output_Blk_IO)
then
return RTE (RE_Storage_Array_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Storage_Array_Read_Blk_IO)
then
return RTE (RE_Storage_Array_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Storage_Array_Write_Blk_IO)
then
return RTE (RE_Storage_Array_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- Stream_Element_Array as defined in package Ada.Streams
elsif Is_RTE (Base_Typ, RE_Stream_Element_Array) then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then Is_Available (RE_Stream_Element_Array_Input)
then
return RTE (RE_Stream_Element_Array_Input);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Stream_Element_Array_Output)
then
return RTE (RE_Stream_Element_Array_Output);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Stream_Element_Array_Read)
then
return RTE (RE_Stream_Element_Array_Read);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Stream_Element_Array_Write)
then
return RTE (RE_Stream_Element_Array_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then Is_Available (RE_Stream_Element_Array_Input_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Stream_Element_Array_Output_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Stream_Element_Array_Read_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Stream_Element_Array_Write_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- String as defined in package Ada
elsif Base_Typ = Standard_String then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then Is_Available (RE_String_Input)
then
return RTE (RE_String_Input);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_String_Output)
then
return RTE (RE_String_Output);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_String_Read)
then
return RTE (RE_String_Read);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_String_Write)
then
return RTE (RE_String_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then Is_Available (RE_String_Input_Blk_IO)
then
return RTE (RE_String_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_String_Output_Blk_IO)
then
return RTE (RE_String_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_String_Read_Blk_IO)
then
return RTE (RE_String_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_String_Write_Blk_IO)
then
return RTE (RE_String_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- Wide_String as defined in package Ada
elsif Base_Typ = Standard_Wide_String then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then Is_Available (RE_Wide_String_Input)
then
return RTE (RE_Wide_String_Input);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Wide_String_Output)
then
return RTE (RE_Wide_String_Output);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Wide_String_Read)
then
return RTE (RE_Wide_String_Read);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Wide_String_Write)
then
return RTE (RE_Wide_String_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then Is_Available (RE_Wide_String_Input_Blk_IO)
then
return RTE (RE_Wide_String_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Wide_String_Output_Blk_IO)
then
return RTE (RE_Wide_String_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Wide_String_Read_Blk_IO)
then
return RTE (RE_Wide_String_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Wide_String_Write_Blk_IO)
then
return RTE (RE_Wide_String_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- Wide_Wide_String as defined in package Ada
elsif Base_Typ = Standard_Wide_Wide_String then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then Is_Available (RE_Wide_Wide_String_Input)
then
return RTE (RE_Wide_Wide_String_Input);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Wide_Wide_String_Output)
then
return RTE (RE_Wide_Wide_String_Output);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Wide_Wide_String_Read)
then
return RTE (RE_Wide_Wide_String_Read);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Wide_Wide_String_Write)
then
return RTE (RE_Wide_Wide_String_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then Is_Available (RE_Wide_Wide_String_Input_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then Is_Available (RE_Wide_Wide_String_Output_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then Is_Available (RE_Wide_Wide_String_Read_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then Is_Available (RE_Wide_Wide_String_Write_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
end if;
end if;
if Is_Tagged_Type (Typ) and then Is_Derived_Type (Typ) then
return Find_Prim_Op (Typ, Nam);
else
return Find_Inherited_TSS (Typ, Nam);
end if;
end Find_Stream_Subprogram;
---------------
-- Full_Base --
---------------
function Full_Base (T : Entity_Id) return Entity_Id is
BT : Entity_Id;
begin
BT := Base_Type (T);
if Is_Private_Type (BT)
and then Present (Full_View (BT))
then
BT := Full_View (BT);
end if;
return BT;
end Full_Base;
-----------------------
-- Get_Index_Subtype --
-----------------------
function Get_Index_Subtype (N : Node_Id) return Node_Id is
P_Type : Entity_Id := Etype (Prefix (N));
Indx : Node_Id;
J : Int;
begin
if Is_Access_Type (P_Type) then
P_Type := Designated_Type (P_Type);
end if;
if No (Expressions (N)) then
J := 1;
else
J := UI_To_Int (Expr_Value (First (Expressions (N))));
end if;
Indx := First_Index (P_Type);
while J > 1 loop
Next_Index (Indx);
J := J - 1;
end loop;
return Etype (Indx);
end Get_Index_Subtype;
-------------------------------
-- Get_Stream_Convert_Pragma --
-------------------------------
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
Typ : Entity_Id;
N : Node_Id;
begin
-- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
-- that a stream convert pragma for a tagged type is not inherited from
-- its parent. Probably what is wrong here is that it is basically
-- incorrect to consider a stream convert pragma to be a representation
-- pragma at all ???
N := First_Rep_Item (Implementation_Base_Type (T));
while Present (N) loop
if Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_Stream_Convert
then
-- For tagged types this pragma is not inherited, so we
-- must verify that it is defined for the given type and
-- not an ancestor.
Typ :=
Entity (Expression (First (Pragma_Argument_Associations (N))));
if not Is_Tagged_Type (T)
or else T = Typ
or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
then
return N;
end if;
end if;
Next_Rep_Item (N);
end loop;
return Empty;
end Get_Stream_Convert_Pragma;
---------------------------------
-- Is_Constrained_Packed_Array --
---------------------------------
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
Arr : Entity_Id := Typ;
begin
if Is_Access_Type (Arr) then
Arr := Designated_Type (Arr);
end if;
return Is_Array_Type (Arr)
and then Is_Constrained (Arr)
and then Present (Packed_Array_Type (Arr));
end Is_Constrained_Packed_Array;
----------------------------------------
-- Is_Inline_Floating_Point_Attribute --
----------------------------------------
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean is
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
begin
if Nkind (Parent (N)) /= N_Type_Conversion
or else not Is_Integer_Type (Etype (Parent (N)))
then
return False;
end if;
-- Should also support 'Machine_Rounding and 'Unbiased_Rounding, but
-- required back end support has not been implemented yet ???
return Id = Attribute_Truncation;
end Is_Inline_Floating_Point_Attribute;
end Exp_Attr;
|