1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ P A K D --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Errout; use Errout;
with Exp_Dbug; use Exp_Dbug;
with Exp_Util; use Exp_Util;
with Layout; use Layout;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
package body Exp_Pakd is
---------------------------
-- Endian Considerations --
---------------------------
-- As described in the specification, bit numbering in a packed array
-- is consistent with bit numbering in a record representation clause,
-- and hence dependent on the endianness of the machine:
-- For little-endian machines, element zero is at the right hand end
-- (low order end) of a bit field.
-- For big-endian machines, element zero is at the left hand end
-- (high order end) of a bit field.
-- The shifts that are used to right justify a field therefore differ in
-- the two cases. For the little-endian case, we can simply use the bit
-- number (i.e. the element number * element size) as the count for a right
-- shift. For the big-endian case, we have to subtract the shift count from
-- an appropriate constant to use in the right shift. We use rotates
-- instead of shifts (which is necessary in the store case to preserve
-- other fields), and we expect that the backend will be able to change the
-- right rotate into a left rotate, avoiding the subtract, if the machine
-- architecture provides such an instruction.
----------------------------------------------
-- Entity Tables for Packed Access Routines --
----------------------------------------------
-- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
-- routines. This table provides the entity for the proper routine.
type E_Array is array (Int range 01 .. 63) of RE_Id;
-- Array of Bits_nn entities. Note that we do not use library routines
-- for the 8-bit and 16-bit cases, but we still fill in the table, using
-- entries from System.Unsigned, because we also use this table for
-- certain special unchecked conversions in the big-endian case.
Bits_Id : constant E_Array :=
(01 => RE_Bits_1,
02 => RE_Bits_2,
03 => RE_Bits_03,
04 => RE_Bits_4,
05 => RE_Bits_05,
06 => RE_Bits_06,
07 => RE_Bits_07,
08 => RE_Unsigned_8,
09 => RE_Bits_09,
10 => RE_Bits_10,
11 => RE_Bits_11,
12 => RE_Bits_12,
13 => RE_Bits_13,
14 => RE_Bits_14,
15 => RE_Bits_15,
16 => RE_Unsigned_16,
17 => RE_Bits_17,
18 => RE_Bits_18,
19 => RE_Bits_19,
20 => RE_Bits_20,
21 => RE_Bits_21,
22 => RE_Bits_22,
23 => RE_Bits_23,
24 => RE_Bits_24,
25 => RE_Bits_25,
26 => RE_Bits_26,
27 => RE_Bits_27,
28 => RE_Bits_28,
29 => RE_Bits_29,
30 => RE_Bits_30,
31 => RE_Bits_31,
32 => RE_Unsigned_32,
33 => RE_Bits_33,
34 => RE_Bits_34,
35 => RE_Bits_35,
36 => RE_Bits_36,
37 => RE_Bits_37,
38 => RE_Bits_38,
39 => RE_Bits_39,
40 => RE_Bits_40,
41 => RE_Bits_41,
42 => RE_Bits_42,
43 => RE_Bits_43,
44 => RE_Bits_44,
45 => RE_Bits_45,
46 => RE_Bits_46,
47 => RE_Bits_47,
48 => RE_Bits_48,
49 => RE_Bits_49,
50 => RE_Bits_50,
51 => RE_Bits_51,
52 => RE_Bits_52,
53 => RE_Bits_53,
54 => RE_Bits_54,
55 => RE_Bits_55,
56 => RE_Bits_56,
57 => RE_Bits_57,
58 => RE_Bits_58,
59 => RE_Bits_59,
60 => RE_Bits_60,
61 => RE_Bits_61,
62 => RE_Bits_62,
63 => RE_Bits_63);
-- Array of Get routine entities. These are used to obtain an element from
-- a packed array. The N'th entry is used to obtain elements from a packed
-- array whose component size is N. RE_Null is used as a null entry, for
-- the cases where a library routine is not used.
Get_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Get_03,
04 => RE_Null,
05 => RE_Get_05,
06 => RE_Get_06,
07 => RE_Get_07,
08 => RE_Null,
09 => RE_Get_09,
10 => RE_Get_10,
11 => RE_Get_11,
12 => RE_Get_12,
13 => RE_Get_13,
14 => RE_Get_14,
15 => RE_Get_15,
16 => RE_Null,
17 => RE_Get_17,
18 => RE_Get_18,
19 => RE_Get_19,
20 => RE_Get_20,
21 => RE_Get_21,
22 => RE_Get_22,
23 => RE_Get_23,
24 => RE_Get_24,
25 => RE_Get_25,
26 => RE_Get_26,
27 => RE_Get_27,
28 => RE_Get_28,
29 => RE_Get_29,
30 => RE_Get_30,
31 => RE_Get_31,
32 => RE_Null,
33 => RE_Get_33,
34 => RE_Get_34,
35 => RE_Get_35,
36 => RE_Get_36,
37 => RE_Get_37,
38 => RE_Get_38,
39 => RE_Get_39,
40 => RE_Get_40,
41 => RE_Get_41,
42 => RE_Get_42,
43 => RE_Get_43,
44 => RE_Get_44,
45 => RE_Get_45,
46 => RE_Get_46,
47 => RE_Get_47,
48 => RE_Get_48,
49 => RE_Get_49,
50 => RE_Get_50,
51 => RE_Get_51,
52 => RE_Get_52,
53 => RE_Get_53,
54 => RE_Get_54,
55 => RE_Get_55,
56 => RE_Get_56,
57 => RE_Get_57,
58 => RE_Get_58,
59 => RE_Get_59,
60 => RE_Get_60,
61 => RE_Get_61,
62 => RE_Get_62,
63 => RE_Get_63);
-- Array of Get routine entities to be used in the case where the packed
-- array is itself a component of a packed structure, and therefore may not
-- be fully aligned. This only affects the even sizes, since for the odd
-- sizes, we do not get any fixed alignment in any case.
GetU_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Get_03,
04 => RE_Null,
05 => RE_Get_05,
06 => RE_GetU_06,
07 => RE_Get_07,
08 => RE_Null,
09 => RE_Get_09,
10 => RE_GetU_10,
11 => RE_Get_11,
12 => RE_GetU_12,
13 => RE_Get_13,
14 => RE_GetU_14,
15 => RE_Get_15,
16 => RE_Null,
17 => RE_Get_17,
18 => RE_GetU_18,
19 => RE_Get_19,
20 => RE_GetU_20,
21 => RE_Get_21,
22 => RE_GetU_22,
23 => RE_Get_23,
24 => RE_GetU_24,
25 => RE_Get_25,
26 => RE_GetU_26,
27 => RE_Get_27,
28 => RE_GetU_28,
29 => RE_Get_29,
30 => RE_GetU_30,
31 => RE_Get_31,
32 => RE_Null,
33 => RE_Get_33,
34 => RE_GetU_34,
35 => RE_Get_35,
36 => RE_GetU_36,
37 => RE_Get_37,
38 => RE_GetU_38,
39 => RE_Get_39,
40 => RE_GetU_40,
41 => RE_Get_41,
42 => RE_GetU_42,
43 => RE_Get_43,
44 => RE_GetU_44,
45 => RE_Get_45,
46 => RE_GetU_46,
47 => RE_Get_47,
48 => RE_GetU_48,
49 => RE_Get_49,
50 => RE_GetU_50,
51 => RE_Get_51,
52 => RE_GetU_52,
53 => RE_Get_53,
54 => RE_GetU_54,
55 => RE_Get_55,
56 => RE_GetU_56,
57 => RE_Get_57,
58 => RE_GetU_58,
59 => RE_Get_59,
60 => RE_GetU_60,
61 => RE_Get_61,
62 => RE_GetU_62,
63 => RE_Get_63);
-- Array of Set routine entities. These are used to assign an element of a
-- packed array. The N'th entry is used to assign elements for a packed
-- array whose component size is N. RE_Null is used as a null entry, for
-- the cases where a library routine is not used.
Set_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Set_03,
04 => RE_Null,
05 => RE_Set_05,
06 => RE_Set_06,
07 => RE_Set_07,
08 => RE_Null,
09 => RE_Set_09,
10 => RE_Set_10,
11 => RE_Set_11,
12 => RE_Set_12,
13 => RE_Set_13,
14 => RE_Set_14,
15 => RE_Set_15,
16 => RE_Null,
17 => RE_Set_17,
18 => RE_Set_18,
19 => RE_Set_19,
20 => RE_Set_20,
21 => RE_Set_21,
22 => RE_Set_22,
23 => RE_Set_23,
24 => RE_Set_24,
25 => RE_Set_25,
26 => RE_Set_26,
27 => RE_Set_27,
28 => RE_Set_28,
29 => RE_Set_29,
30 => RE_Set_30,
31 => RE_Set_31,
32 => RE_Null,
33 => RE_Set_33,
34 => RE_Set_34,
35 => RE_Set_35,
36 => RE_Set_36,
37 => RE_Set_37,
38 => RE_Set_38,
39 => RE_Set_39,
40 => RE_Set_40,
41 => RE_Set_41,
42 => RE_Set_42,
43 => RE_Set_43,
44 => RE_Set_44,
45 => RE_Set_45,
46 => RE_Set_46,
47 => RE_Set_47,
48 => RE_Set_48,
49 => RE_Set_49,
50 => RE_Set_50,
51 => RE_Set_51,
52 => RE_Set_52,
53 => RE_Set_53,
54 => RE_Set_54,
55 => RE_Set_55,
56 => RE_Set_56,
57 => RE_Set_57,
58 => RE_Set_58,
59 => RE_Set_59,
60 => RE_Set_60,
61 => RE_Set_61,
62 => RE_Set_62,
63 => RE_Set_63);
-- Array of Set routine entities to be used in the case where the packed
-- array is itself a component of a packed structure, and therefore may not
-- be fully aligned. This only affects the even sizes, since for the odd
-- sizes, we do not get any fixed alignment in any case.
SetU_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Set_03,
04 => RE_Null,
05 => RE_Set_05,
06 => RE_SetU_06,
07 => RE_Set_07,
08 => RE_Null,
09 => RE_Set_09,
10 => RE_SetU_10,
11 => RE_Set_11,
12 => RE_SetU_12,
13 => RE_Set_13,
14 => RE_SetU_14,
15 => RE_Set_15,
16 => RE_Null,
17 => RE_Set_17,
18 => RE_SetU_18,
19 => RE_Set_19,
20 => RE_SetU_20,
21 => RE_Set_21,
22 => RE_SetU_22,
23 => RE_Set_23,
24 => RE_SetU_24,
25 => RE_Set_25,
26 => RE_SetU_26,
27 => RE_Set_27,
28 => RE_SetU_28,
29 => RE_Set_29,
30 => RE_SetU_30,
31 => RE_Set_31,
32 => RE_Null,
33 => RE_Set_33,
34 => RE_SetU_34,
35 => RE_Set_35,
36 => RE_SetU_36,
37 => RE_Set_37,
38 => RE_SetU_38,
39 => RE_Set_39,
40 => RE_SetU_40,
41 => RE_Set_41,
42 => RE_SetU_42,
43 => RE_Set_43,
44 => RE_SetU_44,
45 => RE_Set_45,
46 => RE_SetU_46,
47 => RE_Set_47,
48 => RE_SetU_48,
49 => RE_Set_49,
50 => RE_SetU_50,
51 => RE_Set_51,
52 => RE_SetU_52,
53 => RE_Set_53,
54 => RE_SetU_54,
55 => RE_Set_55,
56 => RE_SetU_56,
57 => RE_Set_57,
58 => RE_SetU_58,
59 => RE_Set_59,
60 => RE_SetU_60,
61 => RE_Set_61,
62 => RE_SetU_62,
63 => RE_Set_63);
-----------------------
-- Local Subprograms --
-----------------------
procedure Compute_Linear_Subscript
(Atyp : Entity_Id;
N : Node_Id;
Subscr : out Node_Id);
-- Given a constrained array type Atyp, and an indexed component node N
-- referencing an array object of this type, build an expression of type
-- Standard.Integer representing the zero-based linear subscript value.
-- This expression includes any required range checks.
procedure Convert_To_PAT_Type (Aexp : Node_Id);
-- Given an expression of a packed array type, builds a corresponding
-- expression whose type is the implementation type used to represent
-- the packed array. Aexp is analyzed and resolved on entry and on exit.
procedure Get_Base_And_Bit_Offset
(N : Node_Id;
Base : out Node_Id;
Offset : out Node_Id);
-- Given a node N for a name which involves a packed array reference,
-- return the base object of the reference and build an expression of
-- type Standard.Integer representing the zero-based offset in bits
-- from Base'Address to the first bit of the reference.
function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
-- There are two versions of the Set routines, the ones used when the
-- object is known to be sufficiently well aligned given the number of
-- bits, and the ones used when the object is not known to be aligned.
-- This routine is used to determine which set to use. Obj is a reference
-- to the object, and Csiz is the component size of the packed array.
-- True is returned if the alignment of object is known to be sufficient,
-- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
-- 2 otherwise.
function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
-- Build a left shift node, checking for the case of a shift count of zero
function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
-- Build a right shift node, checking for the case of a shift count of zero
function RJ_Unchecked_Convert_To
(Typ : Entity_Id;
Expr : Node_Id) return Node_Id;
-- The packed array code does unchecked conversions which in some cases
-- may involve non-discrete types with differing sizes. The semantics of
-- such conversions is potentially endian dependent, and the effect we
-- want here for such a conversion is to do the conversion in size as
-- though numeric items are involved, and we extend or truncate on the
-- left side. This happens naturally in the little-endian case, but in
-- the big endian case we can get left justification, when what we want
-- is right justification. This routine does the unchecked conversion in
-- a stepwise manner to ensure that it gives the expected result. Hence
-- the name (RJ = Right justified). The parameters Typ and Expr are as
-- for the case of a normal Unchecked_Convert_To call.
procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
-- This routine is called in the Get and Set case for arrays that are
-- packed but not bit-packed, meaning that they have at least one
-- subscript that is of an enumeration type with a non-standard
-- representation. This routine modifies the given node to properly
-- reference the corresponding packed array type.
procedure Setup_Inline_Packed_Array_Reference
(N : Node_Id;
Atyp : Entity_Id;
Obj : in out Node_Id;
Cmask : out Uint;
Shift : out Node_Id);
-- This procedure performs common processing on the N_Indexed_Component
-- parameter given as N, whose prefix is a reference to a packed array.
-- This is used for the get and set when the component size is 1, 2, 4,
-- or for other component sizes when the packed array type is a modular
-- type (i.e. the cases that are handled with inline code).
--
-- On entry:
--
-- N is the N_Indexed_Component node for the packed array reference
--
-- Atyp is the constrained array type (the actual subtype has been
-- computed if necessary to obtain the constraints, but this is still
-- the original array type, not the Packed_Array_Type value).
--
-- Obj is the object which is to be indexed. It is always of type Atyp.
--
-- On return:
--
-- Obj is the object containing the desired bit field. It is of type
-- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
-- entire value, for the small static case, or the proper selected byte
-- from the array in the large or dynamic case. This node is analyzed
-- and resolved on return.
--
-- Shift is a node representing the shift count to be used in the
-- rotate right instruction that positions the field for access.
-- This node is analyzed and resolved on return.
--
-- Cmask is a mask corresponding to the width of the component field.
-- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
--
-- Note: in some cases the call to this routine may generate actions
-- (for handling multi-use references and the generation of the packed
-- array type on the fly). Such actions are inserted into the tree
-- directly using Insert_Action.
function Byte_Swap (N : Node_Id) return Node_Id;
-- Wrap N in a call to a byte swapping function, with appropriate type
-- conversions.
---------------
-- Byte_Swap --
---------------
function Byte_Swap (N : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
T : constant Entity_Id := Etype (N);
Swap_RE : RE_Id;
Swap_F : Entity_Id;
begin
pragma Assert (Esize (T) > 8);
if Esize (T) <= 16 then
Swap_RE := RE_Bswap_16;
elsif Esize (T) <= 32 then
Swap_RE := RE_Bswap_32;
else pragma Assert (Esize (T) <= 64);
Swap_RE := RE_Bswap_64;
end if;
Swap_F := RTE (Swap_RE);
return
Unchecked_Convert_To (T,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Swap_F, Loc),
Parameter_Associations =>
New_List (Unchecked_Convert_To (Etype (Swap_F), N))));
end Byte_Swap;
------------------------------
-- Compute_Linear_Subscript --
------------------------------
procedure Compute_Linear_Subscript
(Atyp : Entity_Id;
N : Node_Id;
Subscr : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Oldsub : Node_Id;
Newsub : Node_Id;
Indx : Node_Id;
Styp : Entity_Id;
begin
Subscr := Empty;
-- Loop through dimensions
Indx := First_Index (Atyp);
Oldsub := First (Expressions (N));
while Present (Indx) loop
Styp := Etype (Indx);
Newsub := Relocate_Node (Oldsub);
-- Get expression for the subscript value. First, if Do_Range_Check
-- is set on a subscript, then we must do a range check against the
-- original bounds (not the bounds of the packed array type). We do
-- this by introducing a subtype conversion.
if Do_Range_Check (Newsub)
and then Etype (Newsub) /= Styp
then
Newsub := Convert_To (Styp, Newsub);
end if;
-- Now evolve the expression for the subscript. First convert
-- the subscript to be zero based and of an integer type.
-- Case of integer type, where we just subtract to get lower bound
if Is_Integer_Type (Styp) then
-- If length of integer type is smaller than standard integer,
-- then we convert to integer first, then do the subtract
-- Integer (subscript) - Integer (Styp'First)
if Esize (Styp) < Esize (Standard_Integer) then
Newsub :=
Make_Op_Subtract (Loc,
Left_Opnd => Convert_To (Standard_Integer, Newsub),
Right_Opnd =>
Convert_To (Standard_Integer,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Styp, Loc),
Attribute_Name => Name_First)));
-- For larger integer types, subtract first, then convert to
-- integer, this deals with strange long long integer bounds.
-- Integer (subscript - Styp'First)
else
Newsub :=
Convert_To (Standard_Integer,
Make_Op_Subtract (Loc,
Left_Opnd => Newsub,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Styp, Loc),
Attribute_Name => Name_First)));
end if;
-- For the enumeration case, we have to use 'Pos to get the value
-- to work with before subtracting the lower bound.
-- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
-- This is not quite right for bizarre cases where the size of the
-- enumeration type is > Integer'Size bits due to rep clause ???
else
pragma Assert (Is_Enumeration_Type (Styp));
Newsub :=
Make_Op_Subtract (Loc,
Left_Opnd => Convert_To (Standard_Integer,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Styp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Newsub))),
Right_Opnd =>
Convert_To (Standard_Integer,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Styp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Styp, Loc),
Attribute_Name => Name_First)))));
end if;
Set_Paren_Count (Newsub, 1);
-- For the first subscript, we just copy that subscript value
if No (Subscr) then
Subscr := Newsub;
-- Otherwise, we must multiply what we already have by the current
-- stride and then add in the new value to the evolving subscript.
else
Subscr :=
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Multiply (Loc,
Left_Opnd => Subscr,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Range_Length,
Prefix => New_Occurrence_Of (Styp, Loc))),
Right_Opnd => Newsub);
end if;
-- Move to next subscript
Next_Index (Indx);
Next (Oldsub);
end loop;
end Compute_Linear_Subscript;
-------------------------
-- Convert_To_PAT_Type --
-------------------------
-- The PAT is always obtained from the actual subtype
procedure Convert_To_PAT_Type (Aexp : Node_Id) is
Act_ST : Entity_Id;
begin
Convert_To_Actual_Subtype (Aexp);
Act_ST := Underlying_Type (Etype (Aexp));
Create_Packed_Array_Type (Act_ST);
-- Just replace the etype with the packed array type. This works because
-- the expression will not be further analyzed, and Gigi considers the
-- two types equivalent in any case.
-- This is not strictly the case ??? If the reference is an actual in
-- call, the expansion of the prefix is delayed, and must be reanalyzed,
-- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
-- array reference, reanalysis can produce spurious type errors when the
-- PAT type is replaced again with the original type of the array. Same
-- for the case of a dereference. Ditto for function calls: expansion
-- may introduce additional actuals which will trigger errors if call is
-- reanalyzed. The following is correct and minimal, but the handling of
-- more complex packed expressions in actuals is confused. Probably the
-- problem only remains for actuals in calls.
Set_Etype (Aexp, Packed_Array_Type (Act_ST));
if Is_Entity_Name (Aexp)
or else
(Nkind (Aexp) = N_Indexed_Component
and then Is_Entity_Name (Prefix (Aexp)))
or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
then
Set_Analyzed (Aexp);
end if;
end Convert_To_PAT_Type;
------------------------------
-- Create_Packed_Array_Type --
------------------------------
procedure Create_Packed_Array_Type (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Ctyp : constant Entity_Id := Component_Type (Typ);
Csize : constant Uint := Component_Size (Typ);
Ancest : Entity_Id;
PB_Type : Entity_Id;
PASize : Uint;
Decl : Node_Id;
PAT : Entity_Id;
Len_Dim : Node_Id;
Len_Expr : Node_Id;
Len_Bits : Uint;
Bits_U1 : Node_Id;
PAT_High : Node_Id;
Btyp : Entity_Id;
Lit : Node_Id;
procedure Install_PAT;
-- This procedure is called with Decl set to the declaration for the
-- packed array type. It creates the type and installs it as required.
procedure Set_PB_Type;
-- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
-- requirements (see documentation in the spec of this package).
-----------------
-- Install_PAT --
-----------------
procedure Install_PAT is
Pushed_Scope : Boolean := False;
begin
-- We do not want to put the declaration we have created in the tree
-- since it is often hard, and sometimes impossible to find a proper
-- place for it (the impossible case arises for a packed array type
-- with bounds depending on the discriminant, a declaration cannot
-- be put inside the record, and the reference to the discriminant
-- cannot be outside the record).
-- The solution is to analyze the declaration while temporarily
-- attached to the tree at an appropriate point, and then we install
-- the resulting type as an Itype in the packed array type field of
-- the original type, so that no explicit declaration is required.
-- Note: the packed type is created in the scope of its parent
-- type. There are at least some cases where the current scope
-- is deeper, and so when this is the case, we temporarily reset
-- the scope for the definition. This is clearly safe, since the
-- first use of the packed array type will be the implicit
-- reference from the corresponding unpacked type when it is
-- elaborated.
if Is_Itype (Typ) then
Set_Parent (Decl, Associated_Node_For_Itype (Typ));
else
Set_Parent (Decl, Declaration_Node (Typ));
end if;
if Scope (Typ) /= Current_Scope then
Push_Scope (Scope (Typ));
Pushed_Scope := True;
end if;
Set_Is_Itype (PAT, True);
Set_Packed_Array_Type (Typ, PAT);
Analyze (Decl, Suppress => All_Checks);
if Pushed_Scope then
Pop_Scope;
end if;
-- Set Esize and RM_Size to the actual size of the packed object
-- Do not reset RM_Size if already set, as happens in the case of
-- a modular type.
if Unknown_Esize (PAT) then
Set_Esize (PAT, PASize);
end if;
if Unknown_RM_Size (PAT) then
Set_RM_Size (PAT, PASize);
end if;
Adjust_Esize_Alignment (PAT);
-- Set remaining fields of packed array type
Init_Alignment (PAT);
Set_Parent (PAT, Empty);
Set_Associated_Node_For_Itype (PAT, Typ);
Set_Is_Packed_Array_Type (PAT, True);
Set_Original_Array_Type (PAT, Typ);
-- We definitely do not want to delay freezing for packed array
-- types. This is of particular importance for the itypes that
-- are generated for record components depending on discriminants
-- where there is no place to put the freeze node.
Set_Has_Delayed_Freeze (PAT, False);
Set_Has_Delayed_Freeze (Etype (PAT), False);
-- If we did allocate a freeze node, then clear out the reference
-- since it is obsolete (should we delete the freeze node???)
Set_Freeze_Node (PAT, Empty);
Set_Freeze_Node (Etype (PAT), Empty);
end Install_PAT;
-----------------
-- Set_PB_Type --
-----------------
procedure Set_PB_Type is
begin
-- If the user has specified an explicit alignment for the
-- type or component, take it into account.
if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
or else Alignment (Typ) = 1
or else Component_Alignment (Typ) = Calign_Storage_Unit
then
PB_Type := RTE (RE_Packed_Bytes1);
elsif Csize mod 4 /= 0
or else Alignment (Typ) = 2
then
PB_Type := RTE (RE_Packed_Bytes2);
else
PB_Type := RTE (RE_Packed_Bytes4);
end if;
end Set_PB_Type;
-- Start of processing for Create_Packed_Array_Type
begin
-- If we already have a packed array type, nothing to do
if Present (Packed_Array_Type (Typ)) then
return;
end if;
-- If our immediate ancestor subtype is constrained, and it already
-- has a packed array type, then just share the same type, since the
-- bounds must be the same. If the ancestor is not an array type but
-- a private type, as can happen with multiple instantiations, create
-- a new packed type, to avoid privacy issues.
if Ekind (Typ) = E_Array_Subtype then
Ancest := Ancestor_Subtype (Typ);
if Present (Ancest)
and then Is_Array_Type (Ancest)
and then Is_Constrained (Ancest)
and then Present (Packed_Array_Type (Ancest))
then
Set_Packed_Array_Type (Typ, Packed_Array_Type (Ancest));
return;
end if;
end if;
-- We preset the result type size from the size of the original array
-- type, since this size clearly belongs to the packed array type. The
-- size of the conceptual unpacked type is always set to unknown.
PASize := RM_Size (Typ);
-- Case of an array where at least one index is of an enumeration
-- type with a non-standard representation, but the component size
-- is not appropriate for bit packing. This is the case where we
-- have Is_Packed set (we would never be in this unit otherwise),
-- but Is_Bit_Packed_Array is false.
-- Note that if the component size is appropriate for bit packing,
-- then the circuit for the computation of the subscript properly
-- deals with the non-standard enumeration type case by taking the
-- Pos anyway.
if not Is_Bit_Packed_Array (Typ) then
-- Here we build a declaration:
-- type tttP is array (index1, index2, ...) of component_type
-- where index1, index2, are the index types. These are the same
-- as the index types of the original array, except for the non-
-- standard representation enumeration type case, where we have
-- two subcases.
-- For the unconstrained array case, we use
-- Natural range <>
-- For the constrained case, we use
-- Natural range Enum_Type'Pos (Enum_Type'First) ..
-- Enum_Type'Pos (Enum_Type'Last);
PAT :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), 'P'));
Set_Packed_Array_Type (Typ, PAT);
declare
Indexes : constant List_Id := New_List;
Indx : Node_Id;
Indx_Typ : Entity_Id;
Enum_Case : Boolean;
Typedef : Node_Id;
begin
Indx := First_Index (Typ);
while Present (Indx) loop
Indx_Typ := Etype (Indx);
Enum_Case := Is_Enumeration_Type (Indx_Typ)
and then Has_Non_Standard_Rep (Indx_Typ);
-- Unconstrained case
if not Is_Constrained (Typ) then
if Enum_Case then
Indx_Typ := Standard_Natural;
end if;
Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
-- Constrained case
else
if not Enum_Case then
Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
else
Append_To (Indexes,
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Standard_Natural, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Indx_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Indx_Typ, Loc),
Attribute_Name => Name_First))),
High_Bound =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Indx_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Indx_Typ, Loc),
Attribute_Name => Name_Last)))))));
end if;
end if;
Next_Index (Indx);
end loop;
if not Is_Constrained (Typ) then
Typedef :=
Make_Unconstrained_Array_Definition (Loc,
Subtype_Marks => Indexes,
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication =>
New_Occurrence_Of (Ctyp, Loc)));
else
Typedef :=
Make_Constrained_Array_Definition (Loc,
Discrete_Subtype_Definitions => Indexes,
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication =>
New_Occurrence_Of (Ctyp, Loc)));
end if;
Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => PAT,
Type_Definition => Typedef);
end;
-- Set type as packed array type and install it
Set_Is_Packed_Array_Type (PAT);
Install_PAT;
return;
-- Case of bit-packing required for unconstrained array. We create
-- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
elsif not Is_Constrained (Typ) then
PAT :=
Make_Defining_Identifier (Loc,
Chars => Make_Packed_Array_Type_Name (Typ, Csize));
Set_Packed_Array_Type (Typ, PAT);
Set_PB_Type;
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => PAT,
Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
Install_PAT;
return;
-- Remaining code is for the case of bit-packing for constrained array
-- The name of the packed array subtype is
-- ttt___Xsss
-- where sss is the component size in bits and ttt is the name of
-- the parent packed type.
else
PAT :=
Make_Defining_Identifier (Loc,
Chars => Make_Packed_Array_Type_Name (Typ, Csize));
Set_Packed_Array_Type (Typ, PAT);
-- Build an expression for the length of the array in bits.
-- This is the product of the length of each of the dimensions
declare
J : Nat := 1;
begin
Len_Expr := Empty; -- suppress junk warning
loop
Len_Dim :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Typ, Loc),
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
if J = 1 then
Len_Expr := Len_Dim;
else
Len_Expr :=
Make_Op_Multiply (Loc,
Left_Opnd => Len_Expr,
Right_Opnd => Len_Dim);
end if;
J := J + 1;
exit when J > Number_Dimensions (Typ);
end loop;
end;
-- Temporarily attach the length expression to the tree and analyze
-- and resolve it, so that we can test its value. We assume that the
-- total length fits in type Integer. This expression may involve
-- discriminants, so we treat it as a default/per-object expression.
Set_Parent (Len_Expr, Typ);
Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
-- Use a modular type if possible. We can do this if we have
-- static bounds, and the length is small enough, and the length
-- is not zero. We exclude the zero length case because the size
-- of things is always at least one, and the zero length object
-- would have an anomalous size.
if Compile_Time_Known_Value (Len_Expr) then
Len_Bits := Expr_Value (Len_Expr) * Csize;
-- Check for size known to be too large
if Len_Bits >
Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
then
if System_Storage_Unit = 8 then
Error_Msg_N
("packed array size cannot exceed " &
"Integer''Last bytes", Typ);
else
Error_Msg_N
("packed array size cannot exceed " &
"Integer''Last storage units", Typ);
end if;
-- Reset length to arbitrary not too high value to continue
Len_Expr := Make_Integer_Literal (Loc, 65535);
Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
end if;
-- We normally consider small enough to mean no larger than the
-- value of System_Max_Binary_Modulus_Power, checking that in the
-- case of values longer than word size, we have long shifts.
if Len_Bits > 0
and then
(Len_Bits <= System_Word_Size
or else (Len_Bits <= System_Max_Binary_Modulus_Power
and then Support_Long_Shifts_On_Target))
then
-- We can use the modular type, it has the form:
-- subtype tttPn is btyp
-- range 0 .. 2 ** ((Typ'Length (1)
-- * ... * Typ'Length (n)) * Csize) - 1;
-- The bounds are statically known, and btyp is one of the
-- unsigned types, depending on the length.
if Len_Bits <= Standard_Short_Short_Integer_Size then
Btyp := RTE (RE_Short_Short_Unsigned);
elsif Len_Bits <= Standard_Short_Integer_Size then
Btyp := RTE (RE_Short_Unsigned);
elsif Len_Bits <= Standard_Integer_Size then
Btyp := RTE (RE_Unsigned);
elsif Len_Bits <= Standard_Long_Integer_Size then
Btyp := RTE (RE_Long_Unsigned);
else
Btyp := RTE (RE_Long_Long_Unsigned);
end if;
Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
Set_Print_In_Hex (Lit);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => PAT,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Integer_Literal (Loc, 0),
High_Bound => Lit))));
if PASize = Uint_0 then
PASize := Len_Bits;
end if;
Install_PAT;
-- Propagate a given alignment to the modular type. This can
-- cause it to be under-aligned, but that's OK.
if Present (Alignment_Clause (Typ)) then
Set_Alignment (PAT, Alignment (Typ));
end if;
return;
end if;
end if;
-- Could not use a modular type, for all other cases, we build
-- a packed array subtype:
-- subtype tttPn is
-- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
-- Bits is the length of the array in bits
Set_PB_Type;
Bits_U1 :=
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc, Csize),
Right_Opnd => Len_Expr),
Right_Opnd =>
Make_Integer_Literal (Loc, 7));
Set_Paren_Count (Bits_U1, 1);
PAT_High :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Op_Divide (Loc,
Left_Opnd => Bits_U1,
Right_Opnd => Make_Integer_Literal (Loc, 8)),
Right_Opnd => Make_Integer_Literal (Loc, 1));
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => PAT,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Range (Loc,
Low_Bound =>
Make_Integer_Literal (Loc, 0),
High_Bound =>
Convert_To (Standard_Integer, PAT_High))))));
Install_PAT;
-- Currently the code in this unit requires that packed arrays
-- represented by non-modular arrays of bytes be on a byte
-- boundary for bit sizes handled by System.Pack_nn units.
-- That's because these units assume the array being accessed
-- starts on a byte boundary.
if Get_Id (UI_To_Int (Csize)) /= RE_Null then
Set_Must_Be_On_Byte_Boundary (Typ);
end if;
end if;
end Create_Packed_Array_Type;
-----------------------------------
-- Expand_Bit_Packed_Element_Set --
-----------------------------------
procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Lhs : constant Node_Id := Name (N);
Ass_OK : constant Boolean := Assignment_OK (Lhs);
-- Used to preserve assignment OK status when assignment is rewritten
Rhs : Node_Id := Expression (N);
-- Initially Rhs is the right hand side value, it will be replaced
-- later by an appropriate unchecked conversion for the assignment.
Obj : Node_Id;
Atyp : Entity_Id;
PAT : Entity_Id;
Ctyp : Entity_Id;
Csiz : Int;
Cmask : Uint;
Shift : Node_Id;
-- The expression for the shift value that is required
Shift_Used : Boolean := False;
-- Set True if Shift has been used in the generated code at least
-- once, so that it must be duplicated if used again
New_Lhs : Node_Id;
New_Rhs : Node_Id;
Rhs_Val_Known : Boolean;
Rhs_Val : Uint;
-- If the value of the right hand side as an integer constant is
-- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
-- contains the value. Otherwise Rhs_Val_Known is set False, and
-- the Rhs_Val is undefined.
Require_Byte_Swapping : Boolean := False;
-- True if byte swapping required, for the Reverse_Storage_Order case
-- when the packed array is a free-standing object. (If it is part
-- of a composite type, and therefore potentially not aligned on a byte
-- boundary, the swapping is done by the back-end).
function Get_Shift return Node_Id;
-- Function used to get the value of Shift, making sure that it
-- gets duplicated if the function is called more than once.
---------------
-- Get_Shift --
---------------
function Get_Shift return Node_Id is
begin
-- If we used the shift value already, then duplicate it. We
-- set a temporary parent in case actions have to be inserted.
if Shift_Used then
Set_Parent (Shift, N);
return Duplicate_Subexpr_No_Checks (Shift);
-- If first time, use Shift unchanged, and set flag for first use
else
Shift_Used := True;
return Shift;
end if;
end Get_Shift;
-- Start of processing for Expand_Bit_Packed_Element_Set
begin
pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
Obj := Relocate_Node (Prefix (Lhs));
Convert_To_Actual_Subtype (Obj);
Atyp := Etype (Obj);
PAT := Packed_Array_Type (Atyp);
Ctyp := Component_Type (Atyp);
Csiz := UI_To_Int (Component_Size (Atyp));
-- We remove side effects, in case the rhs modifies the lhs, because we
-- are about to transform the rhs into an expression that first READS
-- the lhs, so we can do the necessary shifting and masking. Example:
-- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
-- will be lost.
Remove_Side_Effects (Rhs);
-- We convert the right hand side to the proper subtype to ensure
-- that an appropriate range check is made (since the normal range
-- check from assignment will be lost in the transformations). This
-- conversion is analyzed immediately so that subsequent processing
-- can work with an analyzed Rhs (and e.g. look at its Etype)
-- If the right-hand side is a string literal, create a temporary for
-- it, constant-folding is not ready to wrap the bit representation
-- of a string literal.
if Nkind (Rhs) = N_String_Literal then
declare
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
Object_Definition => New_Occurrence_Of (Ctyp, Loc),
Expression => New_Copy_Tree (Rhs));
Insert_Actions (N, New_List (Decl));
Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
end;
end if;
Rhs := Convert_To (Ctyp, Rhs);
Set_Parent (Rhs, N);
-- If we are building the initialization procedure for a packed array,
-- and Initialize_Scalars is enabled, each component assignment is an
-- out-of-range value by design. Compile this value without checks,
-- because a call to the array init_proc must not raise an exception.
if Within_Init_Proc
and then Initialize_Scalars
then
Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
else
Analyze_And_Resolve (Rhs, Ctyp);
end if;
-- For the AAMP target, indexing of certain packed array is passed
-- through to the back end without expansion, because the expansion
-- results in very inefficient code on that target. This allows the
-- GNAAMP back end to generate specialized macros that support more
-- efficient indexing of packed arrays with components having sizes
-- that are small powers of two.
if AAMP_On_Target
and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
then
return;
end if;
-- Case of component size 1,2,4 or any component size for the modular
-- case. These are the cases for which we can inline the code.
if Csiz = 1 or else Csiz = 2 or else Csiz = 4
or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
then
Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
-- The statement to be generated is:
-- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
-- or in the case of a freestanding Reverse_Storage_Order object,
-- Obj := Swap (atyp!((Swap (Obj) and Mask1)
-- or (shift_left (rhs, Shift))))
-- where Mask1 is obtained by shifting Cmask left Shift bits
-- and then complementing the result.
-- the "and Mask1" is omitted if rhs is constant and all 1 bits
-- the "or ..." is omitted if rhs is constant and all 0 bits
-- rhs is converted to the appropriate type
-- The result is converted back to the array type, since
-- otherwise we lose knowledge of the packed nature.
-- Determine if right side is all 0 bits or all 1 bits
if Compile_Time_Known_Value (Rhs) then
Rhs_Val := Expr_Rep_Value (Rhs);
Rhs_Val_Known := True;
-- The following test catches the case of an unchecked conversion of
-- an integer literal. This results from optimizing aggregates of
-- packed types.
elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
and then Compile_Time_Known_Value (Expression (Rhs))
then
Rhs_Val := Expr_Rep_Value (Expression (Rhs));
Rhs_Val_Known := True;
else
Rhs_Val := No_Uint;
Rhs_Val_Known := False;
end if;
-- Some special checks for the case where the right hand value is
-- known at compile time. Basically we have to take care of the
-- implicit conversion to the subtype of the component object.
if Rhs_Val_Known then
-- If we have a biased component type then we must manually do the
-- biasing, since we are taking responsibility in this case for
-- constructing the exact bit pattern to be used.
if Has_Biased_Representation (Ctyp) then
Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
end if;
-- For a negative value, we manually convert the two's complement
-- value to a corresponding unsigned value, so that the proper
-- field width is maintained. If we did not do this, we would
-- get too many leading sign bits later on.
if Rhs_Val < 0 then
Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
end if;
end if;
-- Now create copies removing side effects. Note that in some complex
-- cases, this may cause the fact that we have already set a packed
-- array type on Obj to get lost. So we save the type of Obj, and
-- make sure it is reset properly.
declare
T : constant Entity_Id := Etype (Obj);
begin
New_Lhs := Duplicate_Subexpr (Obj, True);
New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
Set_Etype (Obj, T);
Set_Etype (New_Lhs, T);
Set_Etype (New_Rhs, T);
if Reverse_Storage_Order (Base_Type (Atyp))
and then Esize (T) > 8
and then not In_Reverse_Storage_Order_Object (Obj)
then
Require_Byte_Swapping := True;
New_Rhs := Byte_Swap (New_Rhs);
end if;
end;
-- First we deal with the "and"
if not Rhs_Val_Known or else Rhs_Val /= Cmask then
declare
Mask1 : Node_Id;
Lit : Node_Id;
begin
if Compile_Time_Known_Value (Shift) then
Mask1 :=
Make_Integer_Literal (Loc,
Modulus (Etype (Obj)) - 1 -
(Cmask * (2 ** Expr_Value (Get_Shift))));
Set_Print_In_Hex (Mask1);
else
Lit := Make_Integer_Literal (Loc, Cmask);
Set_Print_In_Hex (Lit);
Mask1 :=
Make_Op_Not (Loc,
Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
end if;
New_Rhs :=
Make_Op_And (Loc,
Left_Opnd => New_Rhs,
Right_Opnd => Mask1);
end;
end if;
-- Then deal with the "or"
if not Rhs_Val_Known or else Rhs_Val /= 0 then
declare
Or_Rhs : Node_Id;
procedure Fixup_Rhs;
-- Adjust Rhs by bias if biased representation for components
-- or remove extraneous high order sign bits if signed.
procedure Fixup_Rhs is
Etyp : constant Entity_Id := Etype (Rhs);
begin
-- For biased case, do the required biasing by simply
-- converting to the biased subtype (the conversion
-- will generate the required bias).
if Has_Biased_Representation (Ctyp) then
Rhs := Convert_To (Ctyp, Rhs);
-- For a signed integer type that is not biased, generate
-- a conversion to unsigned to strip high order sign bits.
elsif Is_Signed_Integer_Type (Ctyp) then
Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
end if;
-- Set Etype, since it can be referenced before the node is
-- completely analyzed.
Set_Etype (Rhs, Etyp);
-- We now need to do an unchecked conversion of the
-- result to the target type, but it is important that
-- this conversion be a right justified conversion and
-- not a left justified conversion.
Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
end Fixup_Rhs;
begin
if Rhs_Val_Known
and then Compile_Time_Known_Value (Get_Shift)
then
Or_Rhs :=
Make_Integer_Literal (Loc,
Rhs_Val * (2 ** Expr_Value (Get_Shift)));
Set_Print_In_Hex (Or_Rhs);
else
-- We have to convert the right hand side to Etype (Obj).
-- A special case arises if what we have now is a Val
-- attribute reference whose expression type is Etype (Obj).
-- This happens for assignments of fields from the same
-- array. In this case we get the required right hand side
-- by simply removing the inner attribute reference.
if Nkind (Rhs) = N_Attribute_Reference
and then Attribute_Name (Rhs) = Name_Val
and then Etype (First (Expressions (Rhs))) = Etype (Obj)
then
Rhs := Relocate_Node (First (Expressions (Rhs)));
Fixup_Rhs;
-- If the value of the right hand side is a known integer
-- value, then just replace it by an untyped constant,
-- which will be properly retyped when we analyze and
-- resolve the expression.
elsif Rhs_Val_Known then
-- Note that Rhs_Val has already been normalized to
-- be an unsigned value with the proper number of bits.
Rhs := Make_Integer_Literal (Loc, Rhs_Val);
-- Otherwise we need an unchecked conversion
else
Fixup_Rhs;
end if;
Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
end if;
if Nkind (New_Rhs) = N_Op_And then
Set_Paren_Count (New_Rhs, 1);
end if;
New_Rhs :=
Make_Op_Or (Loc,
Left_Opnd => New_Rhs,
Right_Opnd => Or_Rhs);
end;
end if;
if Require_Byte_Swapping then
Set_Etype (New_Rhs, Etype (Obj));
New_Rhs := Byte_Swap (New_Rhs);
end if;
-- Now do the rewrite
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Lhs,
Expression =>
Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
Set_Assignment_OK (Name (N), Ass_OK);
-- All other component sizes for non-modular case
else
-- We generate
-- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
-- where Subscr is the computed linear subscript
declare
Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
Set_nn : Entity_Id;
Subscr : Node_Id;
Atyp : Entity_Id;
begin
if No (Bits_nn) then
-- Error, most likely High_Integrity_Mode restriction
return;
end if;
-- Acquire proper Set entity. We use the aligned or unaligned
-- case as appropriate.
if Known_Aligned_Enough (Obj, Csiz) then
Set_nn := RTE (Set_Id (Csiz));
else
Set_nn := RTE (SetU_Id (Csiz));
end if;
-- Now generate the set reference
Obj := Relocate_Node (Prefix (Lhs));
Convert_To_Actual_Subtype (Obj);
Atyp := Etype (Obj);
Compute_Linear_Subscript (Atyp, Lhs, Subscr);
-- Below we must make the assumption that Obj is
-- at least byte aligned, since otherwise its address
-- cannot be taken. The assumption holds since the
-- only arrays that can be misaligned are small packed
-- arrays which are implemented as a modular type, and
-- that is not the case here.
Rewrite (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Set_nn, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Obj,
Attribute_Name => Name_Address),
Subscr,
Unchecked_Convert_To (Bits_nn,
Convert_To (Ctyp, Rhs)))));
end;
end if;
Analyze (N, Suppress => All_Checks);
end Expand_Bit_Packed_Element_Set;
-------------------------------------
-- Expand_Packed_Address_Reference --
-------------------------------------
procedure Expand_Packed_Address_Reference (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Base : Node_Id;
Offset : Node_Id;
begin
-- We build an expression that has the form
-- outer_object'Address
-- + (linear-subscript * component_size for each array reference
-- + field'Bit_Position for each record field
-- + ...
-- + ...) / Storage_Unit;
Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
Rewrite (N,
Unchecked_Convert_To (RTE (RE_Address),
Make_Op_Add (Loc,
Left_Opnd =>
Unchecked_Convert_To (RTE (RE_Integer_Address),
Make_Attribute_Reference (Loc,
Prefix => Base,
Attribute_Name => Name_Address)),
Right_Opnd =>
Unchecked_Convert_To (RTE (RE_Integer_Address),
Make_Op_Divide (Loc,
Left_Opnd => Offset,
Right_Opnd =>
Make_Integer_Literal (Loc, System_Storage_Unit))))));
Analyze_And_Resolve (N, RTE (RE_Address));
end Expand_Packed_Address_Reference;
---------------------------------
-- Expand_Packed_Bit_Reference --
---------------------------------
procedure Expand_Packed_Bit_Reference (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Base : Node_Id;
Offset : Node_Id;
begin
-- We build an expression that has the form
-- (linear-subscript * component_size for each array reference
-- + field'Bit_Position for each record field
-- + ...
-- + ...) mod Storage_Unit;
Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
Rewrite (N,
Unchecked_Convert_To (Universal_Integer,
Make_Op_Mod (Loc,
Left_Opnd => Offset,
Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
Analyze_And_Resolve (N, Universal_Integer);
end Expand_Packed_Bit_Reference;
------------------------------------
-- Expand_Packed_Boolean_Operator --
------------------------------------
-- This routine expands "a op b" for the packed cases
procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
L : constant Node_Id := Relocate_Node (Left_Opnd (N));
R : constant Node_Id := Relocate_Node (Right_Opnd (N));
Ltyp : Entity_Id;
Rtyp : Entity_Id;
PAT : Entity_Id;
begin
Convert_To_Actual_Subtype (L);
Convert_To_Actual_Subtype (R);
Ensure_Defined (Etype (L), N);
Ensure_Defined (Etype (R), N);
Apply_Length_Check (R, Etype (L));
Ltyp := Etype (L);
Rtyp := Etype (R);
-- Deal with silly case of XOR where the subcomponent has a range
-- True .. True where an exception must be raised.
if Nkind (N) = N_Op_Xor then
Silly_Boolean_Array_Xor_Test (N, Rtyp);
end if;
-- Now that that silliness is taken care of, get packed array type
Convert_To_PAT_Type (L);
Convert_To_PAT_Type (R);
PAT := Etype (L);
-- For the modular case, we expand a op b into
-- rtyp!(pat!(a) op pat!(b))
-- where rtyp is the Etype of the left operand. Note that we do not
-- convert to the base type, since this would be unconstrained, and
-- hence not have a corresponding packed array type set.
-- Note that both operands must be modular for this code to be used
if Is_Modular_Integer_Type (PAT)
and then
Is_Modular_Integer_Type (Etype (R))
then
declare
P : Node_Id;
begin
if Nkind (N) = N_Op_And then
P := Make_Op_And (Loc, L, R);
elsif Nkind (N) = N_Op_Or then
P := Make_Op_Or (Loc, L, R);
else -- Nkind (N) = N_Op_Xor
P := Make_Op_Xor (Loc, L, R);
end if;
Rewrite (N, Unchecked_Convert_To (Ltyp, P));
end;
-- For the array case, we insert the actions
-- Result : Ltype;
-- System.Bit_Ops.Bit_And/Or/Xor
-- (Left'Address,
-- Ltype'Length * Ltype'Component_Size;
-- Right'Address,
-- Rtype'Length * Rtype'Component_Size
-- Result'Address);
-- where Left and Right are the Packed_Bytes{1,2,4} operands and
-- the second argument and fourth arguments are the lengths of the
-- operands in bits. Then we replace the expression by a reference
-- to Result.
-- Note that if we are mixing a modular and array operand, everything
-- works fine, since we ensure that the modular representation has the
-- same physical layout as the array representation (that's what the
-- left justified modular stuff in the big-endian case is about).
else
declare
Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
E_Id : RE_Id;
begin
if Nkind (N) = N_Op_And then
E_Id := RE_Bit_And;
elsif Nkind (N) = N_Op_Or then
E_Id := RE_Bit_Or;
else -- Nkind (N) = N_Op_Xor
E_Id := RE_Bit_Xor;
end if;
Insert_Actions (N, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Result_Ent,
Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (E_Id), Loc),
Parameter_Associations => New_List (
Make_Byte_Aligned_Attribute_Reference (Loc,
Prefix => L,
Attribute_Name => Name_Address),
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Index (Ltyp)), Loc),
Attribute_Name => Name_Range_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, Component_Size (Ltyp))),
Make_Byte_Aligned_Attribute_Reference (Loc,
Prefix => R,
Attribute_Name => Name_Address),
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Index (Rtyp)), Loc),
Attribute_Name => Name_Range_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, Component_Size (Rtyp))),
Make_Byte_Aligned_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Result_Ent, Loc),
Attribute_Name => Name_Address)))));
Rewrite (N,
New_Occurrence_Of (Result_Ent, Loc));
end;
end if;
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
end Expand_Packed_Boolean_Operator;
-------------------------------------
-- Expand_Packed_Element_Reference --
-------------------------------------
procedure Expand_Packed_Element_Reference (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Obj : Node_Id;
Atyp : Entity_Id;
PAT : Entity_Id;
Ctyp : Entity_Id;
Csiz : Int;
Shift : Node_Id;
Cmask : Uint;
Lit : Node_Id;
Arg : Node_Id;
begin
-- If not bit packed, we have the enumeration case, which is easily
-- dealt with (just adjust the subscripts of the indexed component)
-- Note: this leaves the result as an indexed component, which is
-- still a variable, so can be used in the assignment case, as is
-- required in the enumeration case.
if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
Setup_Enumeration_Packed_Array_Reference (N);
return;
end if;
-- Remaining processing is for the bit-packed case
Obj := Relocate_Node (Prefix (N));
Convert_To_Actual_Subtype (Obj);
Atyp := Etype (Obj);
PAT := Packed_Array_Type (Atyp);
Ctyp := Component_Type (Atyp);
Csiz := UI_To_Int (Component_Size (Atyp));
-- For the AAMP target, indexing of certain packed array is passed
-- through to the back end without expansion, because the expansion
-- results in very inefficient code on that target. This allows the
-- GNAAMP back end to generate specialized macros that support more
-- efficient indexing of packed arrays with components having sizes
-- that are small powers of two.
if AAMP_On_Target
and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
then
return;
end if;
-- Case of component size 1,2,4 or any component size for the modular
-- case. These are the cases for which we can inline the code.
if Csiz = 1 or else Csiz = 2 or else Csiz = 4
or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
then
Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
Lit := Make_Integer_Literal (Loc, Cmask);
Set_Print_In_Hex (Lit);
-- Byte swapping required for the Reverse_Storage_Order case, but
-- only for a free-standing object (see note on Require_Byte_Swapping
-- in Expand_Bit_Packed_Element_Set).
if Reverse_Storage_Order (Atyp)
and then Esize (Atyp) > 8
and then not In_Reverse_Storage_Order_Object (Obj)
then
Obj := Byte_Swap (Obj);
end if;
-- We generate a shift right to position the field, followed by a
-- masking operation to extract the bit field, and we finally do an
-- unchecked conversion to convert the result to the required target.
-- Note that the unchecked conversion automatically deals with the
-- bias if we are dealing with a biased representation. What will
-- happen is that we temporarily generate the biased representation,
-- but almost immediately that will be converted to the original
-- unbiased component type, and the bias will disappear.
Arg :=
Make_Op_And (Loc,
Left_Opnd => Make_Shift_Right (Obj, Shift),
Right_Opnd => Lit);
-- We needed to analyze this before we do the unchecked convert
-- below, but we need it temporarily attached to the tree for
-- this analysis (hence the temporary Set_Parent call).
Set_Parent (Arg, Parent (N));
Analyze_And_Resolve (Arg);
Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
-- All other component sizes for non-modular case
else
-- We generate
-- Component_Type!(Get_nn (Arr'address, Subscr))
-- where Subscr is the computed linear subscript
declare
Get_nn : Entity_Id;
Subscr : Node_Id;
begin
-- Acquire proper Get entity. We use the aligned or unaligned
-- case as appropriate.
if Known_Aligned_Enough (Obj, Csiz) then
Get_nn := RTE (Get_Id (Csiz));
else
Get_nn := RTE (GetU_Id (Csiz));
end if;
-- Now generate the get reference
Compute_Linear_Subscript (Atyp, N, Subscr);
-- Below we make the assumption that Obj is at least byte
-- aligned, since otherwise its address cannot be taken.
-- The assumption holds since the only arrays that can be
-- misaligned are small packed arrays which are implemented
-- as a modular type, and that is not the case here.
Rewrite (N,
Unchecked_Convert_To (Ctyp,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Get_nn, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Obj,
Attribute_Name => Name_Address),
Subscr))));
end;
end if;
Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
end Expand_Packed_Element_Reference;
----------------------
-- Expand_Packed_Eq --
----------------------
-- Handles expansion of "=" on packed array types
procedure Expand_Packed_Eq (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
L : constant Node_Id := Relocate_Node (Left_Opnd (N));
R : constant Node_Id := Relocate_Node (Right_Opnd (N));
LLexpr : Node_Id;
RLexpr : Node_Id;
Ltyp : Entity_Id;
Rtyp : Entity_Id;
PAT : Entity_Id;
begin
Convert_To_Actual_Subtype (L);
Convert_To_Actual_Subtype (R);
Ltyp := Underlying_Type (Etype (L));
Rtyp := Underlying_Type (Etype (R));
Convert_To_PAT_Type (L);
Convert_To_PAT_Type (R);
PAT := Etype (L);
LLexpr :=
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ltyp, Loc),
Attribute_Name => Name_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, Component_Size (Ltyp)));
RLexpr :=
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Rtyp, Loc),
Attribute_Name => Name_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, Component_Size (Rtyp)));
-- For the modular case, we transform the comparison to:
-- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
-- where PAT is the packed array type. This works fine, since in the
-- modular case we guarantee that the unused bits are always zeroes.
-- We do have to compare the lengths because we could be comparing
-- two different subtypes of the same base type.
if Is_Modular_Integer_Type (PAT) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => LLexpr,
Right_Opnd => RLexpr),
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => L,
Right_Opnd => R)));
-- For the non-modular case, we call a runtime routine
-- System.Bit_Ops.Bit_Eq
-- (L'Address, L_Length, R'Address, R_Length)
-- where PAT is the packed array type, and the lengths are the lengths
-- in bits of the original packed arrays. This routine takes care of
-- not comparing the unused bits in the last byte.
else
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
Parameter_Associations => New_List (
Make_Byte_Aligned_Attribute_Reference (Loc,
Prefix => L,
Attribute_Name => Name_Address),
LLexpr,
Make_Byte_Aligned_Attribute_Reference (Loc,
Prefix => R,
Attribute_Name => Name_Address),
RLexpr)));
end if;
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end Expand_Packed_Eq;
-----------------------
-- Expand_Packed_Not --
-----------------------
-- Handles expansion of "not" on packed array types
procedure Expand_Packed_Not (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Opnd : constant Node_Id := Relocate_Node (Right_Opnd (N));
Rtyp : Entity_Id;
PAT : Entity_Id;
Lit : Node_Id;
begin
Convert_To_Actual_Subtype (Opnd);
Rtyp := Etype (Opnd);
-- Deal with silly False..False and True..True subtype case
Silly_Boolean_Array_Not_Test (N, Rtyp);
-- Now that the silliness is taken care of, get packed array type
Convert_To_PAT_Type (Opnd);
PAT := Etype (Opnd);
-- For the case where the packed array type is a modular type, "not A"
-- expands simply into:
-- Rtyp!(PAT!(A) xor Mask)
-- where PAT is the packed array type, Mask is a mask of all 1 bits of
-- length equal to the size of this packed type, and Rtyp is the actual
-- actual subtype of the operand.
Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
Set_Print_In_Hex (Lit);
if not Is_Array_Type (PAT) then
Rewrite (N,
Unchecked_Convert_To (Rtyp,
Make_Op_Xor (Loc,
Left_Opnd => Opnd,
Right_Opnd => Lit)));
-- For the array case, we insert the actions
-- Result : Typ;
-- System.Bit_Ops.Bit_Not
-- (Opnd'Address,
-- Typ'Length * Typ'Component_Size,
-- Result'Address);
-- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
-- is the length of the operand in bits. We then replace the expression
-- with a reference to Result.
else
declare
Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
begin
Insert_Actions (N, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Result_Ent,
Object_Definition => New_Occurrence_Of (Rtyp, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
Parameter_Associations => New_List (
Make_Byte_Aligned_Attribute_Reference (Loc,
Prefix => Opnd,
Attribute_Name => Name_Address),
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Index (Rtyp)), Loc),
Attribute_Name => Name_Range_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, Component_Size (Rtyp))),
Make_Byte_Aligned_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Result_Ent, Loc),
Attribute_Name => Name_Address)))));
Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
end;
end if;
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
end Expand_Packed_Not;
-----------------------------
-- Get_Base_And_Bit_Offset --
-----------------------------
procedure Get_Base_And_Bit_Offset
(N : Node_Id;
Base : out Node_Id;
Offset : out Node_Id)
is
Loc : Source_Ptr;
Term : Node_Id;
Atyp : Entity_Id;
Subscr : Node_Id;
begin
Base := N;
Offset := Empty;
-- We build up an expression serially that has the form
-- linear-subscript * component_size for each array reference
-- + field'Bit_Position for each record field
-- + ...
loop
Loc := Sloc (Base);
if Nkind (Base) = N_Indexed_Component then
Convert_To_Actual_Subtype (Prefix (Base));
Atyp := Etype (Prefix (Base));
Compute_Linear_Subscript (Atyp, Base, Subscr);
Term :=
Make_Op_Multiply (Loc,
Left_Opnd => Subscr,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Atyp, Loc),
Attribute_Name => Name_Component_Size));
elsif Nkind (Base) = N_Selected_Component then
Term :=
Make_Attribute_Reference (Loc,
Prefix => Selector_Name (Base),
Attribute_Name => Name_Bit_Position);
else
return;
end if;
if No (Offset) then
Offset := Term;
else
Offset :=
Make_Op_Add (Loc,
Left_Opnd => Offset,
Right_Opnd => Term);
end if;
Base := Prefix (Base);
end loop;
end Get_Base_And_Bit_Offset;
-------------------------------------
-- Involves_Packed_Array_Reference --
-------------------------------------
function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Indexed_Component
and then Is_Bit_Packed_Array (Etype (Prefix (N)))
then
return True;
elsif Nkind (N) = N_Selected_Component then
return Involves_Packed_Array_Reference (Prefix (N));
else
return False;
end if;
end Involves_Packed_Array_Reference;
--------------------------
-- Known_Aligned_Enough --
--------------------------
function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
Typ : constant Entity_Id := Etype (Obj);
function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
-- If the component is in a record that contains previous packed
-- components, consider it unaligned because the back-end might
-- choose to pack the rest of the record. Lead to less efficient code,
-- but safer vis-a-vis of back-end choices.
--------------------------------
-- In_Partially_Packed_Record --
--------------------------------
function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
Rec_Type : constant Entity_Id := Scope (Comp);
Prev_Comp : Entity_Id;
begin
Prev_Comp := First_Entity (Rec_Type);
while Present (Prev_Comp) loop
if Is_Packed (Etype (Prev_Comp)) then
return True;
elsif Prev_Comp = Comp then
return False;
end if;
Next_Entity (Prev_Comp);
end loop;
return False;
end In_Partially_Packed_Record;
-- Start of processing for Known_Aligned_Enough
begin
-- Odd bit sizes don't need alignment anyway
if Csiz mod 2 = 1 then
return True;
-- If we have a specified alignment, see if it is sufficient, if not
-- then we can't possibly be aligned enough in any case.
elsif Known_Alignment (Etype (Obj)) then
-- Alignment required is 4 if size is a multiple of 4, and
-- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
return False;
end if;
end if;
-- OK, alignment should be sufficient, if object is aligned
-- If object is strictly aligned, then it is definitely aligned
if Strict_Alignment (Typ) then
return True;
-- Case of subscripted array reference
elsif Nkind (Obj) = N_Indexed_Component then
-- If we have a pointer to an array, then this is definitely
-- aligned, because pointers always point to aligned versions.
if Is_Access_Type (Etype (Prefix (Obj))) then
return True;
-- Otherwise, go look at the prefix
else
return Known_Aligned_Enough (Prefix (Obj), Csiz);
end if;
-- Case of record field
elsif Nkind (Obj) = N_Selected_Component then
-- What is significant here is whether the record type is packed
if Is_Record_Type (Etype (Prefix (Obj)))
and then Is_Packed (Etype (Prefix (Obj)))
then
return False;
-- Or the component has a component clause which might cause
-- the component to become unaligned (we can't tell if the
-- backend is doing alignment computations).
elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
return False;
elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
return False;
-- In all other cases, go look at prefix
else
return Known_Aligned_Enough (Prefix (Obj), Csiz);
end if;
elsif Nkind (Obj) = N_Type_Conversion then
return Known_Aligned_Enough (Expression (Obj), Csiz);
-- For a formal parameter, it is safer to assume that it is not
-- aligned, because the formal may be unconstrained while the actual
-- is constrained. In this situation, a small constrained packed
-- array, represented in modular form, may be unaligned.
elsif Is_Entity_Name (Obj) then
return not Is_Formal (Entity (Obj));
else
-- If none of the above, must be aligned
return True;
end if;
end Known_Aligned_Enough;
---------------------
-- Make_Shift_Left --
---------------------
function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
Nod : Node_Id;
begin
if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
return N;
else
Nod :=
Make_Op_Shift_Left (Sloc (N),
Left_Opnd => N,
Right_Opnd => S);
Set_Shift_Count_OK (Nod, True);
return Nod;
end if;
end Make_Shift_Left;
----------------------
-- Make_Shift_Right --
----------------------
function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
Nod : Node_Id;
begin
if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
return N;
else
Nod :=
Make_Op_Shift_Right (Sloc (N),
Left_Opnd => N,
Right_Opnd => S);
Set_Shift_Count_OK (Nod, True);
return Nod;
end if;
end Make_Shift_Right;
-----------------------------
-- RJ_Unchecked_Convert_To --
-----------------------------
function RJ_Unchecked_Convert_To
(Typ : Entity_Id;
Expr : Node_Id) return Node_Id
is
Source_Typ : constant Entity_Id := Etype (Expr);
Target_Typ : constant Entity_Id := Typ;
Src : Node_Id := Expr;
Source_Siz : Nat;
Target_Siz : Nat;
begin
Source_Siz := UI_To_Int (RM_Size (Source_Typ));
Target_Siz := UI_To_Int (RM_Size (Target_Typ));
-- First step, if the source type is not a discrete type, then we first
-- convert to a modular type of the source length, since otherwise, on
-- a big-endian machine, we get left-justification. We do it for little-
-- endian machines as well, because there might be junk bits that are
-- not cleared if the type is not numeric.
if Source_Siz /= Target_Siz
and then not Is_Discrete_Type (Source_Typ)
then
Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
end if;
-- In the big endian case, if the lengths of the two types differ, then
-- we must worry about possible left justification in the conversion,
-- and avoiding that is what this is all about.
if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
-- Next step. If the target is not a discrete type, then we first
-- convert to a modular type of the target length, since otherwise,
-- on a big-endian machine, we get left-justification.
if not Is_Discrete_Type (Target_Typ) then
Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
end if;
end if;
-- And now we can do the final conversion to the target type
return Unchecked_Convert_To (Target_Typ, Src);
end RJ_Unchecked_Convert_To;
----------------------------------------------
-- Setup_Enumeration_Packed_Array_Reference --
----------------------------------------------
-- All we have to do here is to find the subscripts that correspond to the
-- index positions that have non-standard enumeration types and insert a
-- Pos attribute to get the proper subscript value.
-- Finally the prefix must be uncheck-converted to the corresponding packed
-- array type.
-- Note that the component type is unchanged, so we do not need to fiddle
-- with the types (Gigi always automatically takes the packed array type if
-- it is set, as it will be in this case).
procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
Pfx : constant Node_Id := Prefix (N);
Typ : constant Entity_Id := Etype (N);
Exprs : constant List_Id := Expressions (N);
Expr : Node_Id;
begin
-- If the array is unconstrained, then we replace the array reference
-- with its actual subtype. This actual subtype will have a packed array
-- type with appropriate bounds.
if not Is_Constrained (Packed_Array_Type (Etype (Pfx))) then
Convert_To_Actual_Subtype (Pfx);
end if;
Expr := First (Exprs);
while Present (Expr) loop
declare
Loc : constant Source_Ptr := Sloc (Expr);
Expr_Typ : constant Entity_Id := Etype (Expr);
begin
if Is_Enumeration_Type (Expr_Typ)
and then Has_Non_Standard_Rep (Expr_Typ)
then
Rewrite (Expr,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Expr_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Relocate_Node (Expr))));
Analyze_And_Resolve (Expr, Standard_Natural);
end if;
end;
Next (Expr);
end loop;
Rewrite (N,
Make_Indexed_Component (Sloc (N),
Prefix =>
Unchecked_Convert_To (Packed_Array_Type (Etype (Pfx)), Pfx),
Expressions => Exprs));
Analyze_And_Resolve (N, Typ);
end Setup_Enumeration_Packed_Array_Reference;
-----------------------------------------
-- Setup_Inline_Packed_Array_Reference --
-----------------------------------------
procedure Setup_Inline_Packed_Array_Reference
(N : Node_Id;
Atyp : Entity_Id;
Obj : in out Node_Id;
Cmask : out Uint;
Shift : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (N);
PAT : Entity_Id;
Otyp : Entity_Id;
Csiz : Uint;
Osiz : Uint;
begin
Csiz := Component_Size (Atyp);
Convert_To_PAT_Type (Obj);
PAT := Etype (Obj);
Cmask := 2 ** Csiz - 1;
if Is_Array_Type (PAT) then
Otyp := Component_Type (PAT);
Osiz := Component_Size (PAT);
else
Otyp := PAT;
-- In the case where the PAT is a modular type, we want the actual
-- size in bits of the modular value we use. This is neither the
-- Object_Size nor the Value_Size, either of which may have been
-- reset to strange values, but rather the minimum size. Note that
-- since this is a modular type with full range, the issue of
-- biased representation does not arise.
Osiz := UI_From_Int (Minimum_Size (Otyp));
end if;
Compute_Linear_Subscript (Atyp, N, Shift);
-- If the component size is not 1, then the subscript must be multiplied
-- by the component size to get the shift count.
if Csiz /= 1 then
Shift :=
Make_Op_Multiply (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Csiz),
Right_Opnd => Shift);
end if;
-- If we have the array case, then this shift count must be broken down
-- into a byte subscript, and a shift within the byte.
if Is_Array_Type (PAT) then
declare
New_Shift : Node_Id;
begin
-- We must analyze shift, since we will duplicate it
Set_Parent (Shift, N);
Analyze_And_Resolve
(Shift, Standard_Integer, Suppress => All_Checks);
-- The shift count within the word is
-- shift mod Osiz
New_Shift :=
Make_Op_Mod (Loc,
Left_Opnd => Duplicate_Subexpr (Shift),
Right_Opnd => Make_Integer_Literal (Loc, Osiz));
-- The subscript to be used on the PAT array is
-- shift / Osiz
Obj :=
Make_Indexed_Component (Loc,
Prefix => Obj,
Expressions => New_List (
Make_Op_Divide (Loc,
Left_Opnd => Duplicate_Subexpr (Shift),
Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
Shift := New_Shift;
end;
-- For the modular integer case, the object to be manipulated is the
-- entire array, so Obj is unchanged. Note that we will reset its type
-- to PAT before returning to the caller.
else
null;
end if;
-- The one remaining step is to modify the shift count for the
-- big-endian case. Consider the following example in a byte:
-- xxxxxxxx bits of byte
-- vvvvvvvv bits of value
-- 33221100 little-endian numbering
-- 00112233 big-endian numbering
-- Here we have the case of 2-bit fields
-- For the little-endian case, we already have the proper shift count
-- set, e.g. for element 2, the shift count is 2*2 = 4.
-- For the big endian case, we have to adjust the shift count, computing
-- it as (N - F) - Shift, where N is the number of bits in an element of
-- the array used to implement the packed array, F is the number of bits
-- in a source array element, and Shift is the count so far computed.
-- We also have to adjust if the storage order is reversed
if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
Shift :=
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Osiz - Csiz),
Right_Opnd => Shift);
end if;
Set_Parent (Shift, N);
Set_Parent (Obj, N);
Analyze_And_Resolve (Obj, Otyp, Suppress => All_Checks);
Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
-- Make sure final type of object is the appropriate packed type
Set_Etype (Obj, Otyp);
end Setup_Inline_Packed_Array_Reference;
end Exp_Pakd;
|