1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Inline; use Inline;
with Itypes; use Itypes;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Validsw; use Validsw;
package body Exp_Util is
-----------------------
-- Local Subprograms --
-----------------------
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is an
-- array component, concatenating the images of each index. To avoid
-- storage leaks, the string is built with successive slice assignments.
-- The flag Dyn indicates whether this is called for the initialization
-- procedure of an array of tasks, or for the name of a dynamically
-- created task that is assigned to an indexed component.
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id;
-- Common processing for Task_Array_Image and Task_Record_Image.
-- Build function body that computes image.
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id);
-- Common processing for Task_Array_Image and Task_Record_Image.
-- Create local variables and assign prefix of name to result string.
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is a
-- record component. Concatenate name of variable with that of selector.
-- The flag Dyn indicates whether this is called for the initialization
-- procedure of record with task components, or for a dynamically
-- created task that is assigned to a selected component.
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id;
-- T is a class-wide type entity, E is the initial expression node that
-- constrains T in case such as: " X: T := E" or "new T'(E)"
-- This function returns the entity of the Equivalent type and inserts
-- on the fly the necessary declaration such as:
--
-- type anon is record
-- _parent : Root_Type (T); constrained with E discriminants (if any)
-- Extension : String (1 .. expr to match size of E);
-- end record;
--
-- This record is compatible with any object of the class of T thanks
-- to the first field and has the same size as E thanks to the second.
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id;
-- Produce a Range node whose bounds are:
-- Low_Bound (Literal_Type) ..
-- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
-- this is used for expanding declarations like X : String := "sdfgdfg";
--
-- If the index type of the target array is not integer, we generate:
-- Low_Bound (Literal_Type) ..
-- Literal_Type'Val
-- (Literal_Type'Pos (Low_Bound (Literal_Type))
-- + (Length (Literal_Typ) -1))
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id;
-- Create an implicit subtype of CW_Typ attached to node N
----------------------
-- Adjust_Condition --
----------------------
procedure Adjust_Condition (N : Node_Id) is
begin
if No (N) then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
T : constant Entity_Id := Etype (N);
Ti : Entity_Id;
begin
-- For now, we simply ignore a call where the argument has no
-- type (probably case of unanalyzed condition), or has a type
-- that is not Boolean. This is because this is a pretty marginal
-- piece of functionality, and violations of these rules are
-- likely to be truly marginal (how much code uses Fortran Logical
-- as the barrier to a protected entry?) and we do not want to
-- blow up existing programs. We can change this to an assertion
-- after 3.12a is released ???
if No (T) or else not Is_Boolean_Type (T) then
return;
end if;
-- Apply validity checking if needed
if Validity_Checks_On and Validity_Check_Tests then
Ensure_Valid (N);
end if;
-- Immediate return if standard boolean, the most common case,
-- where nothing needs to be done.
if Base_Type (T) = Standard_Boolean then
return;
end if;
-- Case of zero/non-zero semantics or non-standard enumeration
-- representation. In each case, we rewrite the node as:
-- ityp!(N) /= False'Enum_Rep
-- where ityp is an integer type with large enough size to hold
-- any value of type T.
if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
if Esize (T) <= Esize (Standard_Integer) then
Ti := Standard_Integer;
else
Ti := Standard_Long_Long_Integer;
end if;
Rewrite (N,
Make_Op_Ne (Loc,
Left_Opnd => Unchecked_Convert_To (Ti, N),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Enum_Rep,
Prefix =>
New_Occurrence_Of (First_Literal (T), Loc))));
Analyze_And_Resolve (N, Standard_Boolean);
else
Rewrite (N, Convert_To (Standard_Boolean, N));
Analyze_And_Resolve (N, Standard_Boolean);
end if;
end;
end Adjust_Condition;
------------------------
-- Adjust_Result_Type --
------------------------
procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
begin
-- Ignore call if current type is not Standard.Boolean
if Etype (N) /= Standard_Boolean then
return;
end if;
-- If result is already of correct type, nothing to do. Note that
-- this will get the most common case where everything has a type
-- of Standard.Boolean.
if Base_Type (T) = Standard_Boolean then
return;
else
declare
KP : constant Node_Kind := Nkind (Parent (N));
begin
-- If result is to be used as a Condition in the syntax, no need
-- to convert it back, since if it was changed to Standard.Boolean
-- using Adjust_Condition, that is just fine for this usage.
if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
return;
-- If result is an operand of another logical operation, no need
-- to reset its type, since Standard.Boolean is just fine, and
-- such operations always do Adjust_Condition on their operands.
elsif KP in N_Op_Boolean
or else KP = N_And_Then
or else KP = N_Or_Else
or else KP = N_Op_Not
then
return;
-- Otherwise we perform a conversion from the current type,
-- which must be Standard.Boolean, to the desired type.
else
Set_Analyzed (N);
Rewrite (N, Convert_To (T, N));
Analyze_And_Resolve (N, T);
end if;
end;
end if;
end Adjust_Result_Type;
--------------------------
-- Append_Freeze_Action --
--------------------------
procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
Fnode : Node_Id;
begin
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, New_List);
end if;
Append (N, Actions (Fnode));
end Append_Freeze_Action;
---------------------------
-- Append_Freeze_Actions --
---------------------------
procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
Fnode : constant Node_Id := Freeze_Node (T);
begin
if No (L) then
return;
else
if No (Actions (Fnode)) then
Set_Actions (Fnode, L);
else
Append_List (L, Actions (Fnode));
end if;
end if;
end Append_Freeze_Actions;
------------------------
-- Build_Runtime_Call --
------------------------
function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
begin
-- If entity is not available, we can skip making the call (this avoids
-- junk duplicated error messages in a number of cases).
if not RTE_Available (RE) then
return Make_Null_Statement (Loc);
else
return
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (RTE (RE), Loc));
end if;
end Build_Runtime_Call;
----------------------------
-- Build_Task_Array_Image --
----------------------------
-- This function generates the body for a function that constructs the
-- image string for a task that is an array component. The function is
-- local to the init proc for the array type, and is called for each one
-- of the components. The constructed image has the form of an indexed
-- component, whose prefix is the outer variable of the array type.
-- The n-dimensional array type has known indices Index, Index2...
-- Id_Ref is an indexed component form created by the enclosing init proc.
-- Its successive indices are Val1, Val2, ... which are the loop variables
-- in the loops that call the individual task init proc on each component.
-- The generated function has the following structure:
-- function F return String is
-- Pref : string renames Task_Name;
-- T1 : String := Index1'Image (Val1);
-- ...
-- Tn : String := indexn'image (Valn);
-- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
-- -- Len includes commas and the end parentheses.
-- Res : String (1..Len);
-- Pos : Integer := Pref'Length;
--
-- begin
-- Res (1 .. Pos) := Pref;
-- Pos := Pos + 1;
-- Res (Pos) := '(';
-- Pos := Pos + 1;
-- Res (Pos .. Pos + T1'Length - 1) := T1;
-- Pos := Pos + T1'Length;
-- Res (Pos) := '.';
-- Pos := Pos + 1;
-- ...
-- Res (Pos .. Pos + Tn'Length - 1) := Tn;
-- Res (Len) := ')';
--
-- return Res;
-- end F;
--
-- Needless to say, multidimensional arrays of tasks are rare enough
-- that the bulkiness of this code is not really a concern.
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id
is
Dims : constant Nat := Number_Dimensions (A_Type);
-- Number of dimensions for array of tasks
Temps : array (1 .. Dims) of Entity_Id;
-- Array of temporaries to hold string for each index
Indx : Node_Id;
-- Index expression
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Running index for substring assignments
Pref : Entity_Id;
-- Name of enclosing variable, prefix of resulting name
Res : Entity_Id;
-- String to hold result
Val : Node_Id;
-- Value of successive indices
Sum : Node_Id;
-- Expression to compute total size of string
T : Entity_Id;
-- Entity for name at one index position
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-- For a dynamic task, the name comes from the target variable.
-- For a static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Indx := First_Index (A_Type);
Val := First (Expressions (Id_Ref));
for J in 1 .. Dims loop
T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
Temps (J) := T;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => T,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Image,
Prefix =>
New_Occurrence_Of (Etype (Indx), Loc),
Expressions => New_List (
New_Copy_Tree (Val)))));
Next_Index (Indx);
Next (Val);
end loop;
Sum := Make_Integer_Literal (Loc, Dims + 1);
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
end loop;
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos ('(')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound => Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1)))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))),
Expression => New_Occurrence_Of (Temps (J), Loc)));
if J < Dims then
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1))))));
Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos (',')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end if;
end loop;
Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Len, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos (')')))));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Array_Image;
----------------------------
-- Build_Task_Image_Decls --
----------------------------
function Build_Task_Image_Decls
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
In_Init_Proc : Boolean := False) return List_Id
is
Decls : constant List_Id := New_List;
T_Id : Entity_Id := Empty;
Decl : Node_Id;
Expr : Node_Id := Empty;
Fun : Node_Id := Empty;
Is_Dyn : constant Boolean :=
Nkind (Parent (Id_Ref)) = N_Assignment_Statement
and then
Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
begin
-- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
-- generate a dummy declaration only.
if Restriction_Active (No_Implicit_Heap_Allocations)
or else Global_Discard_Names
then
T_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
Name_Len := 0;
return
New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
if Nkind (Id_Ref) = N_Identifier
or else Nkind (Id_Ref) = N_Defining_Identifier
then
-- For a simple variable, the image of the task is built from
-- the name of the variable. To avoid possible conflict with
-- the anonymous type created for a single protected object,
-- add a numeric suffix.
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Id_Ref), 'T', 1));
Get_Name_String (Chars (Id_Ref));
Expr :=
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer);
elsif Nkind (Id_Ref) = N_Selected_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
elsif Nkind (Id_Ref) = N_Indexed_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (A_Type), 'N'));
Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
end if;
end if;
if Present (Fun) then
Append (Fun, Decls);
Expr := Make_Function_Call (Loc,
Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
if not In_Init_Proc and then VM_Target = No_VM then
Set_Uses_Sec_Stack (Defining_Entity (Fun));
end if;
end if;
Decl := Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Constant_Present => True,
Expression => Expr);
Append (Decl, Decls);
return Decls;
end Build_Task_Image_Decls;
-------------------------------
-- Build_Task_Image_Function --
-------------------------------
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id
is
Spec : Node_Id;
begin
Append_To (Stats,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Res, Loc)));
Spec := Make_Function_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
Result_Definition => New_Occurrence_Of (Standard_String, Loc));
-- Calls to 'Image use the secondary stack, which must be cleaned
-- up after the task name is built.
return Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
end Build_Task_Image_Function;
-----------------------------
-- Build_Task_Image_Prefix --
-----------------------------
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id)
is
begin
Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Len,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
Expression => Sum));
Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Res,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Len, Loc)))))));
Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pos,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
-- Pos := Prefix'Length;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Prefix, Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1)))));
-- Res (1 .. Pos) := Prefix;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Pos, Loc))),
Expression => New_Occurrence_Of (Prefix, Loc)));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end Build_Task_Image_Prefix;
-----------------------------
-- Build_Task_Record_Image --
-----------------------------
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id
is
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Index into result
Res : Entity_Id;
-- String to hold result
Pref : Entity_Id;
-- Name of enclosing variable, prefix of resulting name
Sum : Node_Id;
-- Expression to compute total size of string
Sel : Entity_Id;
-- Entity for selector name
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-- For a dynamic task, the name comes from the target variable.
-- For a static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
Get_Name_String (Chars (Selector_Name (Id_Ref)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Sel,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
-- Res (Pos) := '.';
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos ('.')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
-- Res (Pos .. Len) := Selector;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound => New_Occurrence_Of (Len, Loc))),
Expression => New_Occurrence_Of (Sel, Loc)));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Record_Image;
----------------------------------
-- Component_May_Be_Bit_Aligned --
----------------------------------
function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
begin
-- If no component clause, then everything is fine, since the back end
-- never bit-misaligns by default, even if there is a pragma Packed for
-- the record.
if No (Component_Clause (Comp)) then
return False;
end if;
-- It is only array and record types that cause trouble
if not Is_Record_Type (Etype (Comp))
and then not Is_Array_Type (Etype (Comp))
then
return False;
-- If we know that we have a small (64 bits or less) record
-- or bit-packed array, then everything is fine, since the
-- back end can handle these cases correctly.
elsif Esize (Comp) <= 64
and then (Is_Record_Type (Etype (Comp))
or else Is_Bit_Packed_Array (Etype (Comp)))
then
return False;
-- Otherwise if the component is not byte aligned, we know we have the
-- nasty unaligned case.
elsif Normalized_First_Bit (Comp) /= Uint_0
or else Esize (Comp) mod System_Storage_Unit /= Uint_0
then
return True;
-- If we are large and byte aligned, then OK at this level
else
return False;
end if;
end Component_May_Be_Bit_Aligned;
-----------------------------------
-- Corresponding_Runtime_Package --
-----------------------------------
function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
Pkg_Id : RTU_Id := RTU_Null;
begin
pragma Assert (Is_Concurrent_Type (Typ));
if Ekind (Typ) in Protected_Kind then
if Has_Entries (Typ)
or else Has_Interrupt_Handler (Typ)
or else (Has_Attach_Handler (Typ)
and then not Restricted_Profile)
-- A protected type without entries that covers an interface and
-- overrides the abstract routines with protected procedures is
-- considered equivalent to a protected type with entries in the
-- context of dispatching select statements. It is sufficient to
-- check for the presence of an interface list in the declaration
-- node to recognize this case.
or else Present (Interface_List (Parent (Typ)))
then
if Abort_Allowed
or else Restriction_Active (No_Entry_Queue) = False
or else Number_Entries (Typ) > 1
or else (Has_Attach_Handler (Typ)
and then not Restricted_Profile)
then
Pkg_Id := System_Tasking_Protected_Objects_Entries;
else
Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
end if;
else
Pkg_Id := System_Tasking_Protected_Objects;
end if;
end if;
return Pkg_Id;
end Corresponding_Runtime_Package;
-------------------------------
-- Convert_To_Actual_Subtype --
-------------------------------
procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
Act_ST : Entity_Id;
begin
Act_ST := Get_Actual_Subtype (Exp);
if Act_ST = Etype (Exp) then
return;
else
Rewrite (Exp,
Convert_To (Act_ST, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Act_ST);
end if;
end Convert_To_Actual_Subtype;
-----------------------------------
-- Current_Sem_Unit_Declarations --
-----------------------------------
function Current_Sem_Unit_Declarations return List_Id is
U : Node_Id := Unit (Cunit (Current_Sem_Unit));
Decls : List_Id;
begin
-- If the current unit is a package body, locate the visible
-- declarations of the package spec.
if Nkind (U) = N_Package_Body then
U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
end if;
if Nkind (U) = N_Package_Declaration then
U := Specification (U);
Decls := Visible_Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (U, Decls);
end if;
else
Decls := Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Declarations (U, Decls);
end if;
end if;
return Decls;
end Current_Sem_Unit_Declarations;
-----------------------
-- Duplicate_Subexpr --
-----------------------
function Duplicate_Subexpr
(Exp : Node_Id;
Name_Req : Boolean := False) return Node_Id
is
begin
Remove_Side_Effects (Exp, Name_Req);
return New_Copy_Tree (Exp);
end Duplicate_Subexpr;
---------------------------------
-- Duplicate_Subexpr_No_Checks --
---------------------------------
function Duplicate_Subexpr_No_Checks
(Exp : Node_Id;
Name_Req : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects (Exp, Name_Req);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (New_Exp);
return New_Exp;
end Duplicate_Subexpr_No_Checks;
-----------------------------------
-- Duplicate_Subexpr_Move_Checks --
-----------------------------------
function Duplicate_Subexpr_Move_Checks
(Exp : Node_Id;
Name_Req : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects (Exp, Name_Req);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (Exp);
return New_Exp;
end Duplicate_Subexpr_Move_Checks;
--------------------
-- Ensure_Defined --
--------------------
procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
IR : Node_Id;
begin
-- An itype reference must only be created if this is a local
-- itype, so that gigi can elaborate it on the proper objstack.
if Is_Itype (Typ)
and then Scope (Typ) = Current_Scope
then
IR := Make_Itype_Reference (Sloc (N));
Set_Itype (IR, Typ);
Insert_Action (N, IR);
end if;
end Ensure_Defined;
--------------------
-- Entry_Names_OK --
--------------------
function Entry_Names_OK return Boolean is
begin
return
not Restricted_Profile
and then not Global_Discard_Names
and then not Restriction_Active (No_Implicit_Heap_Allocations)
and then not Restriction_Active (No_Local_Allocators);
end Entry_Names_OK;
---------------------
-- Evolve_And_Then --
---------------------
procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_And_Then (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_And_Then;
--------------------
-- Evolve_Or_Else --
--------------------
procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_Or_Else (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_Or_Else;
------------------------------
-- Expand_Subtype_From_Expr --
------------------------------
-- This function is applicable for both static and dynamic allocation of
-- objects which are constrained by an initial expression. Basically it
-- transforms an unconstrained subtype indication into a constrained one.
-- The expression may also be transformed in certain cases in order to
-- avoid multiple evaluation. In the static allocation case, the general
-- scheme is:
-- Val : T := Expr;
-- is transformed into
-- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
--
-- Here are the main cases :
--
-- <if Expr is a Slice>
-- Val : T ([Index_Subtype (Expr)]) := Expr;
--
-- <elsif Expr is a String Literal>
-- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
--
-- <elsif Expr is Constrained>
-- subtype T is Type_Of_Expr
-- Val : T := Expr;
--
-- <elsif Expr is an entity_name>
-- Val : T (constraints taken from Expr) := Expr;
--
-- <else>
-- type Axxx is access all T;
-- Rval : Axxx := Expr'ref;
-- Val : T (constraints taken from Rval) := Rval.all;
-- ??? note: when the Expression is allocated in the secondary stack
-- we could use it directly instead of copying it by declaring
-- Val : T (...) renames Rval.all
procedure Expand_Subtype_From_Expr
(N : Node_Id;
Unc_Type : Entity_Id;
Subtype_Indic : Node_Id;
Exp : Node_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Exp_Typ : constant Entity_Id := Etype (Exp);
T : Entity_Id;
begin
-- In general we cannot build the subtype if expansion is disabled,
-- because internal entities may not have been defined. However, to
-- avoid some cascaded errors, we try to continue when the expression
-- is an array (or string), because it is safe to compute the bounds.
-- It is in fact required to do so even in a generic context, because
-- there may be constants that depend on bounds of string literal.
if not Expander_Active
and then (No (Etype (Exp))
or else Base_Type (Etype (Exp)) /= Standard_String)
then
return;
end if;
if Nkind (Exp) = N_Slice then
declare
Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
begin
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List
(New_Reference_To (Slice_Type, Loc)))));
-- This subtype indication may be used later for constraint checks
-- we better make sure that if a variable was used as a bound of
-- of the original slice, its value is frozen.
Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
end;
elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Literal_Range (Loc,
Literal_Typ => Exp_Typ)))));
elsif Is_Constrained (Exp_Typ)
and then not Is_Class_Wide_Type (Unc_Type)
then
if Is_Itype (Exp_Typ) then
-- Within an initialization procedure, a selected component
-- denotes a component of the enclosing record, and it appears
-- as an actual in a call to its own initialization procedure.
-- If this component depends on the outer discriminant, we must
-- generate the proper actual subtype for it.
if Nkind (Exp) = N_Selected_Component
and then Within_Init_Proc
then
declare
Decl : constant Node_Id :=
Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
begin
if Present (Decl) then
Insert_Action (N, Decl);
T := Defining_Identifier (Decl);
else
T := Exp_Typ;
end if;
end;
-- No need to generate a new one (new what???)
else
T := Exp_Typ;
end if;
else
T :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('T'));
Insert_Action (N,
Make_Subtype_Declaration (Loc,
Defining_Identifier => T,
Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
-- This type is marked as an itype even though it has an
-- explicit declaration because otherwise it can be marked
-- with Is_Generic_Actual_Type and generate spurious errors.
-- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
Set_Is_Itype (T);
Set_Associated_Node_For_Itype (T, Exp);
end if;
Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
-- nothing needs to be done for private types with unknown discriminants
-- if the underlying type is not an unconstrained composite type.
elsif Is_Private_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
or else Is_Constrained (Underlying_Type (Unc_Type)))
then
null;
-- Nothing to be done for derived types with unknown discriminants if
-- the parent type also has unknown discriminants.
elsif Is_Record_Type (Unc_Type)
and then not Is_Class_Wide_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
then
null;
-- In Ada95, Nothing to be done if the type of the expression is
-- limited, because in this case the expression cannot be copied,
-- and its use can only be by reference.
-- In Ada2005, the context can be an object declaration whose expression
-- is a function that returns in place. If the nominal subtype has
-- unknown discriminants, the call still provides constraints on the
-- object, and we have to create an actual subtype from it.
-- If the type is class-wide, the expression is dynamically tagged and
-- we do not create an actual subtype either. Ditto for an interface.
elsif Is_Limited_Type (Exp_Typ)
and then
(Is_Class_Wide_Type (Exp_Typ)
or else Is_Interface (Exp_Typ)
or else not Has_Unknown_Discriminants (Exp_Typ)
or else not Is_Composite_Type (Unc_Type))
then
null;
-- For limited interfaces, nothing to be done
-- This branch may be redundant once the limited interface issue is
-- sorted out???
elsif Is_Interface (Exp_Typ)
and then Is_Limited_Interface (Exp_Typ)
then
null;
-- For limited objects initialized with build in place function calls,
-- nothing to be done; otherwise we prematurely introduce an N_Reference
-- node in the expression initializing the object, which breaks the
-- circuitry that detects and adds the additional arguments to the
-- called function.
elsif Is_Build_In_Place_Function_Call (Exp) then
null;
else
Remove_Side_Effects (Exp);
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Unc_Type));
end if;
end Expand_Subtype_From_Expr;
------------------------
-- Find_Interface_ADT --
------------------------
function Find_Interface_ADT
(T : Entity_Id;
Iface : Entity_Id) return Elmt_Id
is
ADT : Elmt_Id;
Typ : Entity_Id := T;
begin
pragma Assert (Is_Interface (Iface));
-- Handle private types
if Has_Private_Declaration (Typ)
and then Present (Full_View (Typ))
then
Typ := Full_View (Typ);
end if;
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Directly_Designated_Type (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
pragma Assert
(not Is_Class_Wide_Type (Typ)
and then Ekind (Typ) /= E_Incomplete_Type);
if Is_Ancestor (Iface, Typ) then
return First_Elmt (Access_Disp_Table (Typ));
else
ADT :=
Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
while Present (ADT)
and then Present (Related_Type (Node (ADT)))
and then Related_Type (Node (ADT)) /= Iface
and then not Is_Ancestor (Iface, Related_Type (Node (ADT)))
loop
Next_Elmt (ADT);
end loop;
pragma Assert (Present (Related_Type (Node (ADT))));
return ADT;
end if;
end Find_Interface_ADT;
------------------------
-- Find_Interface_Tag --
------------------------
function Find_Interface_Tag
(T : Entity_Id;
Iface : Entity_Id) return Entity_Id
is
AI_Tag : Entity_Id;
Found : Boolean := False;
Typ : Entity_Id := T;
procedure Find_Tag (Typ : Entity_Id);
-- Internal subprogram used to recursively climb to the ancestors
--------------
-- Find_Tag --
--------------
procedure Find_Tag (Typ : Entity_Id) is
AI_Elmt : Elmt_Id;
AI : Node_Id;
begin
-- Check if the interface is an immediate ancestor of the type and
-- therefore shares the main tag.
if Typ = Iface then
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
AI_Tag := First_Tag_Component (Typ);
Found := True;
return;
end if;
-- Climb to the root type handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Find_Tag (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Find_Tag (Etype (Typ));
end if;
-- Traverse the list of interfaces implemented by the type
if not Found
and then Present (Interfaces (Typ))
and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
then
-- Skip the tag associated with the primary table
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
pragma Assert (Present (AI_Tag));
AI_Elmt := First_Elmt (Interfaces (Typ));
while Present (AI_Elmt) loop
AI := Node (AI_Elmt);
if AI = Iface or else Is_Ancestor (Iface, AI) then
Found := True;
return;
end if;
AI_Tag := Next_Tag_Component (AI_Tag);
Next_Elmt (AI_Elmt);
end loop;
end if;
end Find_Tag;
-- Start of processing for Find_Interface_Tag
begin
pragma Assert (Is_Interface (Iface));
-- Handle private types
if Has_Private_Declaration (Typ)
and then Present (Full_View (Typ))
then
Typ := Full_View (Typ);
end if;
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Directly_Designated_Type (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
if Is_Class_Wide_Type (Typ) then
Typ := Etype (Typ);
end if;
-- Handle entities from the limited view
if Ekind (Typ) = E_Incomplete_Type then
pragma Assert (Present (Non_Limited_View (Typ)));
Typ := Non_Limited_View (Typ);
end if;
Find_Tag (Typ);
pragma Assert (Found);
return AI_Tag;
end Find_Interface_Tag;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
Prim : Elmt_Id;
Typ : Entity_Id := T;
Op : Entity_Id;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- Loop through primitive operations
Prim := First_Elmt (Primitive_Operations (Typ));
while Present (Prim) loop
Op := Node (Prim);
-- We can retrieve primitive operations by name if it is an internal
-- name. For equality we must check that both of its operands have
-- the same type, to avoid confusion with user-defined equalities
-- than may have a non-symmetric signature.
exit when Chars (Op) = Name
and then
(Name /= Name_Op_Eq
or else Etype (First_Entity (Op)) = Etype (Last_Entity (Op)));
Next_Elmt (Prim);
-- Raise Program_Error if no primitive found
if No (Prim) then
raise Program_Error;
end if;
end loop;
return Node (Prim);
end Find_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Prim : Elmt_Id;
Typ : Entity_Id := T;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
Prim := First_Elmt (Primitive_Operations (Typ));
while not Is_TSS (Node (Prim), Name) loop
Next_Elmt (Prim);
-- Raise program error if no primitive found
if No (Prim) then
raise Program_Error;
end if;
end loop;
return Node (Prim);
end Find_Prim_Op;
----------------------------
-- Find_Protection_Object --
----------------------------
function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
S := Scop;
while Present (S) loop
if (Ekind (S) = E_Entry
or else Ekind (S) = E_Entry_Family
or else Ekind (S) = E_Function
or else Ekind (S) = E_Procedure)
and then Present (Protection_Object (S))
then
return Protection_Object (S);
end if;
S := Scope (S);
end loop;
-- If we do not find a Protection object in the scope chain, then
-- something has gone wrong, most likely the object was never created.
raise Program_Error;
end Find_Protection_Object;
----------------------
-- Force_Evaluation --
----------------------
procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
begin
Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
end Force_Evaluation;
------------------------
-- Generate_Poll_Call --
------------------------
procedure Generate_Poll_Call (N : Node_Id) is
begin
-- No poll call if polling not active
if not Polling_Required then
return;
-- Otherwise generate require poll call
else
Insert_Before_And_Analyze (N,
Make_Procedure_Call_Statement (Sloc (N),
Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
end if;
end Generate_Poll_Call;
---------------------------------
-- Get_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Set_Current_Value_Condition. In the Get procedure, we
-- interpret Current_Value fields set by the Set procedure, so the two
-- procedures need to be closely coordinated.
procedure Get_Current_Value_Condition
(Var : Node_Id;
Op : out Node_Kind;
Val : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (Var);
Ent : constant Entity_Id := Entity (Var);
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean);
-- N is an expression which holds either True (S = True) or False (S =
-- False) in the condition. This procedure digs out the expression and
-- if it refers to Ent, sets Op and Val appropriately.
-------------------------------------
-- Process_Current_Value_Condition --
-------------------------------------
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean)
is
Cond : Node_Id;
Sens : Boolean;
begin
Cond := N;
Sens := S;
-- Deal with NOT operators, inverting sense
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
Sens := not Sens;
end loop;
-- Deal with AND THEN and AND cases
if Nkind (Cond) = N_And_Then
or else Nkind (Cond) = N_Op_And
then
-- Don't ever try to invert a condition that is of the form
-- of an AND or AND THEN (since we are not doing sufficiently
-- general processing to allow this).
if Sens = False then
Op := N_Empty;
Val := Empty;
return;
end if;
-- Recursively process AND and AND THEN branches
Process_Current_Value_Condition (Left_Opnd (Cond), True);
if Op /= N_Empty then
return;
end if;
Process_Current_Value_Condition (Right_Opnd (Cond), True);
return;
-- Case of relational operator
elsif Nkind (Cond) in N_Op_Compare then
Op := Nkind (Cond);
-- Invert sense of test if inverted test
if Sens = False then
case Op is
when N_Op_Eq => Op := N_Op_Ne;
when N_Op_Ne => Op := N_Op_Eq;
when N_Op_Lt => Op := N_Op_Ge;
when N_Op_Gt => Op := N_Op_Le;
when N_Op_Le => Op := N_Op_Gt;
when N_Op_Ge => Op := N_Op_Lt;
when others => raise Program_Error;
end case;
end if;
-- Case of entity op value
if Is_Entity_Name (Left_Opnd (Cond))
and then Ent = Entity (Left_Opnd (Cond))
and then Compile_Time_Known_Value (Right_Opnd (Cond))
then
Val := Right_Opnd (Cond);
-- Case of value op entity
elsif Is_Entity_Name (Right_Opnd (Cond))
and then Ent = Entity (Right_Opnd (Cond))
and then Compile_Time_Known_Value (Left_Opnd (Cond))
then
Val := Left_Opnd (Cond);
-- We are effectively swapping operands
case Op is
when N_Op_Eq => null;
when N_Op_Ne => null;
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Le => Op := N_Op_Ge;
when N_Op_Ge => Op := N_Op_Le;
when others => raise Program_Error;
end case;
else
Op := N_Empty;
end if;
return;
-- Case of Boolean variable reference, return as though the
-- reference had said var = True.
else
if Is_Entity_Name (Cond)
and then Ent = Entity (Cond)
then
Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
if Sens = False then
Op := N_Op_Ne;
else
Op := N_Op_Eq;
end if;
end if;
end if;
end Process_Current_Value_Condition;
-- Start of processing for Get_Current_Value_Condition
begin
Op := N_Empty;
Val := Empty;
-- Immediate return, nothing doing, if this is not an object
if Ekind (Ent) not in Object_Kind then
return;
end if;
-- Otherwise examine current value
declare
CV : constant Node_Id := Current_Value (Ent);
Sens : Boolean;
Stm : Node_Id;
begin
-- If statement. Condition is known true in THEN section, known False
-- in any ELSIF or ELSE part, and unknown outside the IF statement.
if Nkind (CV) = N_If_Statement then
-- Before start of IF statement
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
return;
end if;
-- At this stage we know that we are within the IF statement, but
-- unfortunately, the tree does not record the SLOC of the ELSE so
-- we cannot use a simple SLOC comparison to distinguish between
-- the then/else statements, so we have to climb the tree.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= CV loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so now we can tell if we are within
-- the THEN statements.
if Is_List_Member (N)
and then List_Containing (N) = Then_Statements (CV)
then
Sens := True;
-- If the variable reference does not come from source, we
-- cannot reliably tell whether it appears in the else part.
-- In particular, if it appears in generated code for a node
-- that requires finalization, it may be attached to a list
-- that has not been yet inserted into the code. For now,
-- treat it as unknown.
elsif not Comes_From_Source (N) then
return;
-- Otherwise we must be in ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- ELSIF part. Condition is known true within the referenced
-- ELSIF, known False in any subsequent ELSIF or ELSE part, and
-- unknown before the ELSE part or after the IF statement.
elsif Nkind (CV) = N_Elsif_Part then
Stm := Parent (CV);
-- Before start of ELSIF part
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (Stm) +
Text_Ptr (UI_To_Int (End_Span (Stm)))
then
return;
end if;
-- Again we lack the SLOC of the ELSE, so we need to climb the
-- tree to see if we are within the ELSIF part in question.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= Stm loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so see if is the ELSIF part we want.
-- the THEN statements.
if N = CV then
Sens := True;
-- Otherwise we must be in subsequent ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- Iteration scheme of while loop. The condition is known to be
-- true within the body of the loop.
elsif Nkind (CV) = N_Iteration_Scheme then
declare
Loop_Stmt : constant Node_Id := Parent (CV);
begin
-- Before start of body of loop
if Loc < Sloc (Loop_Stmt) then
return;
-- After end of LOOP statement
elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
return;
-- We are within the body of the loop
else
Sens := True;
end if;
end;
-- All other cases of Current_Value settings
else
return;
end if;
-- If we fall through here, then we have a reportable condition, Sens
-- is True if the condition is true and False if it needs inverting.
Process_Current_Value_Condition (Condition (CV), Sens);
end;
end Get_Current_Value_Condition;
---------------------------------
-- Has_Controlled_Coextensions --
---------------------------------
function Has_Controlled_Coextensions (Typ : Entity_Id) return Boolean is
D_Typ : Entity_Id;
Discr : Entity_Id;
begin
-- Only consider record types
if Ekind (Typ) /= E_Record_Type
and then Ekind (Typ) /= E_Record_Subtype
then
return False;
end if;
if Has_Discriminants (Typ) then
Discr := First_Discriminant (Typ);
while Present (Discr) loop
D_Typ := Etype (Discr);
if Ekind (D_Typ) = E_Anonymous_Access_Type
and then
(Is_Controlled (Directly_Designated_Type (D_Typ))
or else
Is_Concurrent_Type (Directly_Designated_Type (D_Typ)))
then
return True;
end if;
Next_Discriminant (Discr);
end loop;
end if;
return False;
end Has_Controlled_Coextensions;
--------------------
-- Homonym_Number --
--------------------
function Homonym_Number (Subp : Entity_Id) return Nat is
Count : Nat;
Hom : Entity_Id;
begin
Count := 1;
Hom := Homonym (Subp);
while Present (Hom) loop
if Scope (Hom) = Scope (Subp) then
Count := Count + 1;
end if;
Hom := Homonym (Hom);
end loop;
return Count;
end Homonym_Number;
------------------------------
-- In_Unconditional_Context --
------------------------------
function In_Unconditional_Context (Node : Node_Id) return Boolean is
P : Node_Id;
begin
P := Node;
while Present (P) loop
case Nkind (P) is
when N_Subprogram_Body =>
return True;
when N_If_Statement =>
return False;
when N_Loop_Statement =>
return False;
when N_Case_Statement =>
return False;
when others =>
P := Parent (P);
end case;
end loop;
return False;
end In_Unconditional_Context;
-------------------
-- Insert_Action --
-------------------
procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
begin
if Present (Ins_Action) then
Insert_Actions (Assoc_Node, New_List (Ins_Action));
end if;
end Insert_Action;
-- Version with check(s) suppressed
procedure Insert_Action
(Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
is
begin
Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
end Insert_Action;
--------------------
-- Insert_Actions --
--------------------
procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
N : Node_Id;
P : Node_Id;
Wrapped_Node : Node_Id := Empty;
begin
if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
return;
end if;
-- Ignore insert of actions from inside default expression (or other
-- similar "spec expression") in the special spec-expression analyze
-- mode. Any insertions at this point have no relevance, since we are
-- only doing the analyze to freeze the types of any static expressions.
-- See section "Handling of Default Expressions" in the spec of package
-- Sem for further details.
if In_Spec_Expression then
return;
end if;
-- If the action derives from stuff inside a record, then the actions
-- are attached to the current scope, to be inserted and analyzed on
-- exit from the scope. The reason for this is that we may also
-- be generating freeze actions at the same time, and they must
-- eventually be elaborated in the correct order.
if Is_Record_Type (Current_Scope)
and then not Is_Frozen (Current_Scope)
then
if No (Scope_Stack.Table
(Scope_Stack.Last).Pending_Freeze_Actions)
then
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
Ins_Actions;
else
Append_List
(Ins_Actions,
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
end if;
return;
end if;
-- We now intend to climb up the tree to find the right point to
-- insert the actions. We start at Assoc_Node, unless this node is
-- a subexpression in which case we start with its parent. We do this
-- for two reasons. First it speeds things up. Second, if Assoc_Node
-- is itself one of the special nodes like N_And_Then, then we assume
-- that an initial request to insert actions for such a node does not
-- expect the actions to get deposited in the node for later handling
-- when the node is expanded, since clearly the node is being dealt
-- with by the caller. Note that in the subexpression case, N is
-- always the child we came from.
-- N_Raise_xxx_Error is an annoying special case, it is a statement
-- if it has type Standard_Void_Type, and a subexpression otherwise.
-- otherwise. Procedure attribute references are also statements.
if Nkind (Assoc_Node) in N_Subexpr
and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
or else Etype (Assoc_Node) /= Standard_Void_Type)
and then (Nkind (Assoc_Node) /= N_Attribute_Reference
or else
not Is_Procedure_Attribute_Name
(Attribute_Name (Assoc_Node)))
then
P := Assoc_Node; -- ??? does not agree with above!
N := Parent (Assoc_Node);
-- Non-subexpression case. Note that N is initially Empty in this
-- case (N is only guaranteed Non-Empty in the subexpr case).
else
P := Assoc_Node;
N := Empty;
end if;
-- Capture root of the transient scope
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
end if;
loop
pragma Assert (Present (P));
case Nkind (P) is
-- Case of right operand of AND THEN or OR ELSE. Put the actions
-- in the Actions field of the right operand. They will be moved
-- out further when the AND THEN or OR ELSE operator is expanded.
-- Nothing special needs to be done for the left operand since
-- in that case the actions are executed unconditionally.
when N_And_Then | N_Or_Else =>
if N = Right_Opnd (P) then
-- We are now going to either append the actions to the
-- actions field of the short-circuit operation. We will
-- also analyze the actions now.
-- This analysis is really too early, the proper thing would
-- be to just park them there now, and only analyze them if
-- we find we really need them, and to it at the proper
-- final insertion point. However attempting to this proved
-- tricky, so for now we just kill current values before and
-- after the analyze call to make sure we avoid peculiar
-- optimizations from this out of order insertion.
Kill_Current_Values;
if Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
Kill_Current_Values;
return;
end if;
-- Then or Else operand of conditional expression. Add actions to
-- Then_Actions or Else_Actions field as appropriate. The actions
-- will be moved further out when the conditional is expanded.
when N_Conditional_Expression =>
declare
ThenX : constant Node_Id := Next (First (Expressions (P)));
ElseX : constant Node_Id := Next (ThenX);
begin
-- Actions belong to the then expression, temporarily
-- place them as Then_Actions of the conditional expr.
-- They will be moved to the proper place later when
-- the conditional expression is expanded.
if N = ThenX then
if Present (Then_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Then_Actions (P)), Ins_Actions);
else
Set_Then_Actions (P, Ins_Actions);
Analyze_List (Then_Actions (P));
end if;
return;
-- Actions belong to the else expression, temporarily
-- place them as Else_Actions of the conditional expr.
-- They will be moved to the proper place later when
-- the conditional expression is expanded.
elsif N = ElseX then
if Present (Else_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Else_Actions (P)), Ins_Actions);
else
Set_Else_Actions (P, Ins_Actions);
Analyze_List (Else_Actions (P));
end if;
return;
-- Actions belong to the condition. In this case they are
-- unconditionally executed, and so we can continue the
-- search for the proper insert point.
else
null;
end if;
end;
-- Case of appearing in the condition of a while expression or
-- elsif. We insert the actions into the Condition_Actions field.
-- They will be moved further out when the while loop or elsif
-- is analyzed.
when N_Iteration_Scheme |
N_Elsif_Part
=>
if N = Condition (P) then
if Present (Condition_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Condition_Actions (P)), Ins_Actions);
else
Set_Condition_Actions (P, Ins_Actions);
-- Set the parent of the insert actions explicitly.
-- This is not a syntactic field, but we need the
-- parent field set, in particular so that freeze
-- can understand that it is dealing with condition
-- actions, and properly insert the freezing actions.
Set_Parent (Ins_Actions, P);
Analyze_List (Condition_Actions (P));
end if;
return;
end if;
-- Statements, declarations, pragmas, representation clauses
when
-- Statements
N_Procedure_Call_Statement |
N_Statement_Other_Than_Procedure_Call |
-- Pragmas
N_Pragma |
-- Representation_Clause
N_At_Clause |
N_Attribute_Definition_Clause |
N_Enumeration_Representation_Clause |
N_Record_Representation_Clause |
-- Declarations
N_Abstract_Subprogram_Declaration |
N_Entry_Body |
N_Exception_Declaration |
N_Exception_Renaming_Declaration |
N_Formal_Abstract_Subprogram_Declaration |
N_Formal_Concrete_Subprogram_Declaration |
N_Formal_Object_Declaration |
N_Formal_Type_Declaration |
N_Full_Type_Declaration |
N_Function_Instantiation |
N_Generic_Function_Renaming_Declaration |
N_Generic_Package_Declaration |
N_Generic_Package_Renaming_Declaration |
N_Generic_Procedure_Renaming_Declaration |
N_Generic_Subprogram_Declaration |
N_Implicit_Label_Declaration |
N_Incomplete_Type_Declaration |
N_Number_Declaration |
N_Object_Declaration |
N_Object_Renaming_Declaration |
N_Package_Body |
N_Package_Body_Stub |
N_Package_Declaration |
N_Package_Instantiation |
N_Package_Renaming_Declaration |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Procedure_Instantiation |
N_Protected_Body |
N_Protected_Body_Stub |
N_Protected_Type_Declaration |
N_Single_Task_Declaration |
N_Subprogram_Body |
N_Subprogram_Body_Stub |
N_Subprogram_Declaration |
N_Subprogram_Renaming_Declaration |
N_Subtype_Declaration |
N_Task_Body |
N_Task_Body_Stub |
N_Task_Type_Declaration |
-- Freeze entity behaves like a declaration or statement
N_Freeze_Entity
=>
-- Do not insert here if the item is not a list member (this
-- happens for example with a triggering statement, and the
-- proper approach is to insert before the entire select).
if not Is_List_Member (P) then
null;
-- Do not insert if parent of P is an N_Component_Association
-- node (i.e. we are in the context of an N_Aggregate or
-- N_Extension_Aggregate node. In this case we want to insert
-- before the entire aggregate.
elsif Nkind (Parent (P)) = N_Component_Association then
null;
-- Do not insert if the parent of P is either an N_Variant
-- node or an N_Record_Definition node, meaning in either
-- case that P is a member of a component list, and that
-- therefore the actions should be inserted outside the
-- complete record declaration.
elsif Nkind (Parent (P)) = N_Variant
or else Nkind (Parent (P)) = N_Record_Definition
then
null;
-- Do not insert freeze nodes within the loop generated for
-- an aggregate, because they may be elaborated too late for
-- subsequent use in the back end: within a package spec the
-- loop is part of the elaboration procedure and is only
-- elaborated during the second pass.
-- If the loop comes from source, or the entity is local to
-- the loop itself it must remain within.
elsif Nkind (Parent (P)) = N_Loop_Statement
and then not Comes_From_Source (Parent (P))
and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
and then
Scope (Entity (First (Ins_Actions))) /= Current_Scope
then
null;
-- Otherwise we can go ahead and do the insertion
elsif P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
return;
end if;
-- A special case, N_Raise_xxx_Error can act either as a
-- statement or a subexpression. We tell the difference
-- by looking at the Etype. It is set to Standard_Void_Type
-- in the statement case.
when
N_Raise_xxx_Error =>
if Etype (P) = Standard_Void_Type then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- If a component association appears within a loop created for
-- an array aggregate, attach the actions to the association so
-- they can be subsequently inserted within the loop. For other
-- component associations insert outside of the aggregate. For
-- an association that will generate a loop, its Loop_Actions
-- attribute is already initialized (see exp_aggr.adb).
-- The list of loop_actions can in turn generate additional ones,
-- that are inserted before the associated node. If the associated
-- node is outside the aggregate, the new actions are collected
-- at the end of the loop actions, to respect the order in which
-- they are to be elaborated.
when
N_Component_Association =>
if Nkind (Parent (P)) = N_Aggregate
and then Present (Loop_Actions (P))
then
if Is_Empty_List (Loop_Actions (P)) then
Set_Loop_Actions (P, Ins_Actions);
Analyze_List (Ins_Actions);
else
declare
Decl : Node_Id;
begin
-- Check whether these actions were generated
-- by a declaration that is part of the loop_
-- actions for the component_association.
Decl := Assoc_Node;
while Present (Decl) loop
exit when Parent (Decl) = P
and then Is_List_Member (Decl)
and then
List_Containing (Decl) = Loop_Actions (P);
Decl := Parent (Decl);
end loop;
if Present (Decl) then
Insert_List_Before_And_Analyze
(Decl, Ins_Actions);
else
Insert_List_After_And_Analyze
(Last (Loop_Actions (P)), Ins_Actions);
end if;
end;
end if;
return;
else
null;
end if;
-- Another special case, an attribute denoting a procedure call
when
N_Attribute_Reference =>
if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- For all other node types, keep climbing tree
when
N_Abortable_Part |
N_Accept_Alternative |
N_Access_Definition |
N_Access_Function_Definition |
N_Access_Procedure_Definition |
N_Access_To_Object_Definition |
N_Aggregate |
N_Allocator |
N_Case_Statement_Alternative |
N_Character_Literal |
N_Compilation_Unit |
N_Compilation_Unit_Aux |
N_Component_Clause |
N_Component_Declaration |
N_Component_Definition |
N_Component_List |
N_Constrained_Array_Definition |
N_Decimal_Fixed_Point_Definition |
N_Defining_Character_Literal |
N_Defining_Identifier |
N_Defining_Operator_Symbol |
N_Defining_Program_Unit_Name |
N_Delay_Alternative |
N_Delta_Constraint |
N_Derived_Type_Definition |
N_Designator |
N_Digits_Constraint |
N_Discriminant_Association |
N_Discriminant_Specification |
N_Empty |
N_Entry_Body_Formal_Part |
N_Entry_Call_Alternative |
N_Entry_Declaration |
N_Entry_Index_Specification |
N_Enumeration_Type_Definition |
N_Error |
N_Exception_Handler |
N_Expanded_Name |
N_Explicit_Dereference |
N_Extension_Aggregate |
N_Floating_Point_Definition |
N_Formal_Decimal_Fixed_Point_Definition |
N_Formal_Derived_Type_Definition |
N_Formal_Discrete_Type_Definition |
N_Formal_Floating_Point_Definition |
N_Formal_Modular_Type_Definition |
N_Formal_Ordinary_Fixed_Point_Definition |
N_Formal_Package_Declaration |
N_Formal_Private_Type_Definition |
N_Formal_Signed_Integer_Type_Definition |
N_Function_Call |
N_Function_Specification |
N_Generic_Association |
N_Handled_Sequence_Of_Statements |
N_Identifier |
N_In |
N_Index_Or_Discriminant_Constraint |
N_Indexed_Component |
N_Integer_Literal |
N_Itype_Reference |
N_Label |
N_Loop_Parameter_Specification |
N_Mod_Clause |
N_Modular_Type_Definition |
N_Not_In |
N_Null |
N_Op_Abs |
N_Op_Add |
N_Op_And |
N_Op_Concat |
N_Op_Divide |
N_Op_Eq |
N_Op_Expon |
N_Op_Ge |
N_Op_Gt |
N_Op_Le |
N_Op_Lt |
N_Op_Minus |
N_Op_Mod |
N_Op_Multiply |
N_Op_Ne |
N_Op_Not |
N_Op_Or |
N_Op_Plus |
N_Op_Rem |
N_Op_Rotate_Left |
N_Op_Rotate_Right |
N_Op_Shift_Left |
N_Op_Shift_Right |
N_Op_Shift_Right_Arithmetic |
N_Op_Subtract |
N_Op_Xor |
N_Operator_Symbol |
N_Ordinary_Fixed_Point_Definition |
N_Others_Choice |
N_Package_Specification |
N_Parameter_Association |
N_Parameter_Specification |
N_Pop_Constraint_Error_Label |
N_Pop_Program_Error_Label |
N_Pop_Storage_Error_Label |
N_Pragma_Argument_Association |
N_Procedure_Specification |
N_Protected_Definition |
N_Push_Constraint_Error_Label |
N_Push_Program_Error_Label |
N_Push_Storage_Error_Label |
N_Qualified_Expression |
N_Range |
N_Range_Constraint |
N_Real_Literal |
N_Real_Range_Specification |
N_Record_Definition |
N_Reference |
N_Selected_Component |
N_Signed_Integer_Type_Definition |
N_Single_Protected_Declaration |
N_Slice |
N_String_Literal |
N_Subprogram_Info |
N_Subtype_Indication |
N_Subunit |
N_Task_Definition |
N_Terminate_Alternative |
N_Triggering_Alternative |
N_Type_Conversion |
N_Unchecked_Expression |
N_Unchecked_Type_Conversion |
N_Unconstrained_Array_Definition |
N_Unused_At_End |
N_Unused_At_Start |
N_Use_Package_Clause |
N_Use_Type_Clause |
N_Variant |
N_Variant_Part |
N_Validate_Unchecked_Conversion |
N_With_Clause
=>
null;
end case;
-- Make sure that inserted actions stay in the transient scope
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
end if;
-- If we fall through above tests, keep climbing tree
N := P;
if Nkind (Parent (N)) = N_Subunit then
-- This is the proper body corresponding to a stub. Insertion
-- must be done at the point of the stub, which is in the decla-
-- rative part of the parent unit.
P := Corresponding_Stub (Parent (N));
else
P := Parent (N);
end if;
end loop;
end Insert_Actions;
-- Version with check(s) suppressed
procedure Insert_Actions
(Assoc_Node : Node_Id;
Ins_Actions : List_Id;
Suppress : Check_Id)
is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Insert_Actions (Assoc_Node, Ins_Actions);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Insert_Actions (Assoc_Node, Ins_Actions);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Insert_Actions;
--------------------------
-- Insert_Actions_After --
--------------------------
procedure Insert_Actions_After
(Assoc_Node : Node_Id;
Ins_Actions : List_Id)
is
begin
if Scope_Is_Transient
and then Assoc_Node = Node_To_Be_Wrapped
then
Store_After_Actions_In_Scope (Ins_Actions);
else
Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
end if;
end Insert_Actions_After;
---------------------------------
-- Insert_Library_Level_Action --
---------------------------------
procedure Insert_Library_Level_Action (N : Node_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, New_List (N));
else
Append (N, Actions (Aux));
end if;
Analyze (N);
Pop_Scope;
end Insert_Library_Level_Action;
----------------------------------
-- Insert_Library_Level_Actions --
----------------------------------
procedure Insert_Library_Level_Actions (L : List_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
if Is_Non_Empty_List (L) then
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, L);
Analyze_List (L);
else
Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
end if;
Pop_Scope;
end if;
end Insert_Library_Level_Actions;
----------------------
-- Inside_Init_Proc --
----------------------
function Inside_Init_Proc return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S)
and then S /= Standard_Standard
loop
if Is_Init_Proc (S) then
return True;
else
S := Scope (S);
end if;
end loop;
return False;
end Inside_Init_Proc;
----------------------------
-- Is_All_Null_Statements --
----------------------------
function Is_All_Null_Statements (L : List_Id) return Boolean is
Stm : Node_Id;
begin
Stm := First (L);
while Present (Stm) loop
if Nkind (Stm) /= N_Null_Statement then
return False;
end if;
Next (Stm);
end loop;
return True;
end Is_All_Null_Statements;
----------------------------------
-- Is_Library_Level_Tagged_Type --
----------------------------------
function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
begin
return Is_Tagged_Type (Typ)
and then Is_Library_Level_Entity (Typ);
end Is_Library_Level_Tagged_Type;
----------------------------------
-- Is_Possibly_Unaligned_Object --
----------------------------------
function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
T : constant Entity_Id := Etype (N);
begin
-- If renamed object, apply test to underlying object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
end if;
-- Tagged and controlled types and aliased types are always aligned,
-- as are concurrent types.
if Is_Aliased (T)
or else Has_Controlled_Component (T)
or else Is_Concurrent_Type (T)
or else Is_Tagged_Type (T)
or else Is_Controlled (T)
then
return False;
end if;
-- If this is an element of a packed array, may be unaligned
if Is_Ref_To_Bit_Packed_Array (N) then
return True;
end if;
-- Case of component reference
if Nkind (N) = N_Selected_Component then
declare
P : constant Node_Id := Prefix (N);
C : constant Entity_Id := Entity (Selector_Name (N));
M : Nat;
S : Nat;
begin
-- If component reference is for an array with non-static bounds,
-- then it is always aligned: we can only process unaligned
-- arrays with static bounds (more accurately bounds known at
-- compile time).
if Is_Array_Type (T)
and then not Compile_Time_Known_Bounds (T)
then
return False;
end if;
-- If component is aliased, it is definitely properly aligned
if Is_Aliased (C) then
return False;
end if;
-- If component is for a type implemented as a scalar, and the
-- record is packed, and the component is other than the first
-- component of the record, then the component may be unaligned.
if Is_Packed (Etype (P))
and then Represented_As_Scalar (Etype (C))
and then First_Entity (Scope (C)) /= C
then
return True;
end if;
-- Compute maximum possible alignment for T
-- If alignment is known, then that settles things
if Known_Alignment (T) then
M := UI_To_Int (Alignment (T));
-- If alignment is not known, tentatively set max alignment
else
M := Ttypes.Maximum_Alignment;
-- We can reduce this if the Esize is known since the default
-- alignment will never be more than the smallest power of 2
-- that does not exceed this Esize value.
if Known_Esize (T) then
S := UI_To_Int (Esize (T));
while (M / 2) >= S loop
M := M / 2;
end loop;
end if;
end if;
-- If the component reference is for a record that has a specified
-- alignment, and we either know it is too small, or cannot tell,
-- then the component may be unaligned
if Known_Alignment (Etype (P))
and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
and then M > Alignment (Etype (P))
then
return True;
end if;
-- Case of component clause present which may specify an
-- unaligned position.
if Present (Component_Clause (C)) then
-- Otherwise we can do a test to make sure that the actual
-- start position in the record, and the length, are both
-- consistent with the required alignment. If not, we know
-- that we are unaligned.
declare
Align_In_Bits : constant Nat := M * System_Storage_Unit;
begin
if Component_Bit_Offset (C) mod Align_In_Bits /= 0
or else Esize (C) mod Align_In_Bits /= 0
then
return True;
end if;
end;
end if;
-- Otherwise, for a component reference, test prefix
return Is_Possibly_Unaligned_Object (P);
end;
-- If not a component reference, must be aligned
else
return False;
end if;
end Is_Possibly_Unaligned_Object;
---------------------------------
-- Is_Possibly_Unaligned_Slice --
---------------------------------
function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
begin
-- Go to renamed object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
end if;
-- The reference must be a slice
if Nkind (N) /= N_Slice then
return False;
end if;
-- Always assume the worst for a nested record component with a
-- component clause, which gigi/gcc does not appear to handle well.
-- It is not clear why this special test is needed at all ???
if Nkind (Prefix (N)) = N_Selected_Component
and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
and then
Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
then
return True;
end if;
-- We only need to worry if the target has strict alignment
if not Target_Strict_Alignment then
return False;
end if;
-- If it is a slice, then look at the array type being sliced
declare
Sarr : constant Node_Id := Prefix (N);
-- Prefix of the slice, i.e. the array being sliced
Styp : constant Entity_Id := Etype (Prefix (N));
-- Type of the array being sliced
Pref : Node_Id;
Ptyp : Entity_Id;
begin
-- The problems arise if the array object that is being sliced
-- is a component of a record or array, and we cannot guarantee
-- the alignment of the array within its containing object.
-- To investigate this, we look at successive prefixes to see
-- if we have a worrisome indexed or selected component.
Pref := Sarr;
loop
-- Case of array is part of an indexed component reference
if Nkind (Pref) = N_Indexed_Component then
Ptyp := Etype (Prefix (Pref));
-- The only problematic case is when the array is packed,
-- in which case we really know nothing about the alignment
-- of individual components.
if Is_Bit_Packed_Array (Ptyp) then
return True;
end if;
-- Case of array is part of a selected component reference
elsif Nkind (Pref) = N_Selected_Component then
Ptyp := Etype (Prefix (Pref));
-- We are definitely in trouble if the record in question
-- has an alignment, and either we know this alignment is
-- inconsistent with the alignment of the slice, or we
-- don't know what the alignment of the slice should be.
if Known_Alignment (Ptyp)
and then (Unknown_Alignment (Styp)
or else Alignment (Styp) > Alignment (Ptyp))
then
return True;
end if;
-- We are in potential trouble if the record type is packed.
-- We could special case when we know that the array is the
-- first component, but that's not such a simple case ???
if Is_Packed (Ptyp) then
return True;
end if;
-- We are in trouble if there is a component clause, and
-- either we do not know the alignment of the slice, or
-- the alignment of the slice is inconsistent with the
-- bit position specified by the component clause.
declare
Field : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Field))
and then
(Unknown_Alignment (Styp)
or else
(Component_Bit_Offset (Field) mod
(System_Storage_Unit * Alignment (Styp))) /= 0)
then
return True;
end if;
end;
-- For cases other than selected or indexed components we
-- know we are OK, since no issues arise over alignment.
else
return False;
end if;
-- We processed an indexed component or selected component
-- reference that looked safe, so keep checking prefixes.
Pref := Prefix (Pref);
end loop;
end;
end Is_Possibly_Unaligned_Slice;
--------------------------------
-- Is_Ref_To_Bit_Packed_Array --
--------------------------------
function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
Result : Boolean;
Expr : Node_Id;
begin
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
end if;
if Nkind (N) = N_Indexed_Component
or else
Nkind (N) = N_Selected_Component
then
if Is_Bit_Packed_Array (Etype (Prefix (N))) then
Result := True;
else
Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
end if;
if Result and then Nkind (N) = N_Indexed_Component then
Expr := First (Expressions (N));
while Present (Expr) loop
Force_Evaluation (Expr);
Next (Expr);
end loop;
end if;
return Result;
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Array;
--------------------------------
-- Is_Ref_To_Bit_Packed_Slice --
--------------------------------
function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Type_Conversion then
return Is_Ref_To_Bit_Packed_Slice (Expression (N));
elsif Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
elsif Nkind (N) = N_Slice
and then Is_Bit_Packed_Array (Etype (Prefix (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else
Nkind (N) = N_Selected_Component
then
return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Slice;
-----------------------
-- Is_Renamed_Object --
-----------------------
function Is_Renamed_Object (N : Node_Id) return Boolean is
Pnod : constant Node_Id := Parent (N);
Kind : constant Node_Kind := Nkind (Pnod);
begin
if Kind = N_Object_Renaming_Declaration then
return True;
elsif Kind = N_Indexed_Component
or else Kind = N_Selected_Component
then
return Is_Renamed_Object (Pnod);
else
return False;
end if;
end Is_Renamed_Object;
----------------------------
-- Is_Untagged_Derivation --
----------------------------
function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
begin
return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
or else
(Is_Private_Type (T) and then Present (Full_View (T))
and then not Is_Tagged_Type (Full_View (T))
and then Is_Derived_Type (Full_View (T))
and then Etype (Full_View (T)) /= T);
end Is_Untagged_Derivation;
---------------------------
-- Is_Volatile_Reference --
---------------------------
function Is_Volatile_Reference (N : Node_Id) return Boolean is
begin
if Nkind (N) in N_Has_Etype
and then Present (Etype (N))
and then Treat_As_Volatile (Etype (N))
then
return True;
elsif Is_Entity_Name (N) then
return Treat_As_Volatile (Entity (N));
elsif Nkind (N) = N_Slice then
return Is_Volatile_Reference (Prefix (N));
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
if (Is_Entity_Name (Prefix (N))
and then Has_Volatile_Components (Entity (Prefix (N))))
or else (Present (Etype (Prefix (N)))
and then Has_Volatile_Components (Etype (Prefix (N))))
then
return True;
else
return Is_Volatile_Reference (Prefix (N));
end if;
else
return False;
end if;
end Is_Volatile_Reference;
--------------------
-- Kill_Dead_Code --
--------------------
procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
begin
if Present (N) then
Remove_Warning_Messages (N);
if Warn then
Error_Msg_F
("?this code can never be executed and has been deleted!", N);
end if;
-- Recurse into block statements and bodies to process declarations
-- and statements
if Nkind (N) = N_Block_Statement
or else Nkind (N) = N_Subprogram_Body
or else Nkind (N) = N_Package_Body
then
Kill_Dead_Code (Declarations (N), False);
Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
if Nkind (N) = N_Subprogram_Body then
Set_Is_Eliminated (Defining_Entity (N));
end if;
elsif Nkind (N) = N_Package_Declaration then
Kill_Dead_Code (Visible_Declarations (Specification (N)));
Kill_Dead_Code (Private_Declarations (Specification (N)));
-- ??? After this point, Delete_Tree has been called on all
-- declarations in Specification (N), so references to
-- entities therein look suspicious.
declare
E : Entity_Id := First_Entity (Defining_Entity (N));
begin
while Present (E) loop
if Ekind (E) = E_Operator then
Set_Is_Eliminated (E);
end if;
Next_Entity (E);
end loop;
end;
-- Recurse into composite statement to kill individual statements,
-- in particular instantiations.
elsif Nkind (N) = N_If_Statement then
Kill_Dead_Code (Then_Statements (N));
Kill_Dead_Code (Elsif_Parts (N));
Kill_Dead_Code (Else_Statements (N));
elsif Nkind (N) = N_Loop_Statement then
Kill_Dead_Code (Statements (N));
elsif Nkind (N) = N_Case_Statement then
declare
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
Kill_Dead_Code (Statements (Alt));
Next (Alt);
end loop;
end;
elsif Nkind (N) = N_Case_Statement_Alternative then
Kill_Dead_Code (Statements (N));
-- Deal with dead instances caused by deleting instantiations
elsif Nkind (N) in N_Generic_Instantiation then
Remove_Dead_Instance (N);
end if;
end if;
end Kill_Dead_Code;
-- Case where argument is a list of nodes to be killed
procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
N : Node_Id;
W : Boolean;
begin
W := Warn;
if Is_Non_Empty_List (L) then
N := First (L);
while Present (N) loop
Kill_Dead_Code (N, W);
W := False;
Next (N);
end loop;
end if;
end Kill_Dead_Code;
------------------------
-- Known_Non_Negative --
------------------------
function Known_Non_Negative (Opnd : Node_Id) return Boolean is
begin
if Is_OK_Static_Expression (Opnd)
and then Expr_Value (Opnd) >= 0
then
return True;
else
declare
Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
begin
return
Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
end;
end if;
end Known_Non_Negative;
--------------------
-- Known_Non_Null --
--------------------
function Known_Non_Null (N : Node_Id) return Boolean is
begin
-- Checks for case where N is an entity reference
if Is_Entity_Name (N) and then Present (Entity (N)) then
declare
E : constant Entity_Id := Entity (N);
Op : Node_Kind;
Val : Node_Id;
begin
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return False;
elsif Op = N_Op_Ne then
return True;
end if;
end if;
-- If OK to do replacement, test Is_Known_Non_Null flag
if OK_To_Do_Constant_Replacement (E) then
return Is_Known_Non_Null (E);
-- Otherwise if not safe to do replacement, then say so
else
return False;
end if;
end;
-- True if access attribute
elsif Nkind (N) = N_Attribute_Reference
and then (Attribute_Name (N) = Name_Access
or else
Attribute_Name (N) = Name_Unchecked_Access
or else
Attribute_Name (N) = Name_Unrestricted_Access)
then
return True;
-- True if allocator
elsif Nkind (N) = N_Allocator then
return True;
-- For a conversion, true if expression is known non-null
elsif Nkind (N) = N_Type_Conversion then
return Known_Non_Null (Expression (N));
-- Above are all cases where the value could be determined to be
-- non-null. In all other cases, we don't know, so return False.
else
return False;
end if;
end Known_Non_Null;
----------------
-- Known_Null --
----------------
function Known_Null (N : Node_Id) return Boolean is
begin
-- Checks for case where N is an entity reference
if Is_Entity_Name (N) and then Present (Entity (N)) then
declare
E : constant Entity_Id := Entity (N);
Op : Node_Kind;
Val : Node_Id;
begin
-- Constant null value is for sure null
if Ekind (E) = E_Constant
and then Known_Null (Constant_Value (E))
then
return True;
end if;
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return True;
elsif Op = N_Op_Ne then
return False;
end if;
end if;
-- If OK to do replacement, test Is_Known_Null flag
if OK_To_Do_Constant_Replacement (E) then
return Is_Known_Null (E);
-- Otherwise if not safe to do replacement, then say so
else
return False;
end if;
end;
-- True if explicit reference to null
elsif Nkind (N) = N_Null then
return True;
-- For a conversion, true if expression is known null
elsif Nkind (N) = N_Type_Conversion then
return Known_Null (Expression (N));
-- Above are all cases where the value could be determined to be null.
-- In all other cases, we don't know, so return False.
else
return False;
end if;
end Known_Null;
-----------------------------
-- Make_CW_Equivalent_Type --
-----------------------------
-- Create a record type used as an equivalent of any member
-- of the class which takes its size from exp.
-- Generate the following code:
-- type Equiv_T is record
-- _parent : T (List of discriminant constraints taken from Exp);
-- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
-- end Equiv_T;
--
-- ??? Note that this type does not guarantee same alignment as all
-- derived types
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (E);
Root_Typ : constant Entity_Id := Root_Type (T);
List_Def : constant List_Id := Empty_List;
Comp_List : constant List_Id := New_List;
Equiv_Type : Entity_Id;
Range_Type : Entity_Id;
Str_Type : Entity_Id;
Constr_Root : Entity_Id;
Sizexpr : Node_Id;
begin
if not Has_Discriminants (Root_Typ) then
Constr_Root := Root_Typ;
else
Constr_Root :=
Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
-- subtype cstr__n is T (List of discr constraints taken from Exp)
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Constr_Root,
Subtype_Indication =>
Make_Subtype_From_Expr (E, Root_Typ)));
end if;
-- Generate the range subtype declaration
Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
if not Is_Interface (Root_Typ) then
-- subtype rg__xx is
-- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
Sizexpr :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Constr_Root, Loc),
Attribute_Name => Name_Object_Size));
else
-- subtype rg__xx is
-- Storage_Offset range 1 .. Expr'size / Storage_Unit
Sizexpr :=
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size);
end if;
Set_Paren_Count (Sizexpr, 1);
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Range_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
Constraint => Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound =>
Make_Op_Divide (Loc,
Left_Opnd => Sizexpr,
Right_Opnd => Make_Integer_Literal (Loc,
Intval => System_Storage_Unit)))))));
-- subtype str__nn is Storage_Array (rg__x);
Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Str_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (New_Reference_To (Range_Type, Loc))))));
-- type Equiv_T is record
-- [ _parent : Tnn; ]
-- E : Str_Type;
-- end Equiv_T;
Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
-- When the target requires front-end layout, it's necessary to allow
-- the equivalent type to be frozen so that layout can occur (when the
-- associated class-wide subtype is frozen, the equivalent type will
-- be frozen, see freeze.adb). For other targets, Gigi wants to have
-- the equivalent type marked as frozen and deals with this type itself.
-- In the Gigi case this will also avoid the generation of an init
-- procedure for the type.
if not Frontend_Layout_On_Target then
Set_Is_Frozen (Equiv_Type);
end if;
Set_Ekind (Equiv_Type, E_Record_Type);
Set_Parent_Subtype (Equiv_Type, Constr_Root);
if not Is_Interface (Root_Typ) then
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uParent),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
end if;
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('C')),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (Str_Type, Loc))));
Append_To (List_Def,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Equiv_Type,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc,
Component_Items => Comp_List,
Variant_Part => Empty))));
-- Suppress all checks during the analysis of the expanded code
-- to avoid the generation of spurious warnings under ZFP run-time.
Insert_Actions (E, List_Def, Suppress => All_Checks);
return Equiv_Type;
end Make_CW_Equivalent_Type;
------------------------
-- Make_Literal_Range --
------------------------
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id
is
Lo : constant Node_Id :=
New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
Index : constant Entity_Id := Etype (Lo);
Hi : Node_Id;
Length_Expr : constant Node_Id :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => String_Literal_Length (Literal_Typ)),
Right_Opnd =>
Make_Integer_Literal (Loc, 1));
begin
Set_Analyzed (Lo, False);
if Is_Integer_Type (Index) then
Hi :=
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Lo),
Right_Opnd => Length_Expr);
else
Hi :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Val,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (New_Copy_Tree (Lo))),
Right_Opnd => Length_Expr)));
end if;
return
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
end Make_Literal_Range;
----------------------------
-- Make_Subtype_From_Expr --
----------------------------
-- 1. If Expr is an unconstrained array expression, creates
-- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
-- 2. If Expr is a unconstrained discriminated type expression, creates
-- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
-- 3. If Expr is class-wide, creates an implicit class wide subtype
function Make_Subtype_From_Expr
(E : Node_Id;
Unc_Typ : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (E);
List_Constr : constant List_Id := New_List;
D : Entity_Id;
Full_Subtyp : Entity_Id;
Priv_Subtyp : Entity_Id;
Utyp : Entity_Id;
Full_Exp : Node_Id;
begin
if Is_Private_Type (Unc_Typ)
and then Has_Unknown_Discriminants (Unc_Typ)
then
-- Prepare the subtype completion, Go to base type to
-- find underlying type, because the type may be a generic
-- actual or an explicit subtype.
Utyp := Underlying_Type (Base_Type (Unc_Typ));
Full_Subtyp := Make_Defining_Identifier (Loc,
New_Internal_Name ('C'));
Full_Exp :=
Unchecked_Convert_To
(Utyp, Duplicate_Subexpr_No_Checks (E));
Set_Parent (Full_Exp, Parent (E));
Priv_Subtyp :=
Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
Insert_Action (E,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Full_Subtyp,
Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
-- Define the dummy private subtype
Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
Set_Scope (Priv_Subtyp, Full_Subtyp);
Set_Is_Constrained (Priv_Subtyp);
Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
Set_Is_Itype (Priv_Subtyp);
Set_Associated_Node_For_Itype (Priv_Subtyp, E);
if Is_Tagged_Type (Priv_Subtyp) then
Set_Class_Wide_Type
(Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
Set_Primitive_Operations (Priv_Subtyp,
Primitive_Operations (Unc_Typ));
end if;
Set_Full_View (Priv_Subtyp, Full_Subtyp);
return New_Reference_To (Priv_Subtyp, Loc);
elsif Is_Array_Type (Unc_Typ) then
for J in 1 .. Number_Dimensions (Unc_Typ) loop
Append_To (List_Constr,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J))),
High_Bound =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
end loop;
elsif Is_Class_Wide_Type (Unc_Typ) then
declare
CW_Subtype : Entity_Id;
EQ_Typ : Entity_Id := Empty;
begin
-- A class-wide equivalent type is not needed when VM_Target
-- because the VM back-ends handle the class-wide object
-- initialization itself (and doesn't need or want the
-- additional intermediate type to handle the assignment).
if Expander_Active and then VM_Target = No_VM then
EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
end if;
CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
Set_Equivalent_Type (CW_Subtype, EQ_Typ);
if Present (EQ_Typ) then
Set_Is_Class_Wide_Equivalent_Type (EQ_Typ);
end if;
Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
return New_Occurrence_Of (CW_Subtype, Loc);
end;
-- Indefinite record type with discriminants
else
D := First_Discriminant (Unc_Typ);
while Present (D) loop
Append_To (List_Constr,
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Selector_Name => New_Reference_To (D, Loc)));
Next_Discriminant (D);
end loop;
end if;
return
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr));
end Make_Subtype_From_Expr;
-----------------------------
-- May_Generate_Large_Temp --
-----------------------------
-- At the current time, the only types that we return False for (i.e.
-- where we decide we know they cannot generate large temps) are ones
-- where we know the size is 256 bits or less at compile time, and we
-- are still not doing a thorough job on arrays and records ???
function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
begin
if not Size_Known_At_Compile_Time (Typ) then
return False;
elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
return False;
elsif Is_Array_Type (Typ)
and then Present (Packed_Array_Type (Typ))
then
return May_Generate_Large_Temp (Packed_Array_Type (Typ));
-- We could do more here to find other small types ???
else
return True;
end if;
end May_Generate_Large_Temp;
----------------------------
-- New_Class_Wide_Subtype --
----------------------------
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id
is
Res : constant Entity_Id := Create_Itype (E_Void, N);
Res_Name : constant Name_Id := Chars (Res);
Res_Scope : constant Entity_Id := Scope (Res);
begin
Copy_Node (CW_Typ, Res);
Set_Comes_From_Source (Res, False);
Set_Sloc (Res, Sloc (N));
Set_Is_Itype (Res);
Set_Associated_Node_For_Itype (Res, N);
Set_Is_Public (Res, False); -- By default, may be changed below.
Set_Public_Status (Res);
Set_Chars (Res, Res_Name);
Set_Scope (Res, Res_Scope);
Set_Ekind (Res, E_Class_Wide_Subtype);
Set_Next_Entity (Res, Empty);
Set_Etype (Res, Base_Type (CW_Typ));
-- For targets where front-end layout is required, reset the Is_Frozen
-- status of the subtype to False (it can be implicitly set to true
-- from the copy of the class-wide type). For other targets, Gigi
-- doesn't want the class-wide subtype to go through the freezing
-- process (though it's unclear why that causes problems and it would
-- be nice to allow freezing to occur normally for all targets ???).
if Frontend_Layout_On_Target then
Set_Is_Frozen (Res, False);
end if;
Set_Freeze_Node (Res, Empty);
return (Res);
end New_Class_Wide_Subtype;
--------------------------------
-- Non_Limited_Designated_Type --
---------------------------------
function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
Desig : constant Entity_Id := Designated_Type (T);
begin
if Ekind (Desig) = E_Incomplete_Type
and then Present (Non_Limited_View (Desig))
then
return Non_Limited_View (Desig);
else
return Desig;
end if;
end Non_Limited_Designated_Type;
-----------------------------------
-- OK_To_Do_Constant_Replacement --
-----------------------------------
function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
ES : constant Entity_Id := Scope (E);
CS : Entity_Id;
begin
-- Do not replace statically allocated objects, because they may be
-- modified outside the current scope.
if Is_Statically_Allocated (E) then
return False;
-- Do not replace aliased or volatile objects, since we don't know what
-- else might change the value.
elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
return False;
-- Debug flag -gnatdM disconnects this optimization
elsif Debug_Flag_MM then
return False;
-- Otherwise check scopes
else
CS := Current_Scope;
loop
-- If we are in right scope, replacement is safe
if CS = ES then
return True;
-- Packages do not affect the determination of safety
elsif Ekind (CS) = E_Package then
exit when CS = Standard_Standard;
CS := Scope (CS);
-- Blocks do not affect the determination of safety
elsif Ekind (CS) = E_Block then
CS := Scope (CS);
-- Loops do not affect the determination of safety. Note that we
-- kill all current values on entry to a loop, so we are just
-- talking about processing within a loop here.
elsif Ekind (CS) = E_Loop then
CS := Scope (CS);
-- Otherwise, the reference is dubious, and we cannot be sure that
-- it is safe to do the replacement.
else
exit;
end if;
end loop;
return False;
end if;
end OK_To_Do_Constant_Replacement;
------------------------------------
-- Possible_Bit_Aligned_Component --
------------------------------------
function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
begin
case Nkind (N) is
-- Case of indexed component
when N_Indexed_Component =>
declare
P : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Etype (P);
begin
-- If we know the component size and it is less than 64, then
-- we are definitely OK. The back end always does assignment of
-- misaligned small objects correctly.
if Known_Static_Component_Size (Ptyp)
and then Component_Size (Ptyp) <= 64
then
return False;
-- Otherwise, we need to test the prefix, to see if we are
-- indexing from a possibly unaligned component.
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- Case of selected component
when N_Selected_Component =>
declare
P : constant Node_Id := Prefix (N);
Comp : constant Entity_Id := Entity (Selector_Name (N));
begin
-- If there is no component clause, then we are in the clear
-- since the back end will never misalign a large component
-- unless it is forced to do so. In the clear means we need
-- only the recursive test on the prefix.
if Component_May_Be_Bit_Aligned (Comp) then
return True;
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- For a slice, test the prefix, if that is possibly misaligned,
-- then for sure the slice is!
when N_Slice =>
return Possible_Bit_Aligned_Component (Prefix (N));
-- If we have none of the above, it means that we have fallen off the
-- top testing prefixes recursively, and we now have a stand alone
-- object, where we don't have a problem.
when others =>
return False;
end case;
end Possible_Bit_Aligned_Component;
-------------------------
-- Remove_Side_Effects --
-------------------------
procedure Remove_Side_Effects
(Exp : Node_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Exp);
Exp_Type : constant Entity_Id := Etype (Exp);
Svg_Suppress : constant Suppress_Array := Scope_Suppress;
Def_Id : Entity_Id;
Ref_Type : Entity_Id;
Res : Node_Id;
Ptr_Typ_Decl : Node_Id;
New_Exp : Node_Id;
E : Node_Id;
function Side_Effect_Free (N : Node_Id) return Boolean;
-- Determines if the tree N represents an expression that is known not
-- to have side effects, and for which no processing is required.
function Side_Effect_Free (L : List_Id) return Boolean;
-- Determines if all elements of the list L are side effect free
function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
-- The argument N is a construct where the Prefix is dereferenced if it
-- is an access type and the result is a variable. The call returns True
-- if the construct is side effect free (not considering side effects in
-- other than the prefix which are to be tested by the caller).
function Within_In_Parameter (N : Node_Id) return Boolean;
-- Determines if N is a subcomponent of a composite in-parameter. If so,
-- N is not side-effect free when the actual is global and modifiable
-- indirectly from within a subprogram, because it may be passed by
-- reference. The front-end must be conservative here and assume that
-- this may happen with any array or record type. On the other hand, we
-- cannot create temporaries for all expressions for which this
-- condition is true, for various reasons that might require clearing up
-- ??? For example, discriminant references that appear out of place, or
-- spurious type errors with class-wide expressions. As a result, we
-- limit the transformation to loop bounds, which is so far the only
-- case that requires it.
-----------------------------
-- Safe_Prefixed_Reference --
-----------------------------
function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
begin
-- If prefix is not side effect free, definitely not safe
if not Side_Effect_Free (Prefix (N)) then
return False;
-- If the prefix is of an access type that is not access-to-constant,
-- then this construct is a variable reference, which means it is to
-- be considered to have side effects if Variable_Ref is set True
-- Exception is an access to an entity that is a constant or an
-- in-parameter which does not come from source, and is the result
-- of a previous removal of side-effects.
elsif Is_Access_Type (Etype (Prefix (N)))
and then not Is_Access_Constant (Etype (Prefix (N)))
and then Variable_Ref
then
if not Is_Entity_Name (Prefix (N)) then
return False;
else
return Ekind (Entity (Prefix (N))) = E_Constant
or else Ekind (Entity (Prefix (N))) = E_In_Parameter;
end if;
-- The following test is the simplest way of solving a complex
-- problem uncovered by BB08-010: Side effect on loop bound that
-- is a subcomponent of a global variable:
-- If a loop bound is a subcomponent of a global variable, a
-- modification of that variable within the loop may incorrectly
-- affect the execution of the loop.
elsif not
(Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
or else not Within_In_Parameter (Prefix (N)))
then
return False;
-- All other cases are side effect free
else
return True;
end if;
end Safe_Prefixed_Reference;
----------------------
-- Side_Effect_Free --
----------------------
function Side_Effect_Free (N : Node_Id) return Boolean is
begin
-- Note on checks that could raise Constraint_Error. Strictly, if
-- we take advantage of 11.6, these checks do not count as side
-- effects. However, we would just as soon consider that they are
-- side effects, since the backend CSE does not work very well on
-- expressions which can raise Constraint_Error. On the other
-- hand, if we do not consider them to be side effect free, then
-- we get some awkward expansions in -gnato mode, resulting in
-- code insertions at a point where we do not have a clear model
-- for performing the insertions.
-- Special handling for entity names
if Is_Entity_Name (N) then
-- If the entity is a constant, it is definitely side effect
-- free. Note that the test of Is_Variable (N) below might
-- be expected to catch this case, but it does not, because
-- this test goes to the original tree, and we may have
-- already rewritten a variable node with a constant as
-- a result of an earlier Force_Evaluation call.
if Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_In_Parameter
then
return True;
-- Functions are not side effect free
elsif Ekind (Entity (N)) = E_Function then
return False;
-- Variables are considered to be a side effect if Variable_Ref
-- is set or if we have a volatile reference and Name_Req is off.
-- If Name_Req is True then we can't help returning a name which
-- effectively allows multiple references in any case.
elsif Is_Variable (N) then
return not Variable_Ref
and then (not Is_Volatile_Reference (N) or else Name_Req);
-- Any other entity (e.g. a subtype name) is definitely side
-- effect free.
else
return True;
end if;
-- A value known at compile time is always side effect free
elsif Compile_Time_Known_Value (N) then
return True;
-- A variable renaming is not side-effect free, because the
-- renaming will function like a macro in the front-end in
-- some cases, and an assignment can modify the component
-- designated by N, so we need to create a temporary for it.
elsif Is_Entity_Name (Original_Node (N))
and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
and then Ekind (Entity (Original_Node (N))) /= E_Constant
then
return False;
end if;
-- For other than entity names and compile time known values,
-- check the node kind for special processing.
case Nkind (N) is
-- An attribute reference is side effect free if its expressions
-- are side effect free and its prefix is side effect free or
-- is an entity reference.
-- Is this right? what about x'first where x is a variable???
when N_Attribute_Reference =>
return Side_Effect_Free (Expressions (N))
and then Attribute_Name (N) /= Name_Input
and then (Is_Entity_Name (Prefix (N))
or else Side_Effect_Free (Prefix (N)));
-- A binary operator is side effect free if and both operands
-- are side effect free. For this purpose binary operators
-- include membership tests and short circuit forms
when N_Binary_Op |
N_Membership_Test |
N_And_Then |
N_Or_Else =>
return Side_Effect_Free (Left_Opnd (N))
and then Side_Effect_Free (Right_Opnd (N));
-- An explicit dereference is side effect free only if it is
-- a side effect free prefixed reference.
when N_Explicit_Dereference =>
return Safe_Prefixed_Reference (N);
-- A call to _rep_to_pos is side effect free, since we generate
-- this pure function call ourselves. Moreover it is critically
-- important to make this exception, since otherwise we can
-- have discriminants in array components which don't look
-- side effect free in the case of an array whose index type
-- is an enumeration type with an enumeration rep clause.
-- All other function calls are not side effect free
when N_Function_Call =>
return Nkind (Name (N)) = N_Identifier
and then Is_TSS (Name (N), TSS_Rep_To_Pos)
and then
Side_Effect_Free (First (Parameter_Associations (N)));
-- An indexed component is side effect free if it is a side
-- effect free prefixed reference and all the indexing
-- expressions are side effect free.
when N_Indexed_Component =>
return Side_Effect_Free (Expressions (N))
and then Safe_Prefixed_Reference (N);
-- A type qualification is side effect free if the expression
-- is side effect free.
when N_Qualified_Expression =>
return Side_Effect_Free (Expression (N));
-- A selected component is side effect free only if it is a
-- side effect free prefixed reference. If it designates a
-- component with a rep. clause it must be treated has having
-- a potential side effect, because it may be modified through
-- a renaming, and a subsequent use of the renaming as a macro
-- will yield the wrong value. This complex interaction between
-- renaming and removing side effects is a reminder that the
-- latter has become a headache to maintain, and that it should
-- be removed in favor of the gcc mechanism to capture values ???
when N_Selected_Component =>
if Nkind (Parent (N)) = N_Explicit_Dereference
and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
then
return False;
else
return Safe_Prefixed_Reference (N);
end if;
-- A range is side effect free if the bounds are side effect free
when N_Range =>
return Side_Effect_Free (Low_Bound (N))
and then Side_Effect_Free (High_Bound (N));
-- A slice is side effect free if it is a side effect free
-- prefixed reference and the bounds are side effect free.
when N_Slice =>
return Side_Effect_Free (Discrete_Range (N))
and then Safe_Prefixed_Reference (N);
-- A type conversion is side effect free if the expression to be
-- converted is side effect free.
when N_Type_Conversion =>
return Side_Effect_Free (Expression (N));
-- A unary operator is side effect free if the operand
-- is side effect free.
when N_Unary_Op =>
return Side_Effect_Free (Right_Opnd (N));
-- An unchecked type conversion is side effect free only if it
-- is safe and its argument is side effect free.
when N_Unchecked_Type_Conversion =>
return Safe_Unchecked_Type_Conversion (N)
and then Side_Effect_Free (Expression (N));
-- An unchecked expression is side effect free if its expression
-- is side effect free.
when N_Unchecked_Expression =>
return Side_Effect_Free (Expression (N));
-- A literal is side effect free
when N_Character_Literal |
N_Integer_Literal |
N_Real_Literal |
N_String_Literal =>
return True;
-- We consider that anything else has side effects. This is a bit
-- crude, but we are pretty close for most common cases, and we
-- are certainly correct (i.e. we never return True when the
-- answer should be False).
when others =>
return False;
end case;
end Side_Effect_Free;
-- A list is side effect free if all elements of the list are
-- side effect free.
function Side_Effect_Free (L : List_Id) return Boolean is
N : Node_Id;
begin
if L = No_List or else L = Error_List then
return True;
else
N := First (L);
while Present (N) loop
if not Side_Effect_Free (N) then
return False;
else
Next (N);
end if;
end loop;
return True;
end if;
end Side_Effect_Free;
-------------------------
-- Within_In_Parameter --
-------------------------
function Within_In_Parameter (N : Node_Id) return Boolean is
begin
if not Comes_From_Source (N) then
return False;
elsif Is_Entity_Name (N) then
return Ekind (Entity (N)) = E_In_Parameter;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Within_In_Parameter (Prefix (N));
else
return False;
end if;
end Within_In_Parameter;
-- Start of processing for Remove_Side_Effects
begin
-- If we are side effect free already or expansion is disabled,
-- there is nothing to do.
if Side_Effect_Free (Exp) or else not Expander_Active then
return;
end if;
-- All this must not have any checks
Scope_Suppress := (others => True);
-- If it is a scalar type and we need to capture the value, just make
-- a copy. Likewise for a function call, an attribute reference or an
-- operator. And if we have a volatile reference and Name_Req is not
-- set (see comments above for Side_Effect_Free).
if Is_Elementary_Type (Exp_Type)
and then (Variable_Ref
or else Nkind (Exp) = N_Function_Call
or else Nkind (Exp) = N_Attribute_Reference
or else Nkind (Exp) in N_Op
or else (not Name_Req and then Is_Volatile_Reference (Exp)))
then
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Set_Etype (Def_Id, Exp_Type);
Res := New_Reference_To (Def_Id, Loc);
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Reference_To (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
Insert_Action (Exp, E);
-- If the expression has the form v.all then we can just capture
-- the pointer, and then do an explicit dereference on the result.
elsif Nkind (Exp) = N_Explicit_Dereference then
Def_Id :=
Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Res :=
Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition =>
New_Reference_To (Etype (Prefix (Exp)), Loc),
Constant_Present => True,
Expression => Relocate_Node (Prefix (Exp))));
-- Similar processing for an unchecked conversion of an expression
-- of the form v.all, where we want the same kind of treatment.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then Nkind (Expression (Exp)) = N_Explicit_Dereference
then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
Scope_Suppress := Svg_Suppress;
return;
-- If this is a type conversion, leave the type conversion and remove
-- the side effects in the expression. This is important in several
-- circumstances: for change of representations, and also when this is
-- a view conversion to a smaller object, where gigi can end up creating
-- its own temporary of the wrong size.
elsif Nkind (Exp) = N_Type_Conversion then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
Scope_Suppress := Svg_Suppress;
return;
-- If this is an unchecked conversion that Gigi can't handle, make
-- a copy or a use a renaming to capture the value.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then not Safe_Unchecked_Type_Conversion (Exp)
then
if CW_Or_Has_Controlled_Part (Exp_Type) then
-- Use a renaming to capture the expression, rather than create
-- a controlled temporary.
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Res := New_Reference_To (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
else
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Set_Etype (Def_Id, Exp_Type);
Res := New_Reference_To (Def_Id, Loc);
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Reference_To (Exp_Type, Loc),
Constant_Present => not Is_Variable (Exp),
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
Insert_Action (Exp, E);
end if;
-- For expressions that denote objects, we can use a renaming scheme.
-- We skip using this if we have a volatile reference and we do not
-- have Name_Req set true (see comments above for Side_Effect_Free).
elsif Is_Object_Reference (Exp)
and then Nkind (Exp) /= N_Function_Call
and then (Name_Req or else not Is_Volatile_Reference (Exp))
then
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
if Nkind (Exp) = N_Selected_Component
and then Nkind (Prefix (Exp)) = N_Function_Call
and then Is_Array_Type (Exp_Type)
then
-- Avoid generating a variable-sized temporary, by generating
-- the renaming declaration just for the function call. The
-- transformation could be refined to apply only when the array
-- component is constrained by a discriminant???
Res :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Def_Id, Loc),
Selector_Name => Selector_Name (Exp));
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark =>
New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
Name => Relocate_Node (Prefix (Exp))));
else
Res := New_Reference_To (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
end if;
-- If this is a packed reference, or a selected component with a
-- non-standard representation, a reference to the temporary will
-- be replaced by a copy of the original expression (see
-- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
-- elaborated by gigi, and is of course not to be replaced in-line
-- by the expression it renames, which would defeat the purpose of
-- removing the side-effect.
if (Nkind (Exp) = N_Selected_Component
or else Nkind (Exp) = N_Indexed_Component)
and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
then
null;
else
Set_Is_Renaming_Of_Object (Def_Id, False);
end if;
-- Otherwise we generate a reference to the value
else
-- Special processing for function calls that return a task. We need
-- to build a declaration that will enable build-in-place expansion
-- of the call.
-- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
-- to accommodate functions returning limited objects by reference.
if Nkind (Exp) = N_Function_Call
and then Is_Task_Type (Etype (Exp))
and then Ada_Version >= Ada_05
then
declare
Obj : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('F'));
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Obj,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Expression => Relocate_Node (Exp));
Insert_Action (Exp, Decl);
Set_Etype (Obj, Exp_Type);
Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
return;
end;
end if;
Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ref_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Reference_To (Exp_Type, Loc)));
E := Exp;
Insert_Action (Exp, Ptr_Typ_Decl);
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Set_Etype (Def_Id, Exp_Type);
Res :=
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Def_Id, Loc));
if Nkind (E) = N_Explicit_Dereference then
New_Exp := Relocate_Node (Prefix (E));
else
E := Relocate_Node (E);
New_Exp := Make_Reference (Loc, E);
end if;
if Is_Delayed_Aggregate (E) then
-- The expansion of nested aggregates is delayed until the
-- enclosing aggregate is expanded. As aggregates are often
-- qualified, the predicate applies to qualified expressions
-- as well, indicating that the enclosing aggregate has not
-- been expanded yet. At this point the aggregate is part of
-- a stand-alone declaration, and must be fully expanded.
if Nkind (E) = N_Qualified_Expression then
Set_Expansion_Delayed (Expression (E), False);
Set_Analyzed (Expression (E), False);
else
Set_Expansion_Delayed (E, False);
end if;
Set_Analyzed (E, False);
end if;
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Reference_To (Ref_Type, Loc),
Expression => New_Exp));
end if;
-- Preserve the Assignment_OK flag in all copies, since at least
-- one copy may be used in a context where this flag must be set
-- (otherwise why would the flag be set in the first place).
Set_Assignment_OK (Res, Assignment_OK (Exp));
-- Finally rewrite the original expression and we are done
Rewrite (Exp, Res);
Analyze_And_Resolve (Exp, Exp_Type);
Scope_Suppress := Svg_Suppress;
end Remove_Side_Effects;
---------------------------
-- Represented_As_Scalar --
---------------------------
function Represented_As_Scalar (T : Entity_Id) return Boolean is
UT : constant Entity_Id := Underlying_Type (T);
begin
return Is_Scalar_Type (UT)
or else (Is_Bit_Packed_Array (UT)
and then Is_Scalar_Type (Packed_Array_Type (UT)));
end Represented_As_Scalar;
------------------------------------
-- Safe_Unchecked_Type_Conversion --
------------------------------------
-- Note: this function knows quite a bit about the exact requirements
-- of Gigi with respect to unchecked type conversions, and its code
-- must be coordinated with any changes in Gigi in this area.
-- The above requirements should be documented in Sinfo ???
function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
Otyp : Entity_Id;
Ityp : Entity_Id;
Oalign : Uint;
Ialign : Uint;
Pexp : constant Node_Id := Parent (Exp);
begin
-- If the expression is the RHS of an assignment or object declaration
-- we are always OK because there will always be a target.
-- Object renaming declarations, (generated for view conversions of
-- actuals in inlined calls), like object declarations, provide an
-- explicit type, and are safe as well.
if (Nkind (Pexp) = N_Assignment_Statement
and then Expression (Pexp) = Exp)
or else Nkind (Pexp) = N_Object_Declaration
or else Nkind (Pexp) = N_Object_Renaming_Declaration
then
return True;
-- If the expression is the prefix of an N_Selected_Component
-- we should also be OK because GCC knows to look inside the
-- conversion except if the type is discriminated. We assume
-- that we are OK anyway if the type is not set yet or if it is
-- controlled since we can't afford to introduce a temporary in
-- this case.
elsif Nkind (Pexp) = N_Selected_Component
and then Prefix (Pexp) = Exp
then
if No (Etype (Pexp)) then
return True;
else
return
not Has_Discriminants (Etype (Pexp))
or else Is_Constrained (Etype (Pexp));
end if;
end if;
-- Set the output type, this comes from Etype if it is set, otherwise
-- we take it from the subtype mark, which we assume was already
-- fully analyzed.
if Present (Etype (Exp)) then
Otyp := Etype (Exp);
else
Otyp := Entity (Subtype_Mark (Exp));
end if;
-- The input type always comes from the expression, and we assume
-- this is indeed always analyzed, so we can simply get the Etype.
Ityp := Etype (Expression (Exp));
-- Initialize alignments to unknown so far
Oalign := No_Uint;
Ialign := No_Uint;
-- Replace a concurrent type by its corresponding record type
-- and each type by its underlying type and do the tests on those.
-- The original type may be a private type whose completion is a
-- concurrent type, so find the underlying type first.
if Present (Underlying_Type (Otyp)) then
Otyp := Underlying_Type (Otyp);
end if;
if Present (Underlying_Type (Ityp)) then
Ityp := Underlying_Type (Ityp);
end if;
if Is_Concurrent_Type (Otyp) then
Otyp := Corresponding_Record_Type (Otyp);
end if;
if Is_Concurrent_Type (Ityp) then
Ityp := Corresponding_Record_Type (Ityp);
end if;
-- If the base types are the same, we know there is no problem since
-- this conversion will be a noop.
if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
return True;
-- Same if this is an upwards conversion of an untagged type, and there
-- are no constraints involved (could be more general???)
elsif Etype (Ityp) = Otyp
and then not Is_Tagged_Type (Ityp)
and then not Has_Discriminants (Ityp)
and then No (First_Rep_Item (Base_Type (Ityp)))
then
return True;
-- If the expression has an access type (object or subprogram) we
-- assume that the conversion is safe, because the size of the target
-- is safe, even if it is a record (which might be treated as having
-- unknown size at this point).
elsif Is_Access_Type (Ityp) then
return True;
-- If the size of output type is known at compile time, there is
-- never a problem. Note that unconstrained records are considered
-- to be of known size, but we can't consider them that way here,
-- because we are talking about the actual size of the object.
-- We also make sure that in addition to the size being known, we do
-- not have a case which might generate an embarrassingly large temp
-- in stack checking mode.
elsif Size_Known_At_Compile_Time (Otyp)
and then
(not Stack_Checking_Enabled
or else not May_Generate_Large_Temp (Otyp))
and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
then
return True;
-- If either type is tagged, then we know the alignment is OK so
-- Gigi will be able to use pointer punning.
elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
return True;
-- If either type is a limited record type, we cannot do a copy, so
-- say safe since there's nothing else we can do.
elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
return True;
-- Conversions to and from packed array types are always ignored and
-- hence are safe.
elsif Is_Packed_Array_Type (Otyp)
or else Is_Packed_Array_Type (Ityp)
then
return True;
end if;
-- The only other cases known to be safe is if the input type's
-- alignment is known to be at least the maximum alignment for the
-- target or if both alignments are known and the output type's
-- alignment is no stricter than the input's. We can use the alignment
-- of the component type of an array if a type is an unpacked
-- array type.
if Present (Alignment_Clause (Otyp)) then
Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
elsif Is_Array_Type (Otyp)
and then Present (Alignment_Clause (Component_Type (Otyp)))
then
Oalign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Otyp))));
end if;
if Present (Alignment_Clause (Ityp)) then
Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
elsif Is_Array_Type (Ityp)
and then Present (Alignment_Clause (Component_Type (Ityp)))
then
Ialign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Ityp))));
end if;
if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
return True;
elsif Ialign /= No_Uint and then Oalign /= No_Uint
and then Ialign <= Oalign
then
return True;
-- Otherwise, Gigi cannot handle this and we must make a temporary
else
return False;
end if;
end Safe_Unchecked_Type_Conversion;
---------------------------------
-- Set_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Get_Current_Value_Condition. Here we set required
-- Current_Value fields, and in Get_Current_Value_Condition, we interpret
-- them, so they must have a consistent view.
procedure Set_Current_Value_Condition (Cnode : Node_Id) is
procedure Set_Entity_Current_Value (N : Node_Id);
-- If N is an entity reference, where the entity is of an appropriate
-- kind, then set the current value of this entity to Cnode, unless
-- there is already a definite value set there.
procedure Set_Expression_Current_Value (N : Node_Id);
-- If N is of an appropriate form, sets an appropriate entry in current
-- value fields of relevant entities. Multiple entities can be affected
-- in the case of an AND or AND THEN.
------------------------------
-- Set_Entity_Current_Value --
------------------------------
procedure Set_Entity_Current_Value (N : Node_Id) is
begin
if Is_Entity_Name (N) then
declare
Ent : constant Entity_Id := Entity (N);
begin
-- Don't capture if not safe to do so
if not Safe_To_Capture_Value (N, Ent, Cond => True) then
return;
end if;
-- Here we have a case where the Current_Value field may
-- need to be set. We set it if it is not already set to a
-- compile time expression value.
-- Note that this represents a decision that one condition
-- blots out another previous one. That's certainly right
-- if they occur at the same level. If the second one is
-- nested, then the decision is neither right nor wrong (it
-- would be equally OK to leave the outer one in place, or
-- take the new inner one. Really we should record both, but
-- our data structures are not that elaborate.
if Nkind (Current_Value (Ent)) not in N_Subexpr then
Set_Current_Value (Ent, Cnode);
end if;
end;
end if;
end Set_Entity_Current_Value;
----------------------------------
-- Set_Expression_Current_Value --
----------------------------------
procedure Set_Expression_Current_Value (N : Node_Id) is
Cond : Node_Id;
begin
Cond := N;
-- Loop to deal with (ignore for now) any NOT operators present. The
-- presence of NOT operators will be handled properly when we call
-- Get_Current_Value_Condition.
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
end loop;
-- For an AND or AND THEN, recursively process operands
if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
Set_Expression_Current_Value (Left_Opnd (Cond));
Set_Expression_Current_Value (Right_Opnd (Cond));
return;
end if;
-- Check possible relational operator
if Nkind (Cond) in N_Op_Compare then
if Compile_Time_Known_Value (Right_Opnd (Cond)) then
Set_Entity_Current_Value (Left_Opnd (Cond));
elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
Set_Entity_Current_Value (Right_Opnd (Cond));
end if;
-- Check possible boolean variable reference
else
Set_Entity_Current_Value (Cond);
end if;
end Set_Expression_Current_Value;
-- Start of processing for Set_Current_Value_Condition
begin
Set_Expression_Current_Value (Condition (Cnode));
end Set_Current_Value_Condition;
--------------------------
-- Set_Elaboration_Flag --
--------------------------
procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
Asn : Node_Id;
begin
if Present (Ent) then
-- Nothing to do if at the compilation unit level, because in this
-- case the flag is set by the binder generated elaboration routine.
if Nkind (Parent (N)) = N_Compilation_Unit then
null;
-- Here we do need to generate an assignment statement
else
Check_Restriction (No_Elaboration_Code, N);
Asn :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => New_Occurrence_Of (Standard_True, Loc));
if Nkind (Parent (N)) = N_Subunit then
Insert_After (Corresponding_Stub (Parent (N)), Asn);
else
Insert_After (N, Asn);
end if;
Analyze (Asn);
-- Kill current value indication. This is necessary because the
-- tests of this flag are inserted out of sequence and must not
-- pick up bogus indications of the wrong constant value.
Set_Current_Value (Ent, Empty);
end if;
end if;
end Set_Elaboration_Flag;
----------------------------
-- Set_Renamed_Subprogram --
----------------------------
procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
begin
-- If input node is an identifier, we can just reset it
if Nkind (N) = N_Identifier then
Set_Chars (N, Chars (E));
Set_Entity (N, E);
-- Otherwise we have to do a rewrite, preserving Comes_From_Source
else
declare
CS : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N, Make_Identifier (Sloc (N), Chars => Chars (E)));
Set_Entity (N, E);
Set_Comes_From_Source (N, CS);
Set_Analyzed (N, True);
end;
end if;
end Set_Renamed_Subprogram;
----------------------------------
-- Silly_Boolean_Array_Not_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the case where the 'First of the component type is equal to the
-- 'Last of this component type, and if this is the case, we make sure
-- that constraint error is raised. The reason is that the NOT is bound
-- to cause CE in this case, and we will not otherwise catch it.
-- Believe it or not, this was reported as a bug. Note that nearly
-- always, the test will evaluate statically to False, so the code will
-- be statically removed, and no extra overhead caused.
procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last)),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Not_Test;
----------------------------------
-- Silly_Boolean_Array_Xor_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the XOR case where the component type is True .. True, since this
-- will raise constraint error. A special check is required since CE
-- will not be required otherwise (cf Expand_Packed_Not).
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True.
procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
BT : constant Entity_Id := Base_Type (CT);
begin
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_And (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Convert_To (BT,
New_Occurrence_Of (Standard_True, Loc))),
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last),
Right_Opnd =>
Convert_To (BT,
New_Occurrence_Of (Standard_True, Loc)))),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Xor_Test;
--------------------------
-- Target_Has_Fixed_Ops --
--------------------------
Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Integer'Size - 1) the first time that this
-- function is called (we don't want to compute it more than once!)
Long_Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this
-- function is called (we don't want to compute it more than once)
First_Time_For_THFO : Boolean := True;
-- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
function Target_Has_Fixed_Ops
(Left_Typ : Entity_Id;
Right_Typ : Entity_Id;
Result_Typ : Entity_Id) return Boolean
is
function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
-- Return True if the given type is a fixed-point type with a small
-- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
-- an absolute value less than 1.0. This is currently limited
-- to fixed-point types that map to Integer or Long_Integer.
------------------------
-- Is_Fractional_Type --
------------------------
function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
begin
if Esize (Typ) = Standard_Integer_Size then
return Small_Value (Typ) = Integer_Sized_Small;
elsif Esize (Typ) = Standard_Long_Integer_Size then
return Small_Value (Typ) = Long_Integer_Sized_Small;
else
return False;
end if;
end Is_Fractional_Type;
-- Start of processing for Target_Has_Fixed_Ops
begin
-- Return False if Fractional_Fixed_Ops_On_Target is false
if not Fractional_Fixed_Ops_On_Target then
return False;
end if;
-- Here the target has Fractional_Fixed_Ops, if first time, compute
-- standard constants used by Is_Fractional_Type.
if First_Time_For_THFO then
First_Time_For_THFO := False;
Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Integer_Size - 1),
Rbase => 2);
Long_Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Long_Integer_Size - 1),
Rbase => 2);
end if;
-- Return True if target supports fixed-by-fixed multiply/divide
-- for fractional fixed-point types (see Is_Fractional_Type) and
-- the operand and result types are equivalent fractional types.
return Is_Fractional_Type (Base_Type (Left_Typ))
and then Is_Fractional_Type (Base_Type (Right_Typ))
and then Is_Fractional_Type (Base_Type (Result_Typ))
and then Esize (Left_Typ) = Esize (Right_Typ)
and then Esize (Left_Typ) = Esize (Result_Typ);
end Target_Has_Fixed_Ops;
------------------------------------------
-- Type_May_Have_Bit_Aligned_Components --
------------------------------------------
function Type_May_Have_Bit_Aligned_Components
(Typ : Entity_Id) return Boolean
is
begin
-- Array type, check component type
if Is_Array_Type (Typ) then
return
Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
-- Record type, check components
elsif Is_Record_Type (Typ) then
declare
E : Entity_Id;
begin
E := First_Component_Or_Discriminant (Typ);
while Present (E) loop
if Component_May_Be_Bit_Aligned (E)
or else Type_May_Have_Bit_Aligned_Components (Etype (E))
then
return True;
end if;
Next_Component_Or_Discriminant (E);
end loop;
return False;
end;
-- Type other than array or record is always OK
else
return False;
end if;
end Type_May_Have_Bit_Aligned_Components;
----------------------------
-- Wrap_Cleanup_Procedure --
----------------------------
procedure Wrap_Cleanup_Procedure (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Stseq : constant Node_Id := Handled_Statement_Sequence (N);
Stmts : constant List_Id := Statements (Stseq);
begin
if Abort_Allowed then
Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
end if;
end Wrap_Cleanup_Procedure;
end Exp_Util;
|