1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ V F P T --
-- --
-- B o d y --
-- --
-- Copyright (C) 1997-2012, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Rtsfind; use Rtsfind;
with Sem_Res; use Sem_Res;
with Sinfo; use Sinfo;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Urealp; use Urealp;
with Eval_Fat; use Eval_Fat;
package body Exp_VFpt is
-- Vax floating point format (from Vax Architecture Reference Manual
-- version 6):
-- Float F:
-- --------
-- 1 1
-- 5 4 7 6 0
-- +-+---------------+--------------+
-- |S| exp | fraction | A
-- +-+---------------+--------------+
-- | fraction | A + 2
-- +--------------------------------+
-- bit 15 is the sign bit,
-- bits 14:7 is the excess 128 binary exponent,
-- bits 6:0 and 31:16 the normalized 24-bit fraction with the redundant
-- most significant fraction bit not represented.
-- An exponent value of 0 together with a sign bit of 0, is taken to
-- indicate that the datum has a value of 0. Exponent values of 1 through
-- 255 indicate true binary exponents of -127 to +127. An exponent value
-- of 0, together with a sign bit of 1, is taken as reserved.
-- Note that fraction bits are not continuous in memory, VAX is little
-- endian (LSB first).
-- Float D:
-- --------
-- 1 1
-- 5 4 7 6 0
-- +-+---------------+--------------+
-- |S| exp | fraction | A
-- +-+---------------+--------------+
-- | fraction | A + 2
-- +--------------------------------+
-- | fraction | A + 4
-- +--------------------------------+
-- | fraction (low) | A + 6
-- +--------------------------------+
-- Note that the fraction bits are not continuous in memory. Bytes in a
-- words are stored in little endian format, but words are stored using
-- big endian format (PDP endian).
-- Like Float F but with 55 bits for the fraction.
-- Float G:
-- --------
-- 1 1
-- 5 4 4 3 0
-- +-+---------------------+--------+
-- |S| exp | fract | A
-- +-+---------------------+--------+
-- | fraction | A + 2
-- +--------------------------------+
-- | fraction | A + 4
-- +--------------------------------+
-- | fraction (low) | A + 6
-- +--------------------------------+
-- Exponent values of 1 through 2047 indicate true binary exponents of
-- -1023 to +1023.
-- Main differences compared to IEEE 754:
-- * No denormalized numbers
-- * No infinity
-- * No NaN
-- * No -0.0
-- * Reserved values (exp = 0, sign = 1)
-- * Vax mantissa represent values [0.5, 1)
-- * Bias is shifted by 1 (for single float: 128 on Vax, 127 on IEEE)
VAXFF_Digits : constant := 6;
VAXDF_Digits : constant := 9;
VAXGF_Digits : constant := 15;
----------------------
-- Expand_Vax_Arith --
----------------------
procedure Expand_Vax_Arith (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Base_Type (Etype (N));
Typc : Character;
Atyp : Entity_Id;
Func : RE_Id;
Args : List_Id;
begin
-- Get arithmetic type, note that we do D stuff in G
if Digits_Value (Typ) = VAXFF_Digits then
Typc := 'F';
Atyp := RTE (RE_F);
else
Typc := 'G';
Atyp := RTE (RE_G);
end if;
case Nkind (N) is
when N_Op_Abs =>
if Typc = 'F' then
Func := RE_Abs_F;
else
Func := RE_Abs_G;
end if;
when N_Op_Add =>
if Typc = 'F' then
Func := RE_Add_F;
else
Func := RE_Add_G;
end if;
when N_Op_Divide =>
if Typc = 'F' then
Func := RE_Div_F;
else
Func := RE_Div_G;
end if;
when N_Op_Multiply =>
if Typc = 'F' then
Func := RE_Mul_F;
else
Func := RE_Mul_G;
end if;
when N_Op_Minus =>
if Typc = 'F' then
Func := RE_Neg_F;
else
Func := RE_Neg_G;
end if;
when N_Op_Subtract =>
if Typc = 'F' then
Func := RE_Sub_F;
else
Func := RE_Sub_G;
end if;
when others =>
Func := RE_Null;
raise Program_Error;
end case;
Args := New_List;
if Nkind (N) in N_Binary_Op then
Append_To (Args,
Convert_To (Atyp, Left_Opnd (N)));
end if;
Append_To (Args,
Convert_To (Atyp, Right_Opnd (N)));
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Func), Loc),
Parameter_Associations => Args)));
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
end Expand_Vax_Arith;
---------------------------
-- Expand_Vax_Comparison --
---------------------------
procedure Expand_Vax_Comparison (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Base_Type (Etype (Left_Opnd (N)));
Typc : Character;
Func : RE_Id;
Atyp : Entity_Id;
Revrs : Boolean := False;
Args : List_Id;
begin
-- Get arithmetic type, note that we do D stuff in G
if Digits_Value (Typ) = VAXFF_Digits then
Typc := 'F';
Atyp := RTE (RE_F);
else
Typc := 'G';
Atyp := RTE (RE_G);
end if;
case Nkind (N) is
when N_Op_Eq =>
if Typc = 'F' then
Func := RE_Eq_F;
else
Func := RE_Eq_G;
end if;
when N_Op_Ge =>
if Typc = 'F' then
Func := RE_Le_F;
else
Func := RE_Le_G;
end if;
Revrs := True;
when N_Op_Gt =>
if Typc = 'F' then
Func := RE_Lt_F;
else
Func := RE_Lt_G;
end if;
Revrs := True;
when N_Op_Le =>
if Typc = 'F' then
Func := RE_Le_F;
else
Func := RE_Le_G;
end if;
when N_Op_Lt =>
if Typc = 'F' then
Func := RE_Lt_F;
else
Func := RE_Lt_G;
end if;
when N_Op_Ne =>
if Typc = 'F' then
Func := RE_Ne_F;
else
Func := RE_Ne_G;
end if;
when others =>
Func := RE_Null;
raise Program_Error;
end case;
if not Revrs then
Args := New_List (
Convert_To (Atyp, Left_Opnd (N)),
Convert_To (Atyp, Right_Opnd (N)));
else
Args := New_List (
Convert_To (Atyp, Right_Opnd (N)),
Convert_To (Atyp, Left_Opnd (N)));
end if;
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Func), Loc),
Parameter_Associations => Args));
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end Expand_Vax_Comparison;
---------------------------
-- Expand_Vax_Conversion --
---------------------------
procedure Expand_Vax_Conversion (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Expr : constant Node_Id := Expression (N);
S_Typ : constant Entity_Id := Base_Type (Etype (Expr));
T_Typ : constant Entity_Id := Base_Type (Etype (N));
CallS : RE_Id;
CallT : RE_Id;
Func : RE_Id;
function Call_Type (T : Entity_Id; Otyp : Entity_Id) return RE_Id;
-- Given one of the two types T, determines the corresponding call
-- type, i.e. the type to be used for the call (or the result of
-- the call). The actual operand is converted to (or from) this type.
-- Otyp is the other type, which is useful in figuring out the result.
-- The result returned is the RE_Id value for the type entity.
function Equivalent_Integer_Type (T : Entity_Id) return Entity_Id;
-- Find the predefined integer type that has the same size as the
-- fixed-point type T, for use in fixed/float conversions.
---------------
-- Call_Type --
---------------
function Call_Type (T : Entity_Id; Otyp : Entity_Id) return RE_Id is
begin
-- Vax float formats
if Vax_Float (T) then
if Digits_Value (T) = VAXFF_Digits then
return RE_F;
elsif Digits_Value (T) = VAXGF_Digits then
return RE_G;
-- For D_Float, leave it as D float if the other operand is
-- G_Float, since this is the one conversion that is properly
-- supported for D_Float, but otherwise, use G_Float.
else pragma Assert (Digits_Value (T) = VAXDF_Digits);
if Vax_Float (Otyp)
and then Digits_Value (Otyp) = VAXGF_Digits
then
return RE_D;
else
return RE_G;
end if;
end if;
-- For all discrete types, use 64-bit integer
elsif Is_Discrete_Type (T) then
return RE_Q;
-- For all real types (other than Vax float format), we use the
-- IEEE float-type which corresponds in length to the other type
-- (which is Vax Float).
else pragma Assert (Is_Real_Type (T));
if Digits_Value (Otyp) = VAXFF_Digits then
return RE_S;
else
return RE_T;
end if;
end if;
end Call_Type;
-------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
-------------------------------------------------
function Equivalent_Integer_Type (T : Entity_Id) return Entity_Id is
begin
if Esize (T) = Esize (Standard_Long_Long_Integer) then
return Standard_Long_Long_Integer;
elsif Esize (T) = Esize (Standard_Long_Integer) then
return Standard_Long_Integer;
else
return Standard_Integer;
end if;
end Equivalent_Integer_Type;
-- Start of processing for Expand_Vax_Conversion;
begin
-- If input and output are the same Vax type, we change the
-- conversion to be an unchecked conversion and that's it.
if Vax_Float (S_Typ) and then Vax_Float (T_Typ)
and then Digits_Value (S_Typ) = Digits_Value (T_Typ)
then
Rewrite (N,
Unchecked_Convert_To (T_Typ, Expr));
-- Case of conversion of fixed-point type to Vax_Float type
elsif Is_Fixed_Point_Type (S_Typ) then
-- If Conversion_OK set, then we introduce an intermediate IEEE
-- target type since we are expecting the code generator to handle
-- the case of integer to IEEE float.
if Conversion_OK (N) then
Rewrite (N,
Convert_To (T_Typ, OK_Convert_To (Universal_Real, Expr)));
-- Otherwise, convert the scaled integer value to the target type,
-- and multiply by 'Small of type.
else
Rewrite (N,
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (T_Typ, Loc),
Expression =>
Unchecked_Convert_To (
Equivalent_Integer_Type (S_Typ), Expr)),
Right_Opnd =>
Make_Real_Literal (Loc, Realval => Small_Value (S_Typ))));
end if;
-- Case of conversion of Vax_Float type to fixed-point type
elsif Is_Fixed_Point_Type (T_Typ) then
-- If Conversion_OK set, then we introduce an intermediate IEEE
-- target type, since we are expecting the code generator to handle
-- the case of IEEE float to integer.
if Conversion_OK (N) then
Rewrite (N,
OK_Convert_To (T_Typ, Convert_To (Universal_Real, Expr)));
-- Otherwise, multiply value by 'small of type, and convert to the
-- corresponding integer type.
else
Rewrite (N,
Unchecked_Convert_To (T_Typ,
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Equivalent_Integer_Type (T_Typ), Loc),
Expression =>
Make_Op_Multiply (Loc,
Left_Opnd => Expr,
Right_Opnd =>
Make_Real_Literal (Loc,
Realval => Ureal_1 / Small_Value (T_Typ))))));
end if;
-- All other cases
else
-- Compute types for call
CallS := Call_Type (S_Typ, T_Typ);
CallT := Call_Type (T_Typ, S_Typ);
-- Get function and its types
if CallS = RE_D and then CallT = RE_G then
Func := RE_D_To_G;
elsif CallS = RE_G and then CallT = RE_D then
Func := RE_G_To_D;
elsif CallS = RE_G and then CallT = RE_F then
Func := RE_G_To_F;
elsif CallS = RE_F and then CallT = RE_G then
Func := RE_F_To_G;
elsif CallS = RE_F and then CallT = RE_S then
Func := RE_F_To_S;
elsif CallS = RE_S and then CallT = RE_F then
Func := RE_S_To_F;
elsif CallS = RE_G and then CallT = RE_T then
Func := RE_G_To_T;
elsif CallS = RE_T and then CallT = RE_G then
Func := RE_T_To_G;
elsif CallS = RE_F and then CallT = RE_Q then
Func := RE_F_To_Q;
elsif CallS = RE_Q and then CallT = RE_F then
Func := RE_Q_To_F;
elsif CallS = RE_G and then CallT = RE_Q then
Func := RE_G_To_Q;
else pragma Assert (CallS = RE_Q and then CallT = RE_G);
Func := RE_Q_To_G;
end if;
Rewrite (N,
Convert_To (T_Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Func), Loc),
Parameter_Associations => New_List (
Convert_To (RTE (CallS), Expr)))));
end if;
Analyze_And_Resolve (N, T_Typ, Suppress => All_Checks);
end Expand_Vax_Conversion;
-------------------------------
-- Expand_Vax_Foreign_Return --
-------------------------------
procedure Expand_Vax_Foreign_Return (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Base_Type (Etype (N));
Func : RE_Id;
Args : List_Id;
Atyp : Entity_Id;
Rtyp : constant Entity_Id := Etype (N);
begin
if Digits_Value (Typ) = VAXFF_Digits then
Func := RE_Return_F;
Atyp := RTE (RE_F);
elsif Digits_Value (Typ) = VAXDF_Digits then
Func := RE_Return_D;
Atyp := RTE (RE_D);
else pragma Assert (Digits_Value (Typ) = VAXGF_Digits);
Func := RE_Return_G;
Atyp := RTE (RE_G);
end if;
Args := New_List (Convert_To (Atyp, N));
Rewrite (N,
Convert_To (Rtyp,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Func), Loc),
Parameter_Associations => Args)));
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
end Expand_Vax_Foreign_Return;
--------------------------------
-- Vax_Real_Literal_As_Signed --
--------------------------------
function Get_Vax_Real_Literal_As_Signed (N : Node_Id) return Uint is
Btyp : constant Entity_Id :=
Base_Type (Underlying_Type (Etype (N)));
Value : constant Ureal := Realval (N);
Negative : Boolean;
Fraction : UI;
Exponent : UI;
Res : UI;
Exponent_Size : Uint;
-- Number of bits for the exponent
Fraction_Size : Uint;
-- Number of bits for the fraction
Uintp_Mark : constant Uintp.Save_Mark := Mark;
-- Use the mark & release feature to delete temporaries
begin
-- Extract the sign now
Negative := UR_Is_Negative (Value);
-- Decompose the number
Decompose_Int (Btyp, abs Value, Fraction, Exponent, Round_Even);
-- Number of bits for the fraction, leading fraction bit is implicit
Fraction_Size := Machine_Mantissa_Value (Btyp) - Int'(1);
-- Number of bits for the exponent (one bit for the sign)
Exponent_Size := RM_Size (Btyp) - Fraction_Size - Int'(1);
if Fraction = Uint_0 then
-- Handle zero
Res := Uint_0;
elsif Exponent <= -(Uint_2 ** (Exponent_Size - 1)) then
-- Underflow
Res := Uint_0;
else
-- Check for overflow
pragma Assert (Exponent < Uint_2 ** (Exponent_Size - 1));
-- MSB of the fraction must be 1
pragma Assert (Fraction / Uint_2 ** Fraction_Size = Uint_1);
-- Remove the redudant most significant fraction bit
Fraction := Fraction - Uint_2 ** Fraction_Size;
-- Build the fraction part. Note that this field is in mixed
-- endianness: words are stored using little endianness, while bytes
-- in words are stored using big endianness.
Res := Uint_0;
for I in 1 .. UI_To_Int (RM_Size (Btyp)) / 16 loop
Res := (Res * (Uint_2 ** 16)) + (Fraction mod (Uint_2 ** 16));
Fraction := Fraction / (Uint_2 ** 16);
end loop;
-- The sign bit
if Negative then
Res := Res + Int (2**15);
end if;
-- The exponent
Res := Res + (Exponent + Uint_2 ** (Exponent_Size - 1))
* Uint_2 ** (15 - Exponent_Size);
-- Until now, we have created an unsigned number, but an underlying
-- type is a signed type. Convert to a signed number to avoid
-- overflow in gigi.
if Res >= Uint_2 ** (Exponent_Size + Fraction_Size) then
Res := Res - Uint_2 ** (Exponent_Size + Fraction_Size + 1);
end if;
end if;
Release_And_Save (Uintp_Mark, Res);
return Res;
end Get_Vax_Real_Literal_As_Signed;
----------------------
-- Expand_Vax_Valid --
----------------------
procedure Expand_Vax_Valid (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Pref : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Root_Type (Etype (Pref));
Rtyp : constant Entity_Id := Etype (N);
Vtyp : RE_Id;
Func : RE_Id;
begin
if Digits_Value (Ptyp) = VAXFF_Digits then
Func := RE_Valid_F;
Vtyp := RE_F;
elsif Digits_Value (Ptyp) = VAXDF_Digits then
Func := RE_Valid_D;
Vtyp := RE_D;
else pragma Assert (Digits_Value (Ptyp) = VAXGF_Digits);
Func := RE_Valid_G;
Vtyp := RE_G;
end if;
Rewrite (N,
Convert_To (Rtyp,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Func), Loc),
Parameter_Associations => New_List (
Convert_To (RTE (Vtyp), Pref)))));
Analyze_And_Resolve (N);
end Expand_Vax_Valid;
end Exp_VFpt;
|