summaryrefslogtreecommitdiff
path: root/gcc/ada/g-pehage.adb
blob: ef0ac85eab9881f5cc93174f89b361e8ea7afdf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--        G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S           --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--                     Copyright (C) 2002-2006, AdaCore                     --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Ada.Exceptions;    use Ada.Exceptions;
with Ada.IO_Exceptions; use Ada.IO_Exceptions;

with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
with GNAT.OS_Lib;      use GNAT.OS_Lib;
with GNAT.Table;

package body GNAT.Perfect_Hash_Generators is

   --  We are using the algorithm of J. Czech as described in Zbigniew J.
   --  Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
   --  Generating Minimal Perfect Hash Functions'', Information Processing
   --  Letters, 43(1992) pp.257-264, Oct.1992

   --  This minimal perfect hash function generator is based on random graphs
   --  and produces a hash function of the form:

   --             h (w) = (g (f1 (w)) + g (f2 (w))) mod m

   --  where f1 and f2 are functions that map strings into integers, and g is a
   --  function that maps integers into [0, m-1]. h can be order preserving.
   --  For instance, let W = {w_0, ..., w_i, ...,
   --  w_m-1}, h can be defined such that h (w_i) = i.

   --  This algorithm defines two possible constructions of f1 and f2. Method
   --  b) stores the hash function in less memory space at the expense of
   --  greater CPU time.

   --  a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n

   --     size (Tk) = max (for w in W) (length (w)) * size (used char set)

   --  b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n

   --     size (Tk) = max (for w in W) (length (w)) but the table lookups are
   --     replaced by multiplications.

   --  where Tk values are randomly generated. n is defined later on but the
   --  algorithm recommends to use a value a little bit greater than 2m. Note
   --  that for large values of m, the main memory space requirements comes
   --  from the memory space for storing function g (>= 2m entries).

   --  Random graphs are frequently used to solve difficult problems that do
   --  not have polynomial solutions. This algorithm is based on a weighted
   --  undirected graph. It comprises two steps: mapping and assigment.

   --  In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
   --  ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
   --  assignment step to be successful, G has to be acyclic. To have a high
   --  probability of generating an acyclic graph, n >= 2m. If it is not
   --  acyclic, Tk have to be regenerated.

   --  In the assignment step, the algorithm builds function g. As is acyclic,
   --  there is a vertex v1 with only one neighbor v2. Let w_i be the word such
   --  that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by construction and
   --  g (v2) = (i - g (v1)) mod n (or to be general, (h (i) - g (v1) mod n).
   --  If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
   --  g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
   --  neighbor, then another vertex is selected. The algorithm traverses G to
   --  assign values to all the vertices. It cannot assign a value to an
   --  already assigned vertex as G is acyclic.

   subtype Word_Id   is Integer;
   subtype Key_Id    is Integer;
   subtype Vertex_Id is Integer;
   subtype Edge_Id   is Integer;
   subtype Table_Id  is Integer;

   No_Vertex : constant Vertex_Id := -1;
   No_Edge   : constant Edge_Id   := -1;
   No_Table  : constant Table_Id  := -1;

   Max_Word_Length : constant := 32;
   subtype Word_Type is String (1 .. Max_Word_Length);
   Null_Word : constant Word_Type := (others => ASCII.NUL);
   --  Store keyword in a word. Note that the length of word is limited to 32
   --  characters.

   type Key_Type is record
      Edge : Edge_Id;
   end record;
   --  A key corresponds to an edge in the algorithm graph

   type Vertex_Type is record
      First : Edge_Id;
      Last  : Edge_Id;
   end record;
   --  A vertex can be involved in several edges. First and Last are the bounds
   --  of an array of edges stored in a global edge table.

   type Edge_Type is record
      X   : Vertex_Id;
      Y   : Vertex_Id;
      Key : Key_Id;
   end record;
   --  An edge is a peer of vertices. In the algorithm, a key is associated to
   --  an edge.

   package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
   package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
   --  The two main tables. IT is used to store several tables of components
   --  containing only integers.

   function Image (Int : Integer; W : Natural := 0) return String;
   function Image (Str : String;  W : Natural := 0) return String;
   --  Return a string which includes string Str or integer Int preceded by
   --  leading spaces if required by width W.

   Output : File_Descriptor renames GNAT.OS_Lib.Standout;
   --  Shortcuts

   EOL : constant Character := ASCII.LF;

   Max  : constant := 78;
   Last : Natural  := 0;
   Line : String (1 .. Max);
   --  Use this line to provide buffered IO

   procedure Add (C : Character);
   procedure Add (S : String);
   --  Add a character or a string in Line and update Last

   procedure Put
     (F  : File_Descriptor;
      S  : String;
      F1 : Natural;
      L1 : Natural;
      C1 : Natural;
      F2 : Natural;
      L2 : Natural;
      C2 : Natural);
   --  Write string S into file F as a element of an array of one or two
   --  dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
   --  current) index in the k-th dimension. If F1 = L1 the array is considered
   --  as a one dimension array. This dimension is described by F2 and L2. This
   --  routine takes care of all the parenthesis, spaces and commas needed to
   --  format correctly the array. Moreover, the array is well indented and is
   --  wrapped to fit in a 80 col line. When the line is full, the routine
   --  writes it into file F. When the array is completed, the routine adds
   --  semi-colon and writes the line into file F.

   procedure New_Line
     (File : File_Descriptor);
   --  Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib

   procedure Put
     (File : File_Descriptor;
      Str  : String);
   --  Simulate Ada.Text_IO.Put with GNAT.OS_Lib

   procedure Put_Used_Char_Set
     (File  : File_Descriptor;
      Title : String);
   --  Output a title and a used character set

   procedure Put_Int_Vector
     (File   : File_Descriptor;
      Title  : String;
      Vector : Integer;
      Length : Natural);
   --  Output a title and a vector

   procedure Put_Int_Matrix
     (File  : File_Descriptor;
      Title : String;
      Table : Table_Id;
      Len_1 : Natural;
      Len_2 : Natural);
   --  Output a title and a matrix. When the matrix has only one non-empty
   --  dimension (Len_2 = 0), output a vector.

   procedure Put_Edges
     (File  : File_Descriptor;
      Title : String);
   --  Output a title and an edge table

   procedure Put_Initial_Keys
     (File  : File_Descriptor;
      Title : String);
   --  Output a title and a key table

   procedure Put_Reduced_Keys
     (File  : File_Descriptor;
      Title : String);
   --  Output a title and a key table

   procedure Put_Vertex_Table
     (File  : File_Descriptor;
      Title : String);
   --  Output a title and a vertex table

   ----------------------------------
   -- Character Position Selection --
   ----------------------------------

   --  We reduce the maximum key size by selecting representative positions
   --  in these keys. We build a matrix with one word per line. We fill the
   --  remaining space of a line with ASCII.NUL. The heuristic selects the
   --  position that induces the minimum number of collisions. If there are
   --  collisions, select another position on the reduced key set responsible
   --  of the collisions. Apply the heuristic until there is no more collision.

   procedure Apply_Position_Selection;
   --  Apply Position selection and build the reduced key table

   procedure Parse_Position_Selection (Argument : String);
   --  Parse Argument and compute the position set. Argument is list of
   --  substrings separated by commas. Each substring represents a position
   --  or a range of positions (like x-y).

   procedure Select_Character_Set;
   --  Define an optimized used character set like Character'Pos in order not
   --  to allocate tables of 256 entries.

   procedure Select_Char_Position;
   --  Find a min char position set in order to reduce the max key length. The
   --  heuristic selects the position that induces the minimum number of
   --  collisions. If there are collisions, select another position on the
   --  reduced key set responsible of the collisions. Apply the heuristic until
   --  there is no collision.

   -----------------------------
   -- Random Graph Generation --
   -----------------------------

   procedure Random (Seed : in out Natural);
   --  Simulate Ada.Discrete_Numerics.Random

   procedure Generate_Mapping_Table
     (Tab  : Table_Id;
      L1   : Natural;
      L2   : Natural;
      Seed : in out Natural);
   --  Random generation of the tables below. T is already allocated

   procedure Generate_Mapping_Tables
     (Opt  : Optimization;
      Seed : in out Natural);
   --  Generate the mapping tables T1 and T2. They are used to define fk (w) =
   --  sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
   --  are used to compute the matrix size.

   ---------------------------
   -- Algorithm Computation --
   ---------------------------

   procedure Compute_Edges_And_Vertices (Opt : Optimization);
   --  Compute the edge and vertex tables. These are empty when a self loop is
   --  detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
   --  Y value. Keys is the key table and NK the number of keys. Chars is the
   --  set of characters really used in Keys. NV is the number of vertices
   --  recommended by the algorithm. T1 and T2 are the mapping tables needed to
   --  compute f1 (w) and f2 (w).

   function Acyclic return Boolean;
   --  Return True when the graph is acyclic. Vertices is the current vertex
   --  table and Edges the current edge table.

   procedure Assign_Values_To_Vertices;
   --  Execute the assignment step of the algorithm. Keys is the current key
   --  table. Vertices and Edges represent the random graph. G is the result of
   --  the assignment step such that:
   --    h (w) = (g (f1 (w)) + g (f2 (w))) mod m

   function Sum
     (Word  : Word_Type;
      Table : Table_Id;
      Opt   : Optimization) return Natural;
   --  For an optimization of CPU_Time return
   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
   --  For an optimization of Memory_Space return
   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
   --  Here NV = n

   -------------------------------
   -- Internal Table Management --
   -------------------------------

   function Allocate (N : Natural; S : Natural := 1) return Table_Id;
   --  Allocate N * S ints from IT table

   procedure Free_Tmp_Tables;
   --  Deallocate the tables used by the algorithm (but not the keys table)

   ----------
   -- Keys --
   ----------

   Keys : Table_Id := No_Table;
   NK   : Natural  := 0;
   --  NK : Number of Keys

   function Initial (K : Key_Id) return Word_Id;
   pragma Inline (Initial);

   function Reduced (K : Key_Id) return Word_Id;
   pragma Inline (Reduced);

   function  Get_Key (N : Key_Id) return Key_Type;
   procedure Set_Key (N : Key_Id; Item : Key_Type);
   --  Get or Set Nth element of Keys table

   ------------------
   -- Char_Pos_Set --
   ------------------

   Char_Pos_Set     : Table_Id := No_Table;
   Char_Pos_Set_Len : Natural;
   --  Character Selected Position Set

   function  Get_Char_Pos (P : Natural) return Natural;
   procedure Set_Char_Pos (P : Natural; Item : Natural);
   --  Get or Set the string position of the Pth selected character

   -------------------
   -- Used_Char_Set --
   -------------------

   Used_Char_Set     : Table_Id := No_Table;
   Used_Char_Set_Len : Natural;
   --  Used Character Set : Define a new character mapping. When all the
   --  characters are not present in the keys, in order to reduce the size
   --  of some tables, we redefine the character mapping.

   function  Get_Used_Char (C : Character) return Natural;
   procedure Set_Used_Char (C : Character; Item : Natural);

   ------------
   -- Tables --
   ------------

   T1     : Table_Id := No_Table;
   T2     : Table_Id := No_Table;
   T1_Len : Natural;
   T2_Len : Natural;
   --  T1  : Values table to compute F1
   --  T2  : Values table to compute F2

   function  Get_Table (T : Integer; X, Y : Natural) return Natural;
   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);

   -----------
   -- Graph --
   -----------

   G     : Table_Id := No_Table;
   G_Len : Natural;
   --  Values table to compute G

   NT : Natural := Default_Tries;
   --  Number of tries running the algorithm before raising an error

   function  Get_Graph (N : Natural) return Integer;
   procedure Set_Graph (N : Natural; Item : Integer);
   --  Get or Set Nth element of graph

   -----------
   -- Edges --
   -----------

   Edge_Size : constant := 3;
   Edges     : Table_Id := No_Table;
   Edges_Len : Natural;
   --  Edges  : Edge table of the random graph G

   function  Get_Edges (F : Natural) return Edge_Type;
   procedure Set_Edges (F : Natural; Item : Edge_Type);

   --------------
   -- Vertices --
   --------------

   Vertex_Size : constant := 2;

   Vertices : Table_Id := No_Table;
   --  Vertex table of the random graph G

   NV : Natural;
   --  Number of Vertices

   function  Get_Vertices (F : Natural) return Vertex_Type;
   procedure Set_Vertices (F : Natural; Item : Vertex_Type);
   --  Comments needed ???

   K2V : Float;
   --  Ratio between Keys and Vertices (parameter of Czech's algorithm)

   Opt : Optimization;
   --  Optimization mode (memory vs CPU)

   Max_Key_Len : Natural := 0;
   Min_Key_Len : Natural := Max_Word_Length;
   --  Maximum and minimum of all the word length

   S : Natural;
   --  Seed

   function Type_Size (L : Natural) return Natural;
   --  Given the last L of an unsigned integer type T, return its size

   -------------
   -- Acyclic --
   -------------

   function Acyclic return Boolean is
      Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);

      function Traverse
        (Edge : Edge_Id;
         Mark : Vertex_Id) return Boolean;
      --  Propagate Mark from X to Y. X is already marked. Mark Y and propagate
      --  it to the edges of Y except the one representing the same key. Return
      --  False when Y is marked with Mark.

      --------------
      -- Traverse --
      --------------

      function Traverse
        (Edge : Edge_Id;
         Mark : Vertex_Id) return Boolean
      is
         E : constant Edge_Type := Get_Edges (Edge);
         K : constant Key_Id    := E.Key;
         Y : constant Vertex_Id := E.Y;
         M : constant Vertex_Id := Marks (E.Y);
         V : Vertex_Type;

      begin
         if M = Mark then
            return False;

         elsif M = No_Vertex then
            Marks (Y) := Mark;
            V := Get_Vertices (Y);

            for J in V.First .. V.Last loop

               --  Do not propagate to the edge representing the same key

               if Get_Edges (J).Key /= K
                 and then not Traverse (J, Mark)
               then
                  return False;
               end if;
            end loop;
         end if;

         return True;
      end Traverse;

      Edge  : Edge_Type;

   --  Start of processing for Acyclic

   begin
      --  Edges valid range is

      for J in 1 .. Edges_Len - 1 loop

         Edge := Get_Edges (J);

         --  Mark X of E when it has not been already done

         if Marks (Edge.X) = No_Vertex then
            Marks (Edge.X) := Edge.X;
         end if;

         --  Traverse E when this has not already been done

         if Marks (Edge.Y) = No_Vertex
           and then not Traverse (J, Edge.X)
         then
            return False;
         end if;
      end loop;

      return True;
   end Acyclic;

   ---------
   -- Add --
   ---------

   procedure Add (C : Character) is
   begin
      Line (Last + 1) := C;
      Last := Last + 1;
   end Add;

   ---------
   -- Add --
   ---------

   procedure Add (S : String) is
      Len : constant Natural := S'Length;
   begin
      Line (Last + 1 .. Last + Len) := S;
      Last := Last + Len;
   end Add;

   --------------
   -- Allocate --
   --------------

   function  Allocate (N : Natural; S : Natural := 1) return Table_Id is
      L : constant Integer := IT.Last;
   begin
      IT.Set_Last (L + N * S);
      return L + 1;
   end Allocate;

   ------------------------------
   -- Apply_Position_Selection --
   ------------------------------

   procedure Apply_Position_Selection is
   begin
      WT.Set_Last (2 * NK);
      for J in 0 .. NK - 1 loop
         declare
            I_Word : constant Word_Type := WT.Table (Initial (J));
            R_Word : Word_Type := Null_Word;
            Index  : Natural   := I_Word'First - 1;

         begin
            --  Select the characters of Word included in the position
            --  selection.

            for C in 0 .. Char_Pos_Set_Len - 1 loop
               exit when I_Word (Get_Char_Pos (C)) = ASCII.NUL;
               Index := Index + 1;
               R_Word (Index) := I_Word (Get_Char_Pos (C));
            end loop;

            --  Build the new table with the reduced word

            WT.Table (Reduced (J)) := R_Word;
            Set_Key (J, (Edge => No_Edge));
         end;
      end loop;
   end Apply_Position_Selection;

   -------------------------------
   -- Assign_Values_To_Vertices --
   -------------------------------

   procedure Assign_Values_To_Vertices is
      X  : Vertex_Id;

      procedure Assign (X : Vertex_Id);
      --  Execute assignment on X's neighbors except the vertex that we are
      --  coming from which is already assigned.

      ------------
      -- Assign --
      ------------

      procedure Assign (X : Vertex_Id)
      is
         E : Edge_Type;
         V : constant Vertex_Type := Get_Vertices (X);
      begin
         for J in V.First .. V.Last loop
            E := Get_Edges (J);
            if Get_Graph (E.Y) = -1 then
               Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
               Assign (E.Y);
            end if;
         end loop;
      end Assign;

   --  Start of processing for Assign_Values_To_Vertices

   begin
      --  Value -1 denotes an unitialized value as it is supposed to
      --  be in the range 0 .. NK.

      if G = No_Table then
         G_Len := NV;
         G := Allocate (G_Len, 1);
      end if;

      for J in 0 .. G_Len - 1 loop
         Set_Graph (J, -1);
      end loop;

      for K in 0 .. NK - 1 loop
         X := Get_Edges (Get_Key (K).Edge).X;

         if Get_Graph (X) = -1 then
            Set_Graph (X, 0);
            Assign (X);
         end if;
      end loop;

      for J in 0 .. G_Len - 1 loop
         if Get_Graph (J) = -1 then
            Set_Graph (J, 0);
         end if;
      end loop;

      if Verbose then
         Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
      end if;
   end Assign_Values_To_Vertices;

   -------------
   -- Compute --
   -------------

   procedure Compute
     (Position : String := Default_Position)
   is
      Success : Boolean := False;

   begin
      NV := Natural (K2V * Float (NK));

      Keys := Allocate (NK);

      if Verbose then
         Put_Initial_Keys (Output, "Initial Key Table");
      end if;

      if Position'Length /= 0 then
         Parse_Position_Selection (Position);
      else
         Select_Char_Position;
      end if;

      if Verbose then
         Put_Int_Vector
           (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
      end if;

      Apply_Position_Selection;

      if Verbose then
         Put_Reduced_Keys (Output, "Reduced Keys Table");
      end if;

      Select_Character_Set;

      if Verbose then
         Put_Used_Char_Set (Output, "Character Position Table");
      end if;

      --  Perform Czech's algorithm

      for J in 1 .. NT loop
         Generate_Mapping_Tables (Opt, S);
         Compute_Edges_And_Vertices (Opt);

         --  When graph is not empty (no self-loop from previous operation) and
         --  not acyclic.

         if 0 < Edges_Len and then Acyclic then
            Success := True;
            exit;
         end if;
      end loop;

      if not Success then
         raise Too_Many_Tries;
      end if;

      Assign_Values_To_Vertices;
   end Compute;

   --------------------------------
   -- Compute_Edges_And_Vertices --
   --------------------------------

   procedure Compute_Edges_And_Vertices (Opt : Optimization) is
      X           : Natural;
      Y           : Natural;
      Key         : Key_Type;
      Edge        : Edge_Type;
      Vertex      : Vertex_Type;
      Not_Acyclic : Boolean := False;

      procedure Move (From : Natural; To : Natural);
      function Lt (L, R : Natural) return Boolean;
      --  Subprograms needed for GNAT.Heap_Sort_A

      --------
      -- Lt --
      --------

      function Lt (L, R : Natural) return Boolean is
         EL : constant Edge_Type := Get_Edges (L);
         ER : constant Edge_Type := Get_Edges (R);
      begin
         return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
      end Lt;

      ----------
      -- Move --
      ----------

      procedure Move (From : Natural; To : Natural) is
      begin
         Set_Edges (To, Get_Edges (From));
      end Move;

   --  Start of processing for Compute_Edges_And_Vertices

   begin
      --  We store edges from 1 to 2 * NK and leave zero alone in order to use
      --  GNAT.Heap_Sort_A.

      Edges_Len := 2 * NK + 1;

      if Edges = No_Table then
         Edges := Allocate (Edges_Len, Edge_Size);
      end if;

      if Vertices = No_Table then
         Vertices := Allocate (NV, Vertex_Size);
      end if;

      for J in 0 .. NV - 1 loop
         Set_Vertices (J, (No_Vertex, No_Vertex - 1));
      end loop;

      --  For each w, X = f1 (w) and Y = f2 (w)

      for J in 0 .. NK - 1 loop
         Key := Get_Key (J);
         Key.Edge := No_Edge;
         Set_Key (J, Key);

         X := Sum (WT.Table (Reduced (J)), T1, Opt);
         Y := Sum (WT.Table (Reduced (J)), T2, Opt);

         --  Discard T1 and T2 as soon as we discover a self loop

         if X = Y then
            Not_Acyclic := True;
            exit;
         end if;

         --  We store (X, Y) and (Y, X) to ease assignment step

         Set_Edges (2 * J + 1, (X, Y, J));
         Set_Edges (2 * J + 2, (Y, X, J));
      end loop;

      --  Return an empty graph when self loop detected

      if Not_Acyclic then
         Edges_Len := 0;

      else
         if Verbose then
            Put_Edges      (Output, "Unsorted Edge Table");
            Put_Int_Matrix (Output, "Function Table 1", T1,
                            T1_Len, T2_Len);
            Put_Int_Matrix (Output, "Function Table 2", T2,
                            T1_Len, T2_Len);
         end if;

         --  Enforce consistency between edges and keys. Construct Vertices and
         --  compute the list of neighbors of a vertex First .. Last as Edges
         --  is sorted by X and then Y. To compute the neighbor list, sort the
         --  edges.

         Sort
           (Edges_Len - 1,
            Move'Unrestricted_Access,
            Lt'Unrestricted_Access);

         if Verbose then
            Put_Edges      (Output, "Sorted Edge Table");
            Put_Int_Matrix (Output, "Function Table 1", T1,
                            T1_Len, T2_Len);
            Put_Int_Matrix (Output, "Function Table 2", T2,
                            T1_Len, T2_Len);
         end if;

         --  Edges valid range is 1 .. 2 * NK

         for E in 1 .. Edges_Len - 1 loop
            Edge := Get_Edges (E);
            Key  := Get_Key (Edge.Key);

            if Key.Edge = No_Edge then
               Key.Edge := E;
               Set_Key (Edge.Key, Key);
            end if;

            Vertex := Get_Vertices (Edge.X);

            if Vertex.First = No_Edge then
               Vertex.First := E;
            end if;

            Vertex.Last := E;
            Set_Vertices (Edge.X, Vertex);
         end loop;

         if Verbose then
            Put_Reduced_Keys (Output, "Key Table");
            Put_Edges        (Output, "Edge Table");
            Put_Vertex_Table (Output, "Vertex Table");
         end if;
      end if;
   end Compute_Edges_And_Vertices;

   ------------
   -- Define --
   ------------

   procedure Define
     (Name      : Table_Name;
      Item_Size : out Natural;
      Length_1  : out Natural;
      Length_2  : out Natural)
   is
   begin
      case Name is
         when Character_Position =>
            Item_Size := 8;
            Length_1  := Char_Pos_Set_Len;
            Length_2  := 0;

         when Used_Character_Set =>
            Item_Size := 8;
            Length_1  := 256;
            Length_2  := 0;

         when Function_Table_1
           |  Function_Table_2 =>
            Item_Size := Type_Size (NV);
            Length_1  := T1_Len;
            Length_2  := T2_Len;

         when Graph_Table =>
            Item_Size := Type_Size (NK);
            Length_1  := NV;
            Length_2  := 0;
      end case;
   end Define;

   --------------
   -- Finalize --
   --------------

   procedure Finalize is
   begin
      Free_Tmp_Tables;

      WT.Release;
      IT.Release;

      NK := 0;
      Max_Key_Len := 0;
      Min_Key_Len := Max_Word_Length;
   end Finalize;

   ---------------------
   -- Free_Tmp_Tables --
   ---------------------

   procedure Free_Tmp_Tables is
   begin
      IT.Init;

      Keys := No_Table;

      Char_Pos_Set     := No_Table;
      Char_Pos_Set_Len := 0;

      Used_Char_Set     := No_Table;
      Used_Char_Set_Len := 0;

      T1 := No_Table;
      T2 := No_Table;

      T1_Len := 0;
      T2_Len := 0;

      G     := No_Table;
      G_Len := 0;

      Edges     := No_Table;
      Edges_Len := 0;

      Vertices := No_Table;
      NV       := 0;
   end Free_Tmp_Tables;

   ----------------------------
   -- Generate_Mapping_Table --
   ----------------------------

   procedure Generate_Mapping_Table
     (Tab  : Integer;
      L1   : Natural;
      L2   : Natural;
      Seed : in out Natural)
   is
   begin
      for J in 0 .. L1 - 1 loop
         for K in 0 .. L2 - 1 loop
            Random (Seed);
            Set_Table (Tab, J, K, Seed mod NV);
         end loop;
      end loop;
   end Generate_Mapping_Table;

   -----------------------------
   -- Generate_Mapping_Tables --
   -----------------------------

   procedure Generate_Mapping_Tables
     (Opt  : Optimization;
      Seed : in out Natural)
   is
   begin
      --  If T1 and T2 are already allocated no need to do it twice. Reuse them
      --  as their size has not changed.

      if T1 = No_Table and then T2 = No_Table then
         declare
            Used_Char_Last : Natural := 0;
            Used_Char      : Natural;

         begin
            if Opt = CPU_Time then
               for P in reverse Character'Range loop
                  Used_Char := Get_Used_Char (P);
                  if Used_Char /= 0 then
                     Used_Char_Last := Used_Char;
                     exit;
                  end if;
               end loop;
            end if;

            T1_Len := Char_Pos_Set_Len;
            T2_Len := Used_Char_Last + 1;
            T1 := Allocate (T1_Len * T2_Len);
            T2 := Allocate (T1_Len * T2_Len);
         end;
      end if;

      Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
      Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);

      if Verbose then
         Put_Used_Char_Set (Output, "Used Character Set");
         Put_Int_Matrix (Output, "Function Table 1", T1,
                        T1_Len, T2_Len);
         Put_Int_Matrix (Output, "Function Table 2", T2,
                        T1_Len, T2_Len);
      end if;
   end Generate_Mapping_Tables;

   ------------------
   -- Get_Char_Pos --
   ------------------

   function Get_Char_Pos (P : Natural) return Natural is
      N : constant Natural := Char_Pos_Set + P;
   begin
      return IT.Table (N);
   end Get_Char_Pos;

   ---------------
   -- Get_Edges --
   ---------------

   function Get_Edges (F : Natural) return Edge_Type is
      N : constant Natural := Edges + (F * Edge_Size);
      E : Edge_Type;
   begin
      E.X   := IT.Table (N);
      E.Y   := IT.Table (N + 1);
      E.Key := IT.Table (N + 2);
      return E;
   end Get_Edges;

   ---------------
   -- Get_Graph --
   ---------------

   function Get_Graph (N : Natural) return Integer is
   begin
      return IT.Table (G + N);
   end Get_Graph;

   -------------
   -- Get_Key --
   -------------

   function Get_Key (N : Key_Id) return Key_Type is
      K : Key_Type;
   begin
      K.Edge := IT.Table (Keys + N);
      return K;
   end Get_Key;

   ---------------
   -- Get_Table --
   ---------------

   function Get_Table (T : Integer; X, Y : Natural) return Natural is
      N : constant Natural := T + (Y * T1_Len) + X;
   begin
      return IT.Table (N);
   end Get_Table;

   -------------------
   -- Get_Used_Char --
   -------------------

   function Get_Used_Char (C : Character) return Natural is
      N : constant Natural := Used_Char_Set + Character'Pos (C);
   begin
      return IT.Table (N);
   end Get_Used_Char;

   ------------------
   -- Get_Vertices --
   ------------------

   function Get_Vertices (F : Natural) return Vertex_Type is
      N : constant Natural := Vertices + (F * Vertex_Size);
      V : Vertex_Type;
   begin
      V.First := IT.Table (N);
      V.Last  := IT.Table (N + 1);
      return V;
   end Get_Vertices;

   -----------
   -- Image --
   -----------

   function Image (Int : Integer; W : Natural := 0) return String is
      B : String (1 .. 32);
      L : Natural := 0;

      procedure Img (V : Natural);
      --  Compute image of V into B, starting at B (L), incrementing L

      ---------
      -- Img --
      ---------

      procedure Img (V : Natural) is
      begin
         if V > 9 then
            Img (V / 10);
         end if;

         L := L + 1;
         B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
      end Img;

   --  Start of processing for Image

   begin
      if Int < 0 then
         L := L + 1;
         B (L) := '-';
         Img (-Int);
      else
         Img (Int);
      end if;

      return Image (B (1 .. L), W);
   end Image;

   -----------
   -- Image --
   -----------

   function Image (Str : String; W : Natural := 0) return String is
      Len : constant Natural := Str'Length;
      Max : Natural := Len;

   begin
      if Max < W then
         Max := W;
      end if;

      declare
         Buf : String (1 .. Max) := (1 .. Max => ' ');

      begin
         for J in 0 .. Len - 1 loop
            Buf (Max - Len + 1 + J) := Str (Str'First + J);
         end loop;

         return Buf;
      end;
   end Image;

   -------------
   -- Initial --
   -------------

   function Initial (K : Key_Id) return Word_Id is
   begin
      return K;
   end Initial;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize
     (Seed   : Natural;
      K_To_V : Float        := Default_K_To_V;
      Optim  : Optimization := CPU_Time;
      Tries  : Positive     := Default_Tries)
   is
   begin
      --  Free previous tables (the settings may have changed between two runs)

      Free_Tmp_Tables;

      if K_To_V <= 2.0 then
         Put (Output, "K to V ratio cannot be lower than 2.0");
         New_Line (Output);
         raise Program_Error;
      end if;

      S    := Seed;
      K2V  := K_To_V;
      Opt  := Optim;
      NT   := Tries;
   end Initialize;

   ------------
   -- Insert --
   ------------

   procedure Insert
     (Value : String)
   is
      Word : Word_Type := Null_Word;
      Len  : constant Natural := Value'Length;

   begin
      Word (1 .. Len) := Value (Value'First .. Value'First + Len - 1);
      WT.Set_Last (NK);
      WT.Table (NK) := Word;
      NK := NK + 1;
      NV := Natural (Float (NK) * K2V);

      --  Do not accept a value of K2V too close to 2.0 such that once rounded
      --  up, NV = 2 * NK because the algorithm would not converge.

      if NV <= 2 * NK then
         NV := 2 * NK + 1;
      end if;

      if Max_Key_Len < Len then
         Max_Key_Len := Len;
      end if;

      if Len < Min_Key_Len then
         Min_Key_Len := Len;
      end if;
   end Insert;

   --------------
   -- New_Line --
   --------------

   procedure New_Line (File : File_Descriptor) is
   begin
      if Write (File, EOL'Address, 1) /= 1 then
         raise Program_Error;
      end if;
   end New_Line;

   ------------------------------
   -- Parse_Position_Selection --
   ------------------------------

   procedure Parse_Position_Selection (Argument : String) is
      N : Natural          := Argument'First;
      L : constant Natural := Argument'Last;
      M : constant Natural := Max_Key_Len;

      T : array (1 .. M) of Boolean := (others => False);

      function Parse_Index return Natural;
      --  Parse argument starting at index N to find an index

      -----------------
      -- Parse_Index --
      -----------------

      function Parse_Index return Natural is
         C : Character := Argument (N);
         V : Natural   := 0;

      begin
         if C = '$' then
            N := N + 1;
            return M;
         end if;

         if C not in '0' .. '9' then
            Raise_Exception
              (Program_Error'Identity, "cannot read position argument");
         end if;

         while C in '0' .. '9' loop
            V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
            N := N + 1;
            exit when L < N;
            C := Argument (N);
         end loop;

         return V;
      end Parse_Index;

   --  Start of processing for Parse_Position_Selection

   begin

      --  Empty specification means all the positions

      if L < N then
         Char_Pos_Set_Len := M;
         Char_Pos_Set := Allocate (Char_Pos_Set_Len);

         for C in 0 .. Char_Pos_Set_Len - 1 loop
            Set_Char_Pos (C, C + 1);
         end loop;

      else
         loop
            declare
               First, Last : Natural;

            begin
               First := Parse_Index;
               Last  := First;

               --  Detect a range

               if N <= L and then Argument (N) = '-' then
                  N := N + 1;
                  Last := Parse_Index;
               end if;

               --  Include the positions in the selection

               for J in First .. Last loop
                  T (J) := True;
               end loop;
            end;

            exit when L < N;

            if Argument (N) /= ',' then
               Raise_Exception
                 (Program_Error'Identity, "cannot read position argument");
            end if;

            N := N + 1;
         end loop;

         --  Compute position selection length

         N := 0;
         for J in T'Range loop
            if T (J) then
               N := N + 1;
            end if;
         end loop;

         --  Fill position selection

         Char_Pos_Set_Len := N;
         Char_Pos_Set := Allocate (Char_Pos_Set_Len);

         N := 0;
         for J in T'Range loop
            if T (J) then
               Set_Char_Pos (N, J);
               N := N + 1;
            end if;
         end loop;
      end if;
   end Parse_Position_Selection;

   -------------
   -- Produce --
   -------------

   procedure Produce (Pkg_Name  : String := Default_Pkg_Name) is
      File     : File_Descriptor;

      Status : Boolean;
      --  For call to Close

      function Array_Img (N, T, R1 : String; R2 : String := "") return String;
      --  Return string "N : constant array (R1[, R2]) of T;"

      function Range_Img (F, L : Natural; T : String := "") return String;
      --  Return string "[T range ]F .. L"

      function Type_Img (L : Natural) return String;
      --  Return the larger unsigned type T such that T'Last < L

      ---------------
      -- Array_Img --
      ---------------

      function Array_Img
        (N, T, R1 : String;
         R2       : String := "") return String
      is
      begin
         Last := 0;
         Add ("   ");
         Add (N);
         Add (" : constant array (");
         Add (R1);

         if R2 /= "" then
            Add (", ");
            Add (R2);
         end if;

         Add (") of ");
         Add (T);
         Add (" :=");
         return Line (1 .. Last);
      end Array_Img;

      ---------------
      -- Range_Img --
      ---------------

      function Range_Img (F, L : Natural; T : String := "") return String is
         FI  : constant String  := Image (F);
         FL  : constant Natural := FI'Length;
         LI  : constant String  := Image (L);
         LL  : constant Natural := LI'Length;
         TL  : constant Natural := T'Length;
         RI  : String (1 .. TL + 7 + FL + 4 + LL);
         Len : Natural := 0;

      begin
         if TL /= 0 then
            RI (Len + 1 .. Len + TL) := T;
            Len := Len + TL;
            RI (Len + 1 .. Len + 7) := " range ";
            Len := Len + 7;
         end if;

         RI (Len + 1 .. Len + FL) := FI;
         Len := Len + FL;
         RI (Len + 1 .. Len + 4) := " .. ";
         Len := Len + 4;
         RI (Len + 1 .. Len + LL) := LI;
         Len := Len + LL;
         return RI (1 .. Len);
      end Range_Img;

      --------------
      -- Type_Img --
      --------------

      function Type_Img (L : Natural) return String is
         S : constant String := Image (Type_Size (L));
         U : String  := "Unsigned_  ";
         N : Natural := 9;

      begin
         for J in S'Range loop
            N := N + 1;
            U (N) := S (J);
         end loop;

         return U (1 .. N);
      end Type_Img;

      F : Natural;
      L : Natural;
      P : Natural;

      PLen  : constant Natural := Pkg_Name'Length;
      FName : String (1 .. PLen + 4);

   --  Start of processing for Produce

   begin
      FName (1 .. PLen) := Pkg_Name;
      for J in 1 .. PLen loop
         if FName (J) in 'A' .. 'Z' then
            FName (J) := Character'Val (Character'Pos (FName (J))
                                        - Character'Pos ('A')
                                        + Character'Pos ('a'));

         elsif FName (J) = '.' then
            FName (J) := '-';
         end if;
      end loop;

      FName (PLen + 1 .. PLen + 4) := ".ads";

      File := Create_File (FName, Text);
      Put      (File, "package ");
      Put      (File, Pkg_Name);
      Put      (File, " is");
      New_Line (File);
      Put      (File, "   function Hash (S : String) return Natural;");
      New_Line (File);
      Put      (File, "end ");
      Put      (File, Pkg_Name);
      Put      (File, ";");
      New_Line (File);
      Close    (File, Status);

      if not Status then
         raise Device_Error;
      end if;

      FName (PLen + 4) := 'b';

      File := Create_File (FName, Text);
      Put      (File, "with Interfaces; use Interfaces;");
      New_Line (File);
      New_Line (File);
      Put      (File, "package body ");
      Put      (File, Pkg_Name);
      Put      (File, " is");
      New_Line (File);
      New_Line (File);

      if Opt = CPU_Time then
         Put      (File, Array_Img ("C", Type_Img (256), "Character"));
         New_Line (File);

         F := Character'Pos (Character'First);
         L := Character'Pos (Character'Last);

         for J in Character'Range loop
            P := Get_Used_Char (J);
            Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
         end loop;

         New_Line (File);
      end if;

      F := 0;
      L := Char_Pos_Set_Len - 1;

      Put      (File, Array_Img ("P", "Natural", Range_Img (F, L)));
      New_Line (File);

      for J in F .. L loop
         Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
      end loop;

      New_Line (File);

      if Opt = CPU_Time then
         Put_Int_Matrix
           (File,
            Array_Img ("T1", Type_Img (NV),
                       Range_Img (0, T1_Len - 1),
                       Range_Img (0, T2_Len - 1, Type_Img (256))),
            T1, T1_Len, T2_Len);

      else
         Put_Int_Matrix
           (File,
            Array_Img ("T1", Type_Img (NV),
                       Range_Img (0, T1_Len - 1)),
            T1, T1_Len, 0);
      end if;

      New_Line (File);

      if Opt = CPU_Time then
         Put_Int_Matrix
           (File,
            Array_Img ("T2", Type_Img (NV),
                       Range_Img (0, T1_Len - 1),
                       Range_Img (0, T2_Len - 1, Type_Img (256))),
            T2, T1_Len, T2_Len);

      else
         Put_Int_Matrix
           (File,
            Array_Img ("T2", Type_Img (NV),
                       Range_Img (0, T1_Len - 1)),
            T2, T1_Len, 0);
      end if;

      New_Line (File);

      Put_Int_Vector
        (File,
         Array_Img ("G", Type_Img (NK),
                    Range_Img (0, G_Len - 1)),
         G, G_Len);
      New_Line (File);

      Put      (File, "   function Hash (S : String) return Natural is");
      New_Line (File);
      Put      (File, "      F : constant Natural := S'First - 1;");
      New_Line (File);
      Put      (File, "      L : constant Natural := S'Length;");
      New_Line (File);
      Put      (File, "      F1, F2 : Natural := 0;");
      New_Line (File);

      Put (File, "      J : ");

      if Opt = CPU_Time then
         Put (File, Type_Img (256));
      else
         Put (File, "Natural");
      end if;

      Put (File, ";");
      New_Line (File);

      Put      (File, "   begin");
      New_Line (File);
      Put      (File, "      for K in P'Range loop");
      New_Line (File);
      Put      (File, "         exit when L < P (K);");
      New_Line (File);
      Put      (File, "         J  := ");

      if Opt = CPU_Time then
         Put (File, "C");
      else
         Put (File, "Character'Pos");
      end if;

      Put      (File, " (S (P (K) + F));");
      New_Line (File);

      Put (File, "         F1 := (F1 + Natural (T1 (K");

      if Opt = CPU_Time then
         Put (File, ", J");
      end if;

      Put (File, "))");

      if Opt = Memory_Space then
         Put (File, " * J");
      end if;

      Put      (File, ") mod ");
      Put      (File, Image (NV));
      Put      (File, ";");
      New_Line (File);

      Put (File, "         F2 := (F2 + Natural (T2 (K");

      if Opt = CPU_Time then
         Put (File, ", J");
      end if;

      Put (File, "))");

      if Opt = Memory_Space then
         Put (File, " * J");
      end if;

      Put      (File, ") mod ");
      Put      (File, Image (NV));
      Put      (File, ";");
      New_Line (File);

      Put      (File, "      end loop;");
      New_Line (File);

      Put      (File,
                "      return (Natural (G (F1)) + Natural (G (F2))) mod ");

      Put      (File, Image (NK));
      Put      (File, ";");
      New_Line (File);
      Put      (File, "   end Hash;");
      New_Line (File);
      New_Line (File);
      Put      (File, "end ");
      Put      (File, Pkg_Name);
      Put      (File, ";");
      New_Line (File);
      Close    (File, Status);

      if not Status then
         raise Device_Error;
      end if;
   end Produce;

   ---------
   -- Put --
   ---------

   procedure Put (File : File_Descriptor; Str : String) is
      Len : constant Natural := Str'Length;

   begin
      if Write (File, Str'Address, Len) /= Len then
         raise Program_Error;
      end if;
   end Put;

   ---------
   -- Put --
   ---------

   procedure Put
     (F  : File_Descriptor;
      S  : String;
      F1 : Natural;
      L1 : Natural;
      C1 : Natural;
      F2 : Natural;
      L2 : Natural;
      C2 : Natural)
   is
      Len : constant Natural := S'Length;

      procedure Flush;
      --  Write current line, followed by LF

      -----------
      -- Flush --
      -----------

      procedure Flush is
      begin
         Put (F, Line (1 .. Last));
         New_Line (F);
         Last := 0;
      end Flush;

   --  Start of processing for Put

   begin
      if C1 = F1 and then C2 = F2 then
         Last := 0;
      end if;

      if Last + Len + 3 > Max then
         Flush;
      end if;

      if Last = 0 then
         Line (Last + 1 .. Last + 5) := "     ";
         Last := Last + 5;

         if F1 <= L1 then
            if C1 = F1 and then C2 = F2 then
               Add ('(');
               if F1 = L1 then
                  Add ("0 .. 0 => ");
               end if;
            else
               Add (' ');
            end if;
         end if;
      end if;

      if C2 = F2 then
         Add ('(');
         if F2 = L2 then
            Add ("0 .. 0 => ");
         end if;
      else
         Add (' ');
      end if;

      Line (Last + 1 .. Last + Len) := S;
      Last := Last + Len;

      if C2 = L2 then
         Add (')');

         if F1 > L1 then
            Add (';');
            Flush;
         elsif C1 /= L1 then
            Add (',');
            Flush;
         else
            Add (')');
            Add (';');
            Flush;
         end if;

      else
         Add (',');
      end if;
   end Put;

   ---------------
   -- Put_Edges --
   ---------------

   procedure Put_Edges
     (File  : File_Descriptor;
      Title : String)
   is
      E  : Edge_Type;
      F1 : constant Natural := 1;
      L1 : constant Natural := Edges_Len - 1;
      M  : constant Natural := Max / 5;

   begin
      Put (File, Title);
      New_Line (File);

      --  Edges valid range is 1 .. Edge_Len - 1

      for J in F1 .. L1 loop
         E := Get_Edges (J);
         Put (File, Image (J, M),     F1, L1, J, 1, 4, 1);
         Put (File, Image (E.X, M),   F1, L1, J, 1, 4, 2);
         Put (File, Image (E.Y, M),   F1, L1, J, 1, 4, 3);
         Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
      end loop;
   end Put_Edges;

   ----------------------
   -- Put_Initial_Keys --
   ----------------------

   procedure Put_Initial_Keys
     (File  : File_Descriptor;
      Title : String)
   is
      F1 : constant Natural := 0;
      L1 : constant Natural := NK - 1;
      M  : constant Natural := Max / 5;
      K  : Key_Type;

   begin
      Put (File, Title);
      New_Line (File);

      for J in F1 .. L1 loop
         K := Get_Key (J);
         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
         Put (File, WT.Table (Initial (J)), F1, L1, J, 1, 3, 3);
      end loop;
   end Put_Initial_Keys;

   --------------------
   -- Put_Int_Matrix --
   --------------------

   procedure Put_Int_Matrix
     (File   : File_Descriptor;
      Title  : String;
      Table  : Integer;
      Len_1  : Natural;
      Len_2  : Natural)
   is
      F1 : constant Integer := 0;
      L1 : constant Integer := Len_1 - 1;
      F2 : constant Integer := 0;
      L2 : constant Integer := Len_2 - 1;
      I  : Natural;

   begin
      Put (File, Title);
      New_Line (File);

      if Len_2 = 0 then
         for J in F1 .. L1 loop
            I := IT.Table (Table + J);
            Put (File, Image (I), 1, 0, 1, F1, L1, J);
         end loop;

      else
         for J in F1 .. L1 loop
            for K in F2 .. L2 loop
               I := IT.Table (Table + J + K * Len_1);
               Put (File, Image (I), F1, L1, J, F2, L2, K);
            end loop;
         end loop;
      end if;
   end Put_Int_Matrix;

   --------------------
   -- Put_Int_Vector --
   --------------------

   procedure Put_Int_Vector
     (File   : File_Descriptor;
      Title  : String;
      Vector : Integer;
      Length : Natural)
   is
      F2 : constant Natural := 0;
      L2 : constant Natural := Length - 1;

   begin
      Put (File, Title);
      New_Line (File);

      for J in F2 .. L2 loop
         Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
      end loop;
   end Put_Int_Vector;

   ----------------------
   -- Put_Reduced_Keys --
   ----------------------

   procedure Put_Reduced_Keys
     (File  : File_Descriptor;
      Title : String)
   is
      F1 : constant Natural := 0;
      L1 : constant Natural := NK - 1;
      M  : constant Natural := Max / 5;
      K  : Key_Type;

   begin
      Put (File, Title);
      New_Line (File);

      for J in F1 .. L1 loop
         K := Get_Key (J);
         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
         Put (File, WT.Table (Reduced (J)), F1, L1, J, 1, 3, 3);
      end loop;
   end Put_Reduced_Keys;

   -----------------------
   -- Put_Used_Char_Set --
   -----------------------

   procedure Put_Used_Char_Set
     (File  : File_Descriptor;
      Title : String)
   is
      F : constant Natural := Character'Pos (Character'First);
      L : constant Natural := Character'Pos (Character'Last);

   begin
      Put (File, Title);
      New_Line (File);

      for J in Character'Range loop
         Put
           (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
      end loop;
   end Put_Used_Char_Set;

   ----------------------
   -- Put_Vertex_Table --
   ----------------------

   procedure Put_Vertex_Table
     (File  : File_Descriptor;
      Title : String)
   is
      F1 : constant Natural := 0;
      L1 : constant Natural := NV - 1;
      M  : constant Natural := Max / 4;
      V  : Vertex_Type;

   begin
      Put (File, Title);
      New_Line (File);

      for J in F1 .. L1 loop
         V := Get_Vertices (J);
         Put (File, Image (J, M),       F1, L1, J, 1, 3, 1);
         Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
         Put (File, Image (V.Last, M),  F1, L1, J, 1, 3, 3);
      end loop;
   end Put_Vertex_Table;

   ------------
   -- Random --
   ------------

   procedure Random (Seed : in out Natural)
   is
      --  Park & Miller Standard Minimal using Schrage's algorithm to avoid
      --  overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)

      R : Natural;
      Q : Natural;
      X : Integer;

   begin
      R := Seed mod 127773;
      Q := Seed / 127773;
      X := 16807 * R - 2836 * Q;

      if X < 0 then
         Seed := X + 2147483647;
      else
         Seed := X;
      end if;
   end Random;

   -------------
   -- Reduced --
   -------------

   function Reduced (K : Key_Id) return Word_Id is
   begin
      return K + NK + 1;
   end Reduced;

   --------------------------
   -- Select_Char_Position --
   --------------------------

   procedure Select_Char_Position is

      type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;

      procedure Build_Identical_Keys_Sets
        (Table : in out Vertex_Table_Type;
         Last  : in out Natural;
         Pos   : Natural);
      --  Build a list of keys subsets that are identical with the current
      --  position selection plus Pos. Once this routine is called, reduced
      --  words are sorted by subsets and each item (First, Last) in Sets
      --  defines the range of identical keys.
      --  Need comment saying exactly what Last is ???

      function Count_Different_Keys
        (Table : Vertex_Table_Type;
         Last  : Natural;
         Pos   : Natural) return Natural;
      --  For each subset in Sets, count the number of different keys if we add
      --  Pos to the current position selection.

      Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
      Last_Sel_Pos : Natural := 0;
      Max_Sel_Pos  : Natural := 0;

      -------------------------------
      -- Build_Identical_Keys_Sets --
      -------------------------------

      procedure Build_Identical_Keys_Sets
        (Table : in out Vertex_Table_Type;
         Last  : in out Natural;
         Pos   : Natural)
      is
         S : constant Vertex_Table_Type := Table (Table'First .. Last);
         C : constant Natural           := Pos;
         --  Shortcuts (why are these not renames ???)

         F : Integer;
         L : Integer;
         --  First and last words of a subset

         Offset : Natural;
         --  GNAT.Heap_Sort assumes that the first array index is 1. Offset
         --  defines the translation to operate.

         function Lt (L, R : Natural) return Boolean;
         procedure Move (From : Natural; To : Natural);
         --  Subprograms needed by GNAT.Heap_Sort_A

         --------
         -- Lt --
         --------

         function Lt (L, R : Natural) return Boolean is
            C     : constant Natural := Pos;
            Left  : Natural;
            Right : Natural;

         begin
            if L = 0 then
               Left  := Reduced (0) - 1;
               Right := Offset + R;
            elsif R = 0 then
               Left  := Offset + L;
               Right := Reduced (0) - 1;
            else
               Left  := Offset + L;
               Right := Offset + R;
            end if;

            return WT.Table (Left)(C) < WT.Table (Right)(C);
         end Lt;

         ----------
         -- Move --
         ----------

         procedure Move (From : Natural; To : Natural) is
            Target, Source : Natural;

         begin
            if From = 0 then
               Source := Reduced (0) - 1;
               Target := Offset + To;
            elsif To = 0 then
               Source := Offset + From;
               Target := Reduced (0) - 1;
            else
               Source := Offset + From;
               Target := Offset + To;
            end if;

            WT.Table (Target) := WT.Table (Source);
         end Move;

         --  Start of processing for Build_Identical_Key_Sets

      begin
         Last := 0;

         --  For each subset in S, extract the new subsets we have by adding C
         --  in the position selection.

         for J in S'Range loop
            if S (J).First = S (J).Last then
               F := S (J).First;
               L := S (J).Last;
               Last := Last + 1;
               Table (Last) := (F, L);

            else
               Offset := Reduced (S (J).First) - 1;
               Sort
                 (S (J).Last - S (J).First + 1,
                  Move'Unrestricted_Access,
                  Lt'Unrestricted_Access);

               F := S (J).First;
               L := F;
               for N in S (J).First .. S (J).Last loop

                  --  For the last item, close the last subset

                  if N = S (J).Last then
                     Last := Last + 1;
                     Table (Last) := (F, N);

                  --  Two contiguous words are identical when they have the
                  --  same Cth character.

                  elsif WT.Table (Reduced (N))(C) =
                        WT.Table (Reduced (N + 1))(C)
                  then
                     L := N + 1;

                  --  Find a new subset of identical keys. Store the current
                  --  one and create a new subset.

                  else
                     Last := Last + 1;
                     Table (Last) := (F, L);
                     F := N + 1;
                     L := F;
                  end if;
               end loop;
            end if;
         end loop;
      end Build_Identical_Keys_Sets;

      --------------------------
      -- Count_Different_Keys --
      --------------------------

      function Count_Different_Keys
        (Table : Vertex_Table_Type;
         Last  : Natural;
         Pos   : Natural) return Natural
      is
         N : array (Character) of Natural;
         C : Character;
         T : Natural := 0;

      begin
         --  For each subset, count the number of words that are still
         --  different when we include Pos in the position selection. Only
         --  focus on this position as the other positions already produce
         --  identical keys.

         for S in 1 .. Last loop

            --  Count the occurrences of the different characters

            N := (others => 0);
            for K in Table (S).First .. Table (S).Last loop
               C := WT.Table (Reduced (K))(Pos);
               N (C) := N (C) + 1;
            end loop;

            --  Update the number of different keys. Each character used
            --  denotes a different key.

            for J in N'Range loop
               if N (J) > 0 then
                  T := T + 1;
               end if;
            end loop;
         end loop;

         return T;
      end Count_Different_Keys;

   --  Start of processing for Select_Char_Position

   begin
      --  Initialize the reduced words set

      WT.Set_Last (2 * NK);
      for K in 0 .. NK - 1 loop
         WT.Table (Reduced (K)) := WT.Table (Initial (K));
      end loop;

      declare
         Differences          : Natural;
         Max_Differences      : Natural := 0;
         Old_Differences      : Natural;
         Max_Diff_Sel_Pos     : Natural := 0; -- init to kill warning
         Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
         Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
         Same_Keys_Sets_Last  : Natural := 1;

      begin
         for C in Sel_Position'Range loop
            Sel_Position (C) := C;
         end loop;

         Same_Keys_Sets_Table (1) := (0, NK - 1);

         loop
            --  Preserve maximum number of different keys and check later on
            --  that this value is strictly incrementing. Otherwise, it means
            --  that two keys are stricly identical.

            Old_Differences := Max_Differences;

            --  The first position should not exceed the minimum key length.
            --  Otherwise, we may end up with an empty word once reduced.

            if Last_Sel_Pos = 0 then
               Max_Sel_Pos := Min_Key_Len;
            else
               Max_Sel_Pos := Max_Key_Len;
            end if;

            --  Find which position increases more the number of differences

            for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
               Differences := Count_Different_Keys
                 (Same_Keys_Sets_Table,
                  Same_Keys_Sets_Last,
                  Sel_Position (J));

               if Verbose then
                  Put (Output,
                       "Selecting position" & Sel_Position (J)'Img &
                         " results in" & Differences'Img &
                         " differences");
                  New_Line (Output);
               end if;

               if Differences > Max_Differences then
                  Max_Differences      := Differences;
                  Max_Diff_Sel_Pos     := Sel_Position (J);
                  Max_Diff_Sel_Pos_Idx := J;
               end if;
            end loop;

            if Old_Differences = Max_Differences then
               Raise_Exception
                 (Program_Error'Identity, "some keys are identical");
            end if;

            --  Insert selected position and sort Sel_Position table

            Last_Sel_Pos := Last_Sel_Pos + 1;
            Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
              Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
            Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;

            for P in 1 .. Last_Sel_Pos - 1 loop
               if Max_Diff_Sel_Pos < Sel_Position (P) then
                  Sel_Position (P + 1 .. Last_Sel_Pos) :=
                    Sel_Position (P .. Last_Sel_Pos - 1);
                  Sel_Position (P) := Max_Diff_Sel_Pos;
                  exit;
               end if;
            end loop;

            exit when Max_Differences = NK;

            Build_Identical_Keys_Sets
              (Same_Keys_Sets_Table,
               Same_Keys_Sets_Last,
               Max_Diff_Sel_Pos);

            if Verbose then
               Put (Output,
                    "Selecting position" & Max_Diff_Sel_Pos'Img &
                      " results in" & Max_Differences'Img &
                      " differences");
               New_Line (Output);
               Put (Output, "--");
               New_Line (Output);
               for J in 1 .. Same_Keys_Sets_Last loop
                  for K in
                    Same_Keys_Sets_Table (J).First ..
                    Same_Keys_Sets_Table (J).Last
                  loop
                     Put (Output, WT.Table (Reduced (K)));
                     New_Line (Output);
                  end loop;
                  Put (Output, "--");
                  New_Line (Output);
               end loop;
            end if;
         end loop;
      end;

      Char_Pos_Set_Len := Last_Sel_Pos;
      Char_Pos_Set := Allocate (Char_Pos_Set_Len);

      for C in 1 .. Last_Sel_Pos loop
         Set_Char_Pos (C - 1, Sel_Position (C));
      end loop;
   end Select_Char_Position;

   --------------------------
   -- Select_Character_Set --
   --------------------------

   procedure Select_Character_Set
   is
      Last : Natural := 0;
      Used : array (Character) of Boolean := (others => False);
      Char : Character;

   begin
      for J in 0 .. NK - 1 loop
         for K in 0 .. Char_Pos_Set_Len - 1 loop
            Char := WT.Table (Initial (J))(Get_Char_Pos (K));
            exit when Char = ASCII.NUL;
            Used (Char) := True;
         end loop;
      end loop;

      Used_Char_Set_Len := 256;
      Used_Char_Set := Allocate (Used_Char_Set_Len);

      for J in Used'Range loop
         if Used (J) then
            Set_Used_Char (J, Last);
            Last := Last + 1;
         else
            Set_Used_Char (J, 0);
         end if;
      end loop;
   end Select_Character_Set;

   ------------------
   -- Set_Char_Pos --
   ------------------

   procedure Set_Char_Pos (P : Natural; Item : Natural) is
      N : constant Natural := Char_Pos_Set + P;
   begin
      IT.Table (N) := Item;
   end Set_Char_Pos;

   ---------------
   -- Set_Edges --
   ---------------

   procedure Set_Edges (F : Natural; Item : Edge_Type) is
      N : constant Natural := Edges + (F * Edge_Size);
   begin
      IT.Table (N)     := Item.X;
      IT.Table (N + 1) := Item.Y;
      IT.Table (N + 2) := Item.Key;
   end Set_Edges;

   ---------------
   -- Set_Graph --
   ---------------

   procedure Set_Graph (N : Natural; Item : Integer) is
   begin
      IT.Table (G + N) := Item;
   end Set_Graph;

   -------------
   -- Set_Key --
   -------------

   procedure Set_Key (N : Key_Id; Item : Key_Type) is
   begin
      IT.Table (Keys + N) := Item.Edge;
   end Set_Key;

   ---------------
   -- Set_Table --
   ---------------

   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
      N : constant Natural := T + ((Y * T1_Len) + X);
   begin
      IT.Table (N) := Item;
   end Set_Table;

   -------------------
   -- Set_Used_Char --
   -------------------

   procedure Set_Used_Char (C : Character; Item : Natural) is
      N : constant Natural := Used_Char_Set + Character'Pos (C);
   begin
      IT.Table (N) := Item;
   end Set_Used_Char;

   ------------------
   -- Set_Vertices --
   ------------------

   procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
      N : constant Natural := Vertices + (F * Vertex_Size);
   begin
      IT.Table (N)     := Item.First;
      IT.Table (N + 1) := Item.Last;
   end Set_Vertices;

   ---------
   -- Sum --
   ---------

   function Sum
     (Word  : Word_Type;
      Table : Table_Id;
      Opt   : Optimization) return Natural
   is
      S : Natural := 0;
      R : Natural;

   begin
      if Opt = CPU_Time then
         for J in 0 .. T1_Len - 1 loop
            exit when Word (J + 1) = ASCII.NUL;
            R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
            S := (S + R) mod NV;
         end loop;

      else
         for J in 0 .. T1_Len - 1 loop
            exit when Word (J + 1) = ASCII.NUL;
            R := Get_Table (Table, J, 0);
            S := (S + R * Character'Pos (Word (J + 1))) mod NV;
         end loop;
      end if;

      return S;
   end Sum;

   ---------------
   -- Type_Size --
   ---------------

   function Type_Size (L : Natural) return Natural is
   begin
      if L <= 2 ** 8 then
         return 8;
      elsif L <= 2 ** 16 then
         return 16;
      else
         return 32;
      end if;
   end Type_Size;

   -----------
   -- Value --
   -----------

   function Value
     (Name : Table_Name;
      J    : Natural;
      K    : Natural := 0) return Natural
   is
   begin
      case Name is
         when Character_Position =>
            return Get_Char_Pos (J);

         when Used_Character_Set =>
            return Get_Used_Char (Character'Val (J));

         when Function_Table_1 =>
            return Get_Table (T1, J, K);

         when  Function_Table_2 =>
            return Get_Table (T2, J, K);

         when Graph_Table =>
            return Get_Graph (J);

      end case;
   end Value;

end GNAT.Perfect_Hash_Generators;