1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- G N A T . R A N D O M _ N U M B E R S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2007, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Numerics.Long_Elementary_Functions;
use Ada.Numerics.Long_Elementary_Functions;
with Ada.Unchecked_Conversion;
with System.Random_Numbers; use System.Random_Numbers;
package body GNAT.Random_Numbers is
Sys_Max_Image_Width : constant := System.Random_Numbers.Max_Image_Width;
subtype Image_String is String (1 .. Max_Image_Width);
-- Utility function declarations
procedure Insert_Image
(S : in out Image_String;
Index : Integer;
V : Integer_64);
-- Insert string representation of V in S starting at position Index
---------------
-- To_Signed --
---------------
function To_Signed is
new Ada.Unchecked_Conversion (Unsigned_32, Integer_32);
function To_Signed is
new Ada.Unchecked_Conversion (Unsigned_64, Integer_64);
------------------
-- Insert_Image --
------------------
procedure Insert_Image
(S : in out Image_String;
Index : Integer;
V : Integer_64)
is
Image : constant String := Integer_64'Image (V);
begin
S (Index .. Index + Image'Length - 1) := Image;
end Insert_Image;
---------------------
-- Random_Discrete --
---------------------
function Random_Discrete
(Gen : Generator;
Min : Result_Subtype := Default_Min;
Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
is
function F is
new System.Random_Numbers.Random_Discrete
(Result_Subtype, Default_Min);
begin
return F (Gen.Rep, Min, Max);
end Random_Discrete;
------------
-- Random --
------------
function Random (Gen : Generator) return Float is
begin
return Random (Gen.Rep);
end Random;
function Random (Gen : Generator) return Long_Float is
begin
return Random (Gen.Rep);
end Random;
function Random (Gen : Generator) return Interfaces.Unsigned_32 is
begin
return Random (Gen.Rep);
end Random;
function Random (Gen : Generator) return Interfaces.Unsigned_64 is
begin
return Random (Gen.Rep);
end Random;
function Random (Gen : Generator) return Integer_64 is
begin
return To_Signed (Unsigned_64'(Random (Gen)));
end Random;
function Random (Gen : Generator) return Integer_32 is
begin
return To_Signed (Unsigned_32'(Random (Gen)));
end Random;
function Random (Gen : Generator) return Long_Integer is
function Random_Long_Integer is new Random_Discrete (Long_Integer);
begin
return Random_Long_Integer (Gen);
end Random;
function Random (Gen : Generator) return Integer is
function Random_Integer is new Random_Discrete (Integer);
begin
return Random_Integer (Gen);
end Random;
------------------
-- Random_Float --
------------------
function Random_Float (Gen : Generator) return Result_Subtype is
function F is new System.Random_Numbers.Random_Float (Result_Subtype);
begin
return F (Gen.Rep);
end Random_Float;
---------------------
-- Random_Gaussian --
---------------------
-- Generates pairs of normally distributed values using the polar method of
-- G. E. P. Box, M. E. Muller, and G. Marsaglia. See Donald E. Knuth, The
-- Art of Computer Programming, Vol 2: Seminumerical Algorithms, section
-- 3.4.1, subsection C, algorithm P. Returns half of the pair on each call,
-- using the Next_Gaussian field of Gen to hold the second member on
-- even-numbered calls.
function Random_Gaussian (Gen : Generator) return Long_Float is
G : Generator renames Gen'Unrestricted_Access.all;
V1, V2, Rad2, Mult : Long_Float;
begin
if G.Have_Gaussian then
G.Have_Gaussian := False;
return G.Next_Gaussian;
else
loop
V1 := 2.0 * Random (G) - 1.0;
V2 := 2.0 * Random (G) - 1.0;
Rad2 := V1 ** 2 + V2 ** 2;
exit when Rad2 < 1.0 and then Rad2 /= 0.0;
end loop;
-- Now V1 and V2 are coordinates in the unit circle
Mult := Sqrt (-2.0 * Log (Rad2) / Rad2);
G.Next_Gaussian := V2 * Mult;
G.Have_Gaussian := True;
return Long_Float'Machine (V1 * Mult);
end if;
end Random_Gaussian;
function Random_Gaussian (Gen : Generator) return Float is
V : constant Long_Float := Random_Gaussian (Gen);
begin
return Float'Machine (Float (V));
end Random_Gaussian;
-----------
-- Reset --
-----------
procedure Reset (Gen : out Generator) is
begin
Reset (Gen.Rep);
Gen.Have_Gaussian := False;
end Reset;
procedure Reset
(Gen : out Generator;
Initiator : Initialization_Vector)
is
begin
Reset (Gen.Rep, Initiator);
Gen.Have_Gaussian := False;
end Reset;
procedure Reset
(Gen : out Generator;
Initiator : Interfaces.Integer_32)
is
begin
Reset (Gen.Rep, Initiator);
Gen.Have_Gaussian := False;
end Reset;
procedure Reset
(Gen : out Generator;
Initiator : Interfaces.Unsigned_32)
is
begin
Reset (Gen.Rep, Initiator);
Gen.Have_Gaussian := False;
end Reset;
procedure Reset
(Gen : out Generator;
Initiator : Integer)
is
begin
Reset (Gen.Rep, Initiator);
Gen.Have_Gaussian := False;
end Reset;
procedure Reset
(Gen : out Generator;
From_State : Generator)
is
begin
Reset (Gen.Rep, From_State.Rep);
Gen.Have_Gaussian := From_State.Have_Gaussian;
Gen.Next_Gaussian := From_State.Next_Gaussian;
end Reset;
Frac_Scale : constant Long_Float :=
Long_Float
(Long_Float'Machine_Radix) ** Long_Float'Machine_Mantissa;
function Val64 (Image : String) return Integer_64;
-- Renames Integer64'Value
-- We cannot use a 'renames Integer64'Value' since for some strange
-- reason, this requires a dependency on s-auxdec.ads which not all
-- run-times support ???
function Val64 (Image : String) return Integer_64 is
begin
return Integer_64'Value (Image);
end Val64;
procedure Reset
(Gen : out Generator;
From_Image : String)
is
F0 : constant Integer := From_Image'First;
T0 : constant Integer := From_Image'First + Sys_Max_Image_Width;
begin
Reset (Gen.Rep, From_Image (F0 .. F0 + Sys_Max_Image_Width));
if From_Image (T0 + 1) = '1' then
Gen.Have_Gaussian := True;
Gen.Next_Gaussian :=
Long_Float (Val64 (From_Image (T0 + 3 .. T0 + 23))) / Frac_Scale
* Long_Float (Long_Float'Machine_Radix)
** Integer (Val64 (From_Image (T0 + 25 .. From_Image'Last)));
else
Gen.Have_Gaussian := False;
end if;
end Reset;
-----------
-- Image --
-----------
function Image (Gen : Generator) return String is
Result : Image_String;
begin
Result := (others => ' ');
Result (1 .. Sys_Max_Image_Width) := Image (Gen.Rep);
if Gen.Have_Gaussian then
Result (Sys_Max_Image_Width + 2) := '1';
Insert_Image (Result, Sys_Max_Image_Width + 4,
Integer_64 (Long_Float'Fraction (Gen.Next_Gaussian)
* Frac_Scale));
Insert_Image (Result, Sys_Max_Image_Width + 24,
Integer_64 (Long_Float'Exponent (Gen.Next_Gaussian)));
else
Result (Sys_Max_Image_Width + 2) := '0';
end if;
return Result;
end Image;
end GNAT.Random_Numbers;
|