summaryrefslogtreecommitdiff
path: root/gcc/ada/gcc-interface/utils2.c
blob: a8a21a6f869d077f943e79aba248a97e73c0db1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
/****************************************************************************
 *                                                                          *
 *                         GNAT COMPILER COMPONENTS                         *
 *                                                                          *
 *                               U T I L S 2                                *
 *                                                                          *
 *                          C Implementation File                           *
 *                                                                          *
 *          Copyright (C) 1992-2012, Free Software Foundation, Inc.         *
 *                                                                          *
 * GNAT is free software;  you can  redistribute it  and/or modify it under *
 * terms of the  GNU General Public License as published  by the Free Soft- *
 * ware  Foundation;  either version 3,  or (at your option) any later ver- *
 * sion.  GNAT is distributed in the hope that it will be useful, but WITH- *
 * OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY *
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License *
 * for  more details.  You should have received a copy of the GNU General   *
 * Public License along with GCC; see the file COPYING3.  If not see        *
 * <http://www.gnu.org/licenses/>.                                          *
 *                                                                          *
 * GNAT was originally developed  by the GNAT team at  New York University. *
 * Extensive contributions were provided by Ada Core Technologies Inc.      *
 *                                                                          *
 ****************************************************************************/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "toplev.h"
#include "ggc.h"
#include "tree-inline.h"

#include "ada.h"
#include "types.h"
#include "atree.h"
#include "elists.h"
#include "namet.h"
#include "nlists.h"
#include "snames.h"
#include "stringt.h"
#include "uintp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"

/* Return the base type of TYPE.  */

tree
get_base_type (tree type)
{
  if (TREE_CODE (type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (type))
    type = TREE_TYPE (TYPE_FIELDS (type));

  while (TREE_TYPE (type)
	 && (TREE_CODE (type) == INTEGER_TYPE
	     || TREE_CODE (type) == REAL_TYPE))
    type = TREE_TYPE (type);

  return type;
}

/* EXP is a GCC tree representing an address.  See if we can find how
   strictly the object at that address is aligned.   Return that alignment
   in bits.  If we don't know anything about the alignment, return 0.  */

unsigned int
known_alignment (tree exp)
{
  unsigned int this_alignment;
  unsigned int lhs, rhs;

  switch (TREE_CODE (exp))
    {
    CASE_CONVERT:
    case VIEW_CONVERT_EXPR:
    case NON_LVALUE_EXPR:
      /* Conversions between pointers and integers don't change the alignment
	 of the underlying object.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 0));
      break;

    case COMPOUND_EXPR:
      /* The value of a COMPOUND_EXPR is that of it's second operand.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 1));
      break;

    case PLUS_EXPR:
    case MINUS_EXPR:
      /* If two address are added, the alignment of the result is the
	 minimum of the two alignments.  */
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));
      this_alignment = MIN (lhs, rhs);
      break;

    case POINTER_PLUS_EXPR:
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));
      /* If we don't know the alignment of the offset, we assume that
	 of the base.  */
      if (rhs == 0)
	this_alignment = lhs;
      else
	this_alignment = MIN (lhs, rhs);
      break;

    case COND_EXPR:
      /* If there is a choice between two values, use the smallest one.  */
      lhs = known_alignment (TREE_OPERAND (exp, 1));
      rhs = known_alignment (TREE_OPERAND (exp, 2));
      this_alignment = MIN (lhs, rhs);
      break;

    case INTEGER_CST:
      {
	unsigned HOST_WIDE_INT c = TREE_INT_CST_LOW (exp);
	/* The first part of this represents the lowest bit in the constant,
	   but it is originally in bytes, not bits.  */
	this_alignment = MIN (BITS_PER_UNIT * (c & -c), BIGGEST_ALIGNMENT);
      }
      break;

    case MULT_EXPR:
      /* If we know the alignment of just one side, use it.  Otherwise,
	 use the product of the alignments.  */
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));

      if (lhs == 0)
	this_alignment = rhs;
      else if (rhs == 0)
	this_alignment = lhs;
      else
	this_alignment = MIN (lhs * rhs, BIGGEST_ALIGNMENT);
      break;

    case BIT_AND_EXPR:
      /* A bit-and expression is as aligned as the maximum alignment of the
	 operands.  We typically get here for a complex lhs and a constant
	 negative power of two on the rhs to force an explicit alignment, so
	 don't bother looking at the lhs.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 1));
      break;

    case ADDR_EXPR:
      this_alignment = expr_align (TREE_OPERAND (exp, 0));
      break;

    case CALL_EXPR:
      {
	tree t = maybe_inline_call_in_expr (exp);
	if (t)
	  return known_alignment (t);
      }

      /* Fall through... */

    default:
      /* For other pointer expressions, we assume that the pointed-to object
	 is at least as aligned as the pointed-to type.  Beware that we can
	 have a dummy type here (e.g. a Taft Amendment type), for which the
	 alignment is meaningless and should be ignored.  */
      if (POINTER_TYPE_P (TREE_TYPE (exp))
	  && !TYPE_IS_DUMMY_P (TREE_TYPE (TREE_TYPE (exp))))
	this_alignment = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
      else
	this_alignment = 0;
      break;
    }

  return this_alignment;
}

/* We have a comparison or assignment operation on two types, T1 and T2, which
   are either both array types or both record types.  T1 is assumed to be for
   the left hand side operand, and T2 for the right hand side.  Return the
   type that both operands should be converted to for the operation, if any.
   Otherwise return zero.  */

static tree
find_common_type (tree t1, tree t2)
{
  /* ??? As of today, various constructs lead to here with types of different
     sizes even when both constants (e.g. tagged types, packable vs regular
     component types, padded vs unpadded types, ...).  While some of these
     would better be handled upstream (types should be made consistent before
     calling into build_binary_op), some others are really expected and we
     have to be careful.  */

  /* We must avoid writing more than what the target can hold if this is for
     an assignment and the case of tagged types is handled in build_binary_op
     so we use the lhs type if it is known to be smaller or of constant size
     and the rhs type is not, whatever the modes.  We also force t1 in case of
     constant size equality to minimize occurrences of view conversions on the
     lhs of an assignment, except for the case of record types with a variant
     part on the lhs but not on the rhs to make the conversion simpler.  */
  if (TREE_CONSTANT (TYPE_SIZE (t1))
      && (!TREE_CONSTANT (TYPE_SIZE (t2))
	  || tree_int_cst_lt (TYPE_SIZE (t1), TYPE_SIZE (t2))
	  || (TYPE_SIZE (t1) == TYPE_SIZE (t2)
	      && !(TREE_CODE (t1) == RECORD_TYPE
		   && TREE_CODE (t2) == RECORD_TYPE
		   && get_variant_part (t1) != NULL_TREE
		   && get_variant_part (t2) == NULL_TREE))))
    return t1;

  /* Otherwise, if the lhs type is non-BLKmode, use it.  Note that we know
     that we will not have any alignment problems since, if we did, the
     non-BLKmode type could not have been used.  */
  if (TYPE_MODE (t1) != BLKmode)
    return t1;

  /* If the rhs type is of constant size, use it whatever the modes.  At
     this point it is known to be smaller, or of constant size and the
     lhs type is not.  */
  if (TREE_CONSTANT (TYPE_SIZE (t2)))
    return t2;

  /* Otherwise, if the rhs type is non-BLKmode, use it.  */
  if (TYPE_MODE (t2) != BLKmode)
    return t2;

  /* In this case, both types have variable size and BLKmode.  It's
     probably best to leave the "type mismatch" because changing it
     could cause a bad self-referential reference.  */
  return NULL_TREE;
}

/* Return an expression tree representing an equality comparison of A1 and A2,
   two objects of type ARRAY_TYPE.  The result should be of type RESULT_TYPE.

   Two arrays are equal in one of two ways: (1) if both have zero length in
   some dimension (not necessarily the same dimension) or (2) if the lengths
   in each dimension are equal and the data is equal.  We perform the length
   tests in as efficient a manner as possible.  */

static tree
compare_arrays (location_t loc, tree result_type, tree a1, tree a2)
{
  tree result = convert (result_type, boolean_true_node);
  tree a1_is_null = convert (result_type, boolean_false_node);
  tree a2_is_null = convert (result_type, boolean_false_node);
  tree t1 = TREE_TYPE (a1);
  tree t2 = TREE_TYPE (a2);
  bool a1_side_effects_p = TREE_SIDE_EFFECTS (a1);
  bool a2_side_effects_p = TREE_SIDE_EFFECTS (a2);
  bool length_zero_p = false;

  /* If either operand has side-effects, they have to be evaluated only once
     in spite of the multiple references to the operand in the comparison.  */
  if (a1_side_effects_p)
    a1 = gnat_protect_expr (a1);

  if (a2_side_effects_p)
    a2 = gnat_protect_expr (a2);

  /* Process each dimension separately and compare the lengths.  If any
     dimension has a length known to be zero, set LENGTH_ZERO_P to true
     in order to suppress the comparison of the data at the end.  */
  while (TREE_CODE (t1) == ARRAY_TYPE && TREE_CODE (t2) == ARRAY_TYPE)
    {
      tree lb1 = TYPE_MIN_VALUE (TYPE_DOMAIN (t1));
      tree ub1 = TYPE_MAX_VALUE (TYPE_DOMAIN (t1));
      tree lb2 = TYPE_MIN_VALUE (TYPE_DOMAIN (t2));
      tree ub2 = TYPE_MAX_VALUE (TYPE_DOMAIN (t2));
      tree length1 = size_binop (PLUS_EXPR, size_binop (MINUS_EXPR, ub1, lb1),
				 size_one_node);
      tree length2 = size_binop (PLUS_EXPR, size_binop (MINUS_EXPR, ub2, lb2),
				 size_one_node);
      tree comparison, this_a1_is_null, this_a2_is_null;

      /* If the length of the first array is a constant, swap our operands
	 unless the length of the second array is the constant zero.  */
      if (TREE_CODE (length1) == INTEGER_CST && !integer_zerop (length2))
	{
	  tree tem;
	  bool btem;

	  tem = a1, a1 = a2, a2 = tem;
	  tem = t1, t1 = t2, t2 = tem;
	  tem = lb1, lb1 = lb2, lb2 = tem;
	  tem = ub1, ub1 = ub2, ub2 = tem;
	  tem = length1, length1 = length2, length2 = tem;
	  tem = a1_is_null, a1_is_null = a2_is_null, a2_is_null = tem;
	  btem = a1_side_effects_p, a1_side_effects_p = a2_side_effects_p,
	  a2_side_effects_p = btem;
	}

      /* If the length of the second array is the constant zero, we can just
	 use the original stored bounds for the first array and see whether
	 last < first holds.  */
      if (integer_zerop (length2))
	{
	  length_zero_p = true;

	  ub1 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
	  lb1 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));

	  comparison = fold_build2_loc (loc, LT_EXPR, result_type, ub1, lb1);
	  comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
	  if (EXPR_P (comparison))
	    SET_EXPR_LOCATION (comparison, loc);

	  this_a1_is_null = comparison;
	  this_a2_is_null = convert (result_type, boolean_true_node);
	}

      /* Otherwise, if the length is some other constant value, we know that
	 this dimension in the second array cannot be superflat, so we can
	 just use its length computed from the actual stored bounds.  */
      else if (TREE_CODE (length2) == INTEGER_CST)
	{
	  tree bt;

	  ub1 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
	  lb1 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
	  /* Note that we know that UB2 and LB2 are constant and hence
	     cannot contain a PLACEHOLDER_EXPR.  */
	  ub2 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
	  lb2 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
	  bt = get_base_type (TREE_TYPE (ub1));

	  comparison
	    = fold_build2_loc (loc, EQ_EXPR, result_type,
			       build_binary_op (MINUS_EXPR, bt, ub1, lb1),
			       build_binary_op (MINUS_EXPR, bt, ub2, lb2));
	  comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
	  if (EXPR_P (comparison))
	    SET_EXPR_LOCATION (comparison, loc);

	  this_a1_is_null
	    = fold_build2_loc (loc, LT_EXPR, result_type, ub1, lb1);

	  this_a2_is_null = convert (result_type, boolean_false_node);
	}

      /* Otherwise, compare the computed lengths.  */
      else
	{
	  length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
	  length2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length2, a2);

	  comparison
	    = fold_build2_loc (loc, EQ_EXPR, result_type, length1, length2);

	  /* If the length expression is of the form (cond ? val : 0), assume
	     that cond is equivalent to (length != 0).  That's guaranteed by
	     construction of the array types in gnat_to_gnu_entity.  */
	  if (TREE_CODE (length1) == COND_EXPR
	      && integer_zerop (TREE_OPERAND (length1, 2)))
	    this_a1_is_null
	      = invert_truthvalue_loc (loc, TREE_OPERAND (length1, 0));
	  else
	    this_a1_is_null = fold_build2_loc (loc, EQ_EXPR, result_type,
					       length1, size_zero_node);

	  /* Likewise for the second array.  */
	  if (TREE_CODE (length2) == COND_EXPR
	      && integer_zerop (TREE_OPERAND (length2, 2)))
	    this_a2_is_null
	      = invert_truthvalue_loc (loc, TREE_OPERAND (length2, 0));
	  else
	    this_a2_is_null = fold_build2_loc (loc, EQ_EXPR, result_type,
					       length2, size_zero_node);
	}

      /* Append expressions for this dimension to the final expressions.  */
      result = build_binary_op (TRUTH_ANDIF_EXPR, result_type,
				result, comparison);

      a1_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
				    this_a1_is_null, a1_is_null);

      a2_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
				    this_a2_is_null, a2_is_null);

      t1 = TREE_TYPE (t1);
      t2 = TREE_TYPE (t2);
    }

  /* Unless the length of some dimension is known to be zero, compare the
     data in the array.  */
  if (!length_zero_p)
    {
      tree type = find_common_type (TREE_TYPE (a1), TREE_TYPE (a2));
      tree comparison;

      if (type)
	{
	  a1 = convert (type, a1),
	  a2 = convert (type, a2);
	}

      comparison = fold_build2_loc (loc, EQ_EXPR, result_type, a1, a2);

      result
	= build_binary_op (TRUTH_ANDIF_EXPR, result_type, result, comparison);
    }

  /* The result is also true if both sizes are zero.  */
  result = build_binary_op (TRUTH_ORIF_EXPR, result_type,
			    build_binary_op (TRUTH_ANDIF_EXPR, result_type,
					     a1_is_null, a2_is_null),
			    result);

  /* If either operand has side-effects, they have to be evaluated before
     starting the comparison above since the place they would be otherwise
     evaluated could be wrong.  */
  if (a1_side_effects_p)
    result = build2 (COMPOUND_EXPR, result_type, a1, result);

  if (a2_side_effects_p)
    result = build2 (COMPOUND_EXPR, result_type, a2, result);

  return result;
}

/* Return an expression tree representing an equality comparison of P1 and P2,
   two objects of fat pointer type.  The result should be of type RESULT_TYPE.

   Two fat pointers are equal in one of two ways: (1) if both have a null
   pointer to the array or (2) if they contain the same couple of pointers.
   We perform the comparison in as efficient a manner as possible.  */

static tree
compare_fat_pointers (location_t loc, tree result_type, tree p1, tree p2)
{
  tree p1_array, p2_array, p1_bounds, p2_bounds, same_array, same_bounds;
  tree p1_array_is_null, p2_array_is_null;

  /* If either operand has side-effects, they have to be evaluated only once
     in spite of the multiple references to the operand in the comparison.  */
  p1 = gnat_protect_expr (p1);
  p2 = gnat_protect_expr (p2);

  /* The constant folder doesn't fold fat pointer types so we do it here.  */
  if (TREE_CODE (p1) == CONSTRUCTOR)
    p1_array = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (p1), 0)->value;
  else
    p1_array = build_component_ref (p1, NULL_TREE,
				    TYPE_FIELDS (TREE_TYPE (p1)), true);

  p1_array_is_null
    = fold_build2_loc (loc, EQ_EXPR, result_type, p1_array,
		       fold_convert_loc (loc, TREE_TYPE (p1_array),
					 null_pointer_node));

  if (TREE_CODE (p2) == CONSTRUCTOR)
    p2_array = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (p2), 0)->value;
  else
    p2_array = build_component_ref (p2, NULL_TREE,
				    TYPE_FIELDS (TREE_TYPE (p2)), true);

  p2_array_is_null
    = fold_build2_loc (loc, EQ_EXPR, result_type, p2_array,
		       fold_convert_loc (loc, TREE_TYPE (p2_array),
					 null_pointer_node));

  /* If one of the pointers to the array is null, just compare the other.  */
  if (integer_zerop (p1_array))
    return p2_array_is_null;
  else if (integer_zerop (p2_array))
    return p1_array_is_null;

  /* Otherwise, do the fully-fledged comparison.  */
  same_array
    = fold_build2_loc (loc, EQ_EXPR, result_type, p1_array, p2_array);

  if (TREE_CODE (p1) == CONSTRUCTOR)
    p1_bounds = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (p1), 1)->value;
  else
    p1_bounds
      = build_component_ref (p1, NULL_TREE,
			     DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (p1))), true);

  if (TREE_CODE (p2) == CONSTRUCTOR)
    p2_bounds = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (p2), 1)->value;
  else
    p2_bounds
      = build_component_ref (p2, NULL_TREE,
			     DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (p2))), true);

  same_bounds
    = fold_build2_loc (loc, EQ_EXPR, result_type, p1_bounds, p2_bounds);

  /* P1_ARRAY == P2_ARRAY && (P1_ARRAY == NULL || P1_BOUNDS == P2_BOUNDS).  */
  return build_binary_op (TRUTH_ANDIF_EXPR, result_type, same_array,
			  build_binary_op (TRUTH_ORIF_EXPR, result_type,
					   p1_array_is_null, same_bounds));
}

/* Compute the result of applying OP_CODE to LHS and RHS, where both are of
   type TYPE.  We know that TYPE is a modular type with a nonbinary
   modulus.  */

static tree
nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
                             tree rhs)
{
  tree modulus = TYPE_MODULUS (type);
  unsigned int needed_precision = tree_floor_log2 (modulus) + 1;
  unsigned int precision;
  bool unsignedp = true;
  tree op_type = type;
  tree result;

  /* If this is an addition of a constant, convert it to a subtraction
     of a constant since we can do that faster.  */
  if (op_code == PLUS_EXPR && TREE_CODE (rhs) == INTEGER_CST)
    {
      rhs = fold_build2 (MINUS_EXPR, type, modulus, rhs);
      op_code = MINUS_EXPR;
    }

  /* For the logical operations, we only need PRECISION bits.  For
     addition and subtraction, we need one more and for multiplication we
     need twice as many.  But we never want to make a size smaller than
     our size. */
  if (op_code == PLUS_EXPR || op_code == MINUS_EXPR)
    needed_precision += 1;
  else if (op_code == MULT_EXPR)
    needed_precision *= 2;

  precision = MAX (needed_precision, TYPE_PRECISION (op_type));

  /* Unsigned will do for everything but subtraction.  */
  if (op_code == MINUS_EXPR)
    unsignedp = false;

  /* If our type is the wrong signedness or isn't wide enough, make a new
     type and convert both our operands to it.  */
  if (TYPE_PRECISION (op_type) < precision
      || TYPE_UNSIGNED (op_type) != unsignedp)
    {
      /* Copy the node so we ensure it can be modified to make it modular.  */
      op_type = copy_node (gnat_type_for_size (precision, unsignedp));
      modulus = convert (op_type, modulus);
      SET_TYPE_MODULUS (op_type, modulus);
      TYPE_MODULAR_P (op_type) = 1;
      lhs = convert (op_type, lhs);
      rhs = convert (op_type, rhs);
    }

  /* Do the operation, then we'll fix it up.  */
  result = fold_build2 (op_code, op_type, lhs, rhs);

  /* For multiplication, we have no choice but to do a full modulus
     operation.  However, we want to do this in the narrowest
     possible size.  */
  if (op_code == MULT_EXPR)
    {
      tree div_type = copy_node (gnat_type_for_size (needed_precision, 1));
      modulus = convert (div_type, modulus);
      SET_TYPE_MODULUS (div_type, modulus);
      TYPE_MODULAR_P (div_type) = 1;
      result = convert (op_type,
			fold_build2 (TRUNC_MOD_EXPR, div_type,
				     convert (div_type, result), modulus));
    }

  /* For subtraction, add the modulus back if we are negative.  */
  else if (op_code == MINUS_EXPR)
    {
      result = gnat_protect_expr (result);
      result = fold_build3 (COND_EXPR, op_type,
			    fold_build2 (LT_EXPR, boolean_type_node, result,
					 convert (op_type, integer_zero_node)),
			    fold_build2 (PLUS_EXPR, op_type, result, modulus),
			    result);
    }

  /* For the other operations, subtract the modulus if we are >= it.  */
  else
    {
      result = gnat_protect_expr (result);
      result = fold_build3 (COND_EXPR, op_type,
			    fold_build2 (GE_EXPR, boolean_type_node,
					 result, modulus),
			    fold_build2 (MINUS_EXPR, op_type,
					 result, modulus),
			    result);
    }

  return convert (type, result);
}

/* This page contains routines that implement the Ada semantics with regard
   to atomic objects.  They are fully piggybacked on the middle-end support
   for atomic loads and stores.

   *** Memory barriers and volatile objects ***

   We implement the weakened form of the C.6(16) clause that was introduced
   in Ada 2012 (AI05-117).  Earlier forms of this clause wouldn't have been
   implementable without significant performance hits on modern platforms.

   We also take advantage of the requirements imposed on shared variables by
   9.10 (conditions for sequential actions) to have non-erroneous execution
   and consider that C.6(16) and C.6(17) only prescribe an uniform order of
   volatile updates with regard to sequential actions, i.e. with regard to
   reads or updates of atomic objects.

   As such, an update of an atomic object by a task requires that all earlier
   accesses to volatile objects have completed.  Similarly, later accesses to
   volatile objects cannot be reordered before the update of the atomic object.
   So, memory barriers both before and after the atomic update are needed.

   For a read of an atomic object, to avoid seeing writes of volatile objects
   by a task earlier than by the other tasks, a memory barrier is needed before
   the atomic read.  Finally, to avoid reordering later reads or updates of
   volatile objects to before the atomic read, a barrier is needed after the
   atomic read.

   So, memory barriers are needed before and after atomic reads and updates.
   And, in order to simplify the implementation, we use full memory barriers
   in all cases, i.e. we enforce sequential consistency for atomic accesses.  */

/* Return the size of TYPE, which must be a positive power of 2.  */

static unsigned int
resolve_atomic_size (tree type)
{
  unsigned HOST_WIDE_INT size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);

  if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
    return size;

  /* We shouldn't reach here without having already detected that the size
     isn't compatible with an atomic access.  */
  gcc_assert (Serious_Errors_Detected);

  return 0;
}

/* Build an atomic load for the underlying atomic object in SRC.  */

tree
build_atomic_load (tree src)
{
  tree ptr_type
    = build_pointer_type
      (build_qualified_type (void_type_node, TYPE_QUAL_VOLATILE));
  tree mem_model = build_int_cst (integer_type_node, MEMMODEL_SEQ_CST);
  tree orig_src = src;
  tree type = TREE_TYPE (src);
  tree t, val;
  unsigned int size;
  int fncode;

  src = remove_conversions (src, false);
  size = resolve_atomic_size (TREE_TYPE (src));
  if (size == 0)
    return orig_src;

  fncode = (int) BUILT_IN_ATOMIC_LOAD_N + exact_log2 (size) + 1;
  t = builtin_decl_implicit ((enum built_in_function) fncode);

  src = build_unary_op (ADDR_EXPR, ptr_type, src);
  val = build_call_expr (t, 2, src, mem_model);

  return unchecked_convert (type, val, true);
}

/* Build an atomic store from SRC to the underlying atomic object in DEST.  */

tree
build_atomic_store (tree dest, tree src)
{
  tree ptr_type
    = build_pointer_type
      (build_qualified_type (void_type_node, TYPE_QUAL_VOLATILE));
  tree mem_model = build_int_cst (integer_type_node, MEMMODEL_SEQ_CST);
  tree orig_dest = dest;
  tree t, int_type;
  unsigned int size;
  int fncode;

  dest = remove_conversions (dest, false);
  size = resolve_atomic_size (TREE_TYPE (dest));
  if (size == 0)
    return build_binary_op (MODIFY_EXPR, NULL_TREE, orig_dest, src);

  fncode = (int) BUILT_IN_ATOMIC_STORE_N + exact_log2 (size) + 1;
  t = builtin_decl_implicit ((enum built_in_function) fncode);
  int_type = gnat_type_for_size (BITS_PER_UNIT * size, 1);

  dest = build_unary_op (ADDR_EXPR, ptr_type, dest);
  src = unchecked_convert (int_type, src, true);

  return build_call_expr (t, 3, dest, src, mem_model);
}

/* Make a binary operation of kind OP_CODE.  RESULT_TYPE is the type
   desired for the result.  Usually the operation is to be performed
   in that type.  For INIT_EXPR and MODIFY_EXPR, RESULT_TYPE must be
   NULL_TREE.  For ARRAY_REF, RESULT_TYPE may be NULL_TREE, in which
   case the type to be used will be derived from the operands.

   This function is very much unlike the ones for C and C++ since we
   have already done any type conversion and matching required.  All we
   have to do here is validate the work done by SEM and handle subtypes.  */

tree
build_binary_op (enum tree_code op_code, tree result_type,
                 tree left_operand, tree right_operand)
{
  tree left_type  = TREE_TYPE (left_operand);
  tree right_type = TREE_TYPE (right_operand);
  tree left_base_type = get_base_type (left_type);
  tree right_base_type = get_base_type (right_type);
  tree operation_type = result_type;
  tree best_type = NULL_TREE;
  tree modulus, result;
  bool has_side_effects = false;

  if (operation_type
      && TREE_CODE (operation_type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (operation_type))
    operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));

  if (operation_type
      && TREE_CODE (operation_type) == INTEGER_TYPE
      && TYPE_EXTRA_SUBTYPE_P (operation_type))
    operation_type = get_base_type (operation_type);

  modulus = (operation_type
	     && TREE_CODE (operation_type) == INTEGER_TYPE
	     && TYPE_MODULAR_P (operation_type)
	     ? TYPE_MODULUS (operation_type) : NULL_TREE);

  switch (op_code)
    {
    case INIT_EXPR:
    case MODIFY_EXPR:
#ifdef ENABLE_CHECKING
      gcc_assert (result_type == NULL_TREE);
#endif
      /* If there were integral or pointer conversions on the LHS, remove
	 them; we'll be putting them back below if needed.  Likewise for
	 conversions between array and record types, except for justified
	 modular types.  But don't do this if the right operand is not
	 BLKmode (for packed arrays) unless we are not changing the mode.  */
      while ((CONVERT_EXPR_P (left_operand)
	      || TREE_CODE (left_operand) == VIEW_CONVERT_EXPR)
	     && (((INTEGRAL_TYPE_P (left_type)
		   || POINTER_TYPE_P (left_type))
		  && (INTEGRAL_TYPE_P (TREE_TYPE
				       (TREE_OPERAND (left_operand, 0)))
		      || POINTER_TYPE_P (TREE_TYPE
					 (TREE_OPERAND (left_operand, 0)))))
		 || (((TREE_CODE (left_type) == RECORD_TYPE
		       && !TYPE_JUSTIFIED_MODULAR_P (left_type))
		      || TREE_CODE (left_type) == ARRAY_TYPE)
		     && ((TREE_CODE (TREE_TYPE
				     (TREE_OPERAND (left_operand, 0)))
			  == RECORD_TYPE)
			 || (TREE_CODE (TREE_TYPE
					(TREE_OPERAND (left_operand, 0)))
			     == ARRAY_TYPE))
		     && (TYPE_MODE (right_type) == BLKmode
			 || (TYPE_MODE (left_type)
			     == TYPE_MODE (TREE_TYPE
					   (TREE_OPERAND
					    (left_operand, 0))))))))
	{
	  left_operand = TREE_OPERAND (left_operand, 0);
	  left_type = TREE_TYPE (left_operand);
	}

      /* If a class-wide type may be involved, force use of the RHS type.  */
      if ((TREE_CODE (right_type) == RECORD_TYPE
	   || TREE_CODE (right_type) == UNION_TYPE)
	  && TYPE_ALIGN_OK (right_type))
	operation_type = right_type;

      /* If we are copying between padded objects with compatible types, use
	 the padded view of the objects, this is very likely more efficient.
	 Likewise for a padded object that is assigned a constructor, if we
	 can convert the constructor to the inner type, to avoid putting a
	 VIEW_CONVERT_EXPR on the LHS.  But don't do so if we wouldn't have
	 actually copied anything.  */
      else if (TYPE_IS_PADDING_P (left_type)
	       && TREE_CONSTANT (TYPE_SIZE (left_type))
	       && ((TREE_CODE (right_operand) == COMPONENT_REF
		    && TYPE_MAIN_VARIANT (left_type)
		       == TYPE_MAIN_VARIANT
			  (TREE_TYPE (TREE_OPERAND (right_operand, 0))))
		   || (TREE_CODE (right_operand) == CONSTRUCTOR
		       && !CONTAINS_PLACEHOLDER_P
			   (DECL_SIZE (TYPE_FIELDS (left_type)))))
	       && !integer_zerop (TYPE_SIZE (right_type)))
	{
	  /* We make an exception for a BLKmode type padding a non-BLKmode
	     inner type and do the conversion of the LHS right away, since
	     unchecked_convert wouldn't do it properly.  */
	  if (TYPE_MODE (left_type) == BLKmode
	      && TYPE_MODE (right_type) != BLKmode
	      && TREE_CODE (right_operand) != CONSTRUCTOR)
	    {
	      operation_type = right_type;
	      left_operand = convert (operation_type, left_operand);
	      left_type = operation_type;
	    }
	  else
	    operation_type = left_type;
	}

      /* If we have a call to a function that returns an unconstrained type
	 with default discriminant on the RHS, use the RHS type (which is
	 padded) as we cannot compute the size of the actual assignment.  */
      else if (TREE_CODE (right_operand) == CALL_EXPR
	       && TYPE_IS_PADDING_P (right_type)
	       && CONTAINS_PLACEHOLDER_P
		  (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (right_type)))))
	operation_type = right_type;

      /* Find the best type to use for copying between aggregate types.  */
      else if (((TREE_CODE (left_type) == ARRAY_TYPE
		 && TREE_CODE (right_type) == ARRAY_TYPE)
		|| (TREE_CODE (left_type) == RECORD_TYPE
		    && TREE_CODE (right_type) == RECORD_TYPE))
	       && (best_type = find_common_type (left_type, right_type)))
	operation_type = best_type;

      /* Otherwise use the LHS type.  */
      else
	operation_type = left_type;

      /* Ensure everything on the LHS is valid.  If we have a field reference,
	 strip anything that get_inner_reference can handle.  Then remove any
	 conversions between types having the same code and mode.  And mark
	 VIEW_CONVERT_EXPRs with TREE_ADDRESSABLE.  When done, we must have
	 either an INDIRECT_REF, a NULL_EXPR or a DECL node.  */
      result = left_operand;
      while (true)
	{
	  tree restype = TREE_TYPE (result);

	  if (TREE_CODE (result) == COMPONENT_REF
	      || TREE_CODE (result) == ARRAY_REF
	      || TREE_CODE (result) == ARRAY_RANGE_REF)
	    while (handled_component_p (result))
	      result = TREE_OPERAND (result, 0);
	  else if (TREE_CODE (result) == REALPART_EXPR
		   || TREE_CODE (result) == IMAGPART_EXPR
		   || (CONVERT_EXPR_P (result)
		       && (((TREE_CODE (restype)
			     == TREE_CODE (TREE_TYPE
					   (TREE_OPERAND (result, 0))))
			     && (TYPE_MODE (TREE_TYPE
					    (TREE_OPERAND (result, 0)))
				 == TYPE_MODE (restype)))
			   || TYPE_ALIGN_OK (restype))))
	    result = TREE_OPERAND (result, 0);
	  else if (TREE_CODE (result) == VIEW_CONVERT_EXPR)
	    {
	      TREE_ADDRESSABLE (result) = 1;
	      result = TREE_OPERAND (result, 0);
	    }
	  else
	    break;
	}

      gcc_assert (TREE_CODE (result) == INDIRECT_REF
		  || TREE_CODE (result) == NULL_EXPR
		  || DECL_P (result));

      /* Convert the right operand to the operation type unless it is
	 either already of the correct type or if the type involves a
	 placeholder, since the RHS may not have the same record type.  */
      if (operation_type != right_type
	  && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (operation_type)))
	{
	  right_operand = convert (operation_type, right_operand);
	  right_type = operation_type;
	}

      /* If the left operand is not of the same type as the operation
	 type, wrap it up in a VIEW_CONVERT_EXPR.  */
      if (left_type != operation_type)
	left_operand = unchecked_convert (operation_type, left_operand, false);

      has_side_effects = true;
      modulus = NULL_TREE;
      break;

    case ARRAY_REF:
      if (!operation_type)
	operation_type = TREE_TYPE (left_type);

      /* ... fall through ... */

    case ARRAY_RANGE_REF:
      /* First look through conversion between type variants.  Note that
	 this changes neither the operation type nor the type domain.  */
      if (TREE_CODE (left_operand) == VIEW_CONVERT_EXPR
	  && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (left_operand, 0)))
	     == TYPE_MAIN_VARIANT (left_type))
	{
	  left_operand = TREE_OPERAND (left_operand, 0);
	  left_type = TREE_TYPE (left_operand);
	}

      /* For a range, make sure the element type is consistent.  */
      if (op_code == ARRAY_RANGE_REF
	  && TREE_TYPE (operation_type) != TREE_TYPE (left_type))
	operation_type = build_array_type (TREE_TYPE (left_type),
					   TYPE_DOMAIN (operation_type));

      /* Then convert the right operand to its base type.  This will prevent
	 unneeded sign conversions when sizetype is wider than integer.  */
      right_operand = convert (right_base_type, right_operand);
      right_operand = convert_to_index_type (right_operand);
      modulus = NULL_TREE;
      break;

    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
#ifdef ENABLE_CHECKING
      gcc_assert (TREE_CODE (get_base_type (result_type)) == BOOLEAN_TYPE);
#endif
      operation_type = left_base_type;
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (operation_type, right_operand);
      break;

    case GE_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case LT_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
#ifdef ENABLE_CHECKING
      gcc_assert (TREE_CODE (get_base_type (result_type)) == BOOLEAN_TYPE);
#endif
      /* If either operand is a NULL_EXPR, just return a new one.  */
      if (TREE_CODE (left_operand) == NULL_EXPR)
	return build2 (op_code, result_type,
		       build1 (NULL_EXPR, integer_type_node,
			       TREE_OPERAND (left_operand, 0)),
		       integer_zero_node);

      else if (TREE_CODE (right_operand) == NULL_EXPR)
	return build2 (op_code, result_type,
		       build1 (NULL_EXPR, integer_type_node,
			       TREE_OPERAND (right_operand, 0)),
		       integer_zero_node);

      /* If either object is a justified modular types, get the
	 fields from within.  */
      if (TREE_CODE (left_type) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (left_type))
	{
	  left_operand = convert (TREE_TYPE (TYPE_FIELDS (left_type)),
				  left_operand);
	  left_type = TREE_TYPE (left_operand);
	  left_base_type = get_base_type (left_type);
	}

      if (TREE_CODE (right_type) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (right_type))
	{
	  right_operand = convert (TREE_TYPE (TYPE_FIELDS (right_type)),
				  right_operand);
	  right_type = TREE_TYPE (right_operand);
	  right_base_type = get_base_type (right_type);
	}

      /* If both objects are arrays, compare them specially.  */
      if ((TREE_CODE (left_type) == ARRAY_TYPE
	   || (TREE_CODE (left_type) == INTEGER_TYPE
	       && TYPE_HAS_ACTUAL_BOUNDS_P (left_type)))
	  && (TREE_CODE (right_type) == ARRAY_TYPE
	      || (TREE_CODE (right_type) == INTEGER_TYPE
		  && TYPE_HAS_ACTUAL_BOUNDS_P (right_type))))
	{
	  result = compare_arrays (input_location,
				   result_type, left_operand, right_operand);
	  if (op_code == NE_EXPR)
	    result = invert_truthvalue_loc (EXPR_LOCATION (result), result);
	  else
	    gcc_assert (op_code == EQ_EXPR);

	  return result;
	}

      /* Otherwise, the base types must be the same, unless they are both fat
	 pointer types or record types.  In the latter case, use the best type
	 and convert both operands to that type.  */
      if (left_base_type != right_base_type)
	{
	  if (TYPE_IS_FAT_POINTER_P (left_base_type)
	      && TYPE_IS_FAT_POINTER_P (right_base_type))
	    {
	      gcc_assert (TYPE_MAIN_VARIANT (left_base_type)
			  == TYPE_MAIN_VARIANT (right_base_type));
	      best_type = left_base_type;
	    }

	  else if (TREE_CODE (left_base_type) == RECORD_TYPE
		   && TREE_CODE (right_base_type) == RECORD_TYPE)
	    {
	      /* The only way this is permitted is if both types have the same
		 name.  In that case, one of them must not be self-referential.
		 Use it as the best type.  Even better with a fixed size.  */
	      gcc_assert (TYPE_NAME (left_base_type)
			  && TYPE_NAME (left_base_type)
			     == TYPE_NAME (right_base_type));

	      if (TREE_CONSTANT (TYPE_SIZE (left_base_type)))
		best_type = left_base_type;
	      else if (TREE_CONSTANT (TYPE_SIZE (right_base_type)))
		best_type = right_base_type;
	      else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (left_base_type)))
		best_type = left_base_type;
	      else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (right_base_type)))
		best_type = right_base_type;
	      else
		gcc_unreachable ();
	    }

	  else
	    gcc_unreachable ();

	  left_operand = convert (best_type, left_operand);
	  right_operand = convert (best_type, right_operand);
	}
      else
	{
	  left_operand = convert (left_base_type, left_operand);
	  right_operand = convert (right_base_type, right_operand);
	}

      /* If both objects are fat pointers, compare them specially.  */
      if (TYPE_IS_FAT_POINTER_P (left_base_type))
	{
	  result
	    = compare_fat_pointers (input_location,
				    result_type, left_operand, right_operand);
	  if (op_code == NE_EXPR)
	    result = invert_truthvalue_loc (EXPR_LOCATION (result), result);
	  else
	    gcc_assert (op_code == EQ_EXPR);

	  return result;
	}

      modulus = NULL_TREE;
      break;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
       /* The RHS of a shift can be any type.  Also, ignore any modulus
	 (we used to abort, but this is needed for unchecked conversion
	 to modular types).  Otherwise, processing is the same as normal.  */
      gcc_assert (operation_type == left_base_type);
      modulus = NULL_TREE;
      left_operand = convert (operation_type, left_operand);
      break;

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      /* For binary modulus, if the inputs are in range, so are the
	 outputs.  */
      if (modulus && integer_pow2p (modulus))
	modulus = NULL_TREE;
      goto common;

    case COMPLEX_EXPR:
      gcc_assert (TREE_TYPE (result_type) == left_base_type
		  && TREE_TYPE (result_type) == right_base_type);
      left_operand = convert (left_base_type, left_operand);
      right_operand = convert (right_base_type, right_operand);
      break;

    case TRUNC_DIV_EXPR:   case TRUNC_MOD_EXPR:
    case CEIL_DIV_EXPR:    case CEIL_MOD_EXPR:
    case FLOOR_DIV_EXPR:   case FLOOR_MOD_EXPR:
    case ROUND_DIV_EXPR:   case ROUND_MOD_EXPR:
      /* These always produce results lower than either operand.  */
      modulus = NULL_TREE;
      goto common;

    case POINTER_PLUS_EXPR:
      gcc_assert (operation_type == left_base_type
		  && sizetype == right_base_type);
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (sizetype, right_operand);
      break;

    case PLUS_NOMOD_EXPR:
    case MINUS_NOMOD_EXPR:
      if (op_code == PLUS_NOMOD_EXPR)
	op_code = PLUS_EXPR;
      else
	op_code = MINUS_EXPR;
      modulus = NULL_TREE;

      /* ... fall through ... */

    case PLUS_EXPR:
    case MINUS_EXPR:
      /* Avoid doing arithmetics in ENUMERAL_TYPE or BOOLEAN_TYPE like the
	 other compilers.  Contrary to C, Ada doesn't allow arithmetics in
	 these types but can generate addition/subtraction for Succ/Pred.  */
      if (operation_type
	  && (TREE_CODE (operation_type) == ENUMERAL_TYPE
	      || TREE_CODE (operation_type) == BOOLEAN_TYPE))
	operation_type = left_base_type = right_base_type
	  = gnat_type_for_mode (TYPE_MODE (operation_type),
				TYPE_UNSIGNED (operation_type));

      /* ... fall through ... */

    default:
    common:
      /* The result type should be the same as the base types of the
	 both operands (and they should be the same).  Convert
	 everything to the result type.  */

      gcc_assert (operation_type == left_base_type
		  && left_base_type == right_base_type);
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (operation_type, right_operand);
    }

  if (modulus && !integer_pow2p (modulus))
    {
      result = nonbinary_modular_operation (op_code, operation_type,
					    left_operand, right_operand);
      modulus = NULL_TREE;
    }
  /* If either operand is a NULL_EXPR, just return a new one.  */
  else if (TREE_CODE (left_operand) == NULL_EXPR)
    return build1 (NULL_EXPR, operation_type, TREE_OPERAND (left_operand, 0));
  else if (TREE_CODE (right_operand) == NULL_EXPR)
    return build1 (NULL_EXPR, operation_type, TREE_OPERAND (right_operand, 0));
  else if (op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
    result = fold (build4 (op_code, operation_type, left_operand,
			   right_operand, NULL_TREE, NULL_TREE));
  else if (op_code == INIT_EXPR || op_code == MODIFY_EXPR)
    result = build2 (op_code, void_type_node, left_operand, right_operand);
  else
    result
      = fold_build2 (op_code, operation_type, left_operand, right_operand);

  if (TREE_CONSTANT (result))
    ;
  else if (op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
    {
      TREE_THIS_NOTRAP (result) = 1;
      if (TYPE_VOLATILE (operation_type))
	TREE_THIS_VOLATILE (result) = 1;
    }
  else
    TREE_CONSTANT (result)
      |= (TREE_CONSTANT (left_operand) && TREE_CONSTANT (right_operand));

  TREE_SIDE_EFFECTS (result) |= has_side_effects;

  /* If we are working with modular types, perform the MOD operation
     if something above hasn't eliminated the need for it.  */
  if (modulus)
    result = fold_build2 (FLOOR_MOD_EXPR, operation_type, result,
			  convert (operation_type, modulus));

  if (result_type && result_type != operation_type)
    result = convert (result_type, result);

  return result;
}

/* Similar, but for unary operations.  */

tree
build_unary_op (enum tree_code op_code, tree result_type, tree operand)
{
  tree type = TREE_TYPE (operand);
  tree base_type = get_base_type (type);
  tree operation_type = result_type;
  tree result;

  if (operation_type
      && TREE_CODE (operation_type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (operation_type))
    operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));

  if (operation_type
      && TREE_CODE (operation_type) == INTEGER_TYPE
      && TYPE_EXTRA_SUBTYPE_P (operation_type))
    operation_type = get_base_type (operation_type);

  switch (op_code)
    {
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      if (!operation_type)
	result_type = operation_type = TREE_TYPE (type);
      else
	gcc_assert (result_type == TREE_TYPE (type));

      result = fold_build1 (op_code, operation_type, operand);
      break;

    case TRUTH_NOT_EXPR:
#ifdef ENABLE_CHECKING
      gcc_assert (TREE_CODE (get_base_type (result_type)) == BOOLEAN_TYPE);
#endif
      result = invert_truthvalue_loc (EXPR_LOCATION (operand), operand);
      /* When not optimizing, fold the result as invert_truthvalue_loc
	 doesn't fold the result of comparisons.  This is intended to undo
	 the trick used for boolean rvalues in gnat_to_gnu.  */
      if (!optimize)
	result = fold (result);
      break;

    case ATTR_ADDR_EXPR:
    case ADDR_EXPR:
      switch (TREE_CODE (operand))
	{
	case INDIRECT_REF:
	case UNCONSTRAINED_ARRAY_REF:
	  result = TREE_OPERAND (operand, 0);

	  /* Make sure the type here is a pointer, not a reference.
	     GCC wants pointer types for function addresses.  */
	  if (!result_type)
	    result_type = build_pointer_type (type);

	  /* If the underlying object can alias everything, propagate the
	     property since we are effectively retrieving the object.  */
	  if (POINTER_TYPE_P (TREE_TYPE (result))
	      && TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (result)))
	    {
	      if (TREE_CODE (result_type) == POINTER_TYPE
		  && !TYPE_REF_CAN_ALIAS_ALL (result_type))
		result_type
		  = build_pointer_type_for_mode (TREE_TYPE (result_type),
						 TYPE_MODE (result_type),
						 true);
	      else if (TREE_CODE (result_type) == REFERENCE_TYPE
		       && !TYPE_REF_CAN_ALIAS_ALL (result_type))
	        result_type
		  = build_reference_type_for_mode (TREE_TYPE (result_type),
						   TYPE_MODE (result_type),
						   true);
	    }
	  break;

	case NULL_EXPR:
	  result = operand;
	  TREE_TYPE (result) = type = build_pointer_type (type);
	  break;

	case COMPOUND_EXPR:
	  /* Fold a compound expression if it has unconstrained array type
	     since the middle-end cannot handle it.  But we don't it in the
	     general case because it may introduce aliasing issues if the
	     first operand is an indirect assignment and the second operand
	     the corresponding address, e.g. for an allocator.  */
	  if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
	    {
	      result = build_unary_op (ADDR_EXPR, result_type,
				       TREE_OPERAND (operand, 1));
	      result = build2 (COMPOUND_EXPR, TREE_TYPE (result),
			       TREE_OPERAND (operand, 0), result);
	      break;
	    }
	  goto common;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	case COMPONENT_REF:
	case BIT_FIELD_REF:
	    /* If this is for 'Address, find the address of the prefix and add
	       the offset to the field.  Otherwise, do this the normal way.  */
	  if (op_code == ATTR_ADDR_EXPR)
	    {
	      HOST_WIDE_INT bitsize;
	      HOST_WIDE_INT bitpos;
	      tree offset, inner;
	      enum machine_mode mode;
	      int unsignedp, volatilep;

	      inner = get_inner_reference (operand, &bitsize, &bitpos, &offset,
					   &mode, &unsignedp, &volatilep,
					   false);

	      /* If INNER is a padding type whose field has a self-referential
		 size, convert to that inner type.  We know the offset is zero
		 and we need to have that type visible.  */
	      if (TYPE_IS_PADDING_P (TREE_TYPE (inner))
		  && CONTAINS_PLACEHOLDER_P
		     (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS
					    (TREE_TYPE (inner))))))
		inner = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (inner))),
				 inner);

	      /* Compute the offset as a byte offset from INNER.  */
	      if (!offset)
		offset = size_zero_node;

	      offset = size_binop (PLUS_EXPR, offset,
				   size_int (bitpos / BITS_PER_UNIT));

	      /* Take the address of INNER, convert the offset to void *, and
		 add then.  It will later be converted to the desired result
		 type, if any.  */
	      inner = build_unary_op (ADDR_EXPR, NULL_TREE, inner);
	      inner = convert (ptr_void_type_node, inner);
	      result = build_binary_op (POINTER_PLUS_EXPR, ptr_void_type_node,
					inner, offset);
	      result = convert (build_pointer_type (TREE_TYPE (operand)),
				result);
	      break;
	    }
	  goto common;

	case CONSTRUCTOR:
	  /* If this is just a constructor for a padded record, we can
	     just take the address of the single field and convert it to
	     a pointer to our type.  */
	  if (TYPE_IS_PADDING_P (type))
	    {
	      result = VEC_index (constructor_elt,
				  CONSTRUCTOR_ELTS (operand),
				  0)->value;
	      result = convert (build_pointer_type (TREE_TYPE (operand)),
				build_unary_op (ADDR_EXPR, NULL_TREE, result));
	      break;
	    }

	  goto common;

	case NOP_EXPR:
	  if (AGGREGATE_TYPE_P (type)
	      && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (operand, 0))))
	    return build_unary_op (ADDR_EXPR, result_type,
				   TREE_OPERAND (operand, 0));

	  /* ... fallthru ... */

	case VIEW_CONVERT_EXPR:
	  /* If this just a variant conversion or if the conversion doesn't
	     change the mode, get the result type from this type and go down.
	     This is needed for conversions of CONST_DECLs, to eventually get
	     to the address of their CORRESPONDING_VARs.  */
	  if ((TYPE_MAIN_VARIANT (type)
	       == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (operand, 0))))
	      || (TYPE_MODE (type) != BLKmode
		  && (TYPE_MODE (type)
		      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (operand, 0))))))
	    return build_unary_op (ADDR_EXPR,
				   (result_type ? result_type
				    : build_pointer_type (type)),
				   TREE_OPERAND (operand, 0));
	  goto common;

	case CONST_DECL:
	  operand = DECL_CONST_CORRESPONDING_VAR (operand);

	  /* ... fall through ... */

	default:
	common:

	  /* If we are taking the address of a padded record whose field
	     contains a template, take the address of the field.  */
	  if (TYPE_IS_PADDING_P (type)
	      && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
	      && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
	    {
	      type = TREE_TYPE (TYPE_FIELDS (type));
	      operand = convert (type, operand);
	    }

	  gnat_mark_addressable (operand);
	  result = build_fold_addr_expr (operand);
	}

      TREE_CONSTANT (result) = staticp (operand) || TREE_CONSTANT (operand);
      break;

    case INDIRECT_REF:
      {
	tree t = remove_conversions (operand, false);
	bool can_never_be_null = DECL_P (t) && DECL_CAN_NEVER_BE_NULL_P (t);

	/* If TYPE is a thin pointer, either first retrieve the base if this
	   is an expression with an offset built for the initialization of an
	   object with an unconstrained nominal subtype, or else convert to
	   the fat pointer.  */
	if (TYPE_IS_THIN_POINTER_P (type))
	  {
	    tree rec_type = TREE_TYPE (type);

	    if (TREE_CODE (operand) == POINTER_PLUS_EXPR
		&& TREE_OPERAND (operand, 1)
		   == byte_position (DECL_CHAIN (TYPE_FIELDS (rec_type)))
		&& TREE_CODE (TREE_OPERAND (operand, 0)) == NOP_EXPR)
	      {
		operand = TREE_OPERAND (TREE_OPERAND (operand, 0), 0);
		type = TREE_TYPE (operand);
	      }
	    else if (TYPE_UNCONSTRAINED_ARRAY (rec_type))
	      {
		operand
		  = convert (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (rec_type)),
			     operand);
		type = TREE_TYPE (operand);
	      }
	  }

	/* If we want to refer to an unconstrained array, use the appropriate
	   expression.  But this will never survive down to the back-end.  */
	if (TYPE_IS_FAT_POINTER_P (type))
	  {
	    result = build1 (UNCONSTRAINED_ARRAY_REF,
			     TYPE_UNCONSTRAINED_ARRAY (type), operand);
	    TREE_READONLY (result)
	      = TYPE_READONLY (TYPE_UNCONSTRAINED_ARRAY (type));
	  }

	/* If we are dereferencing an ADDR_EXPR, return its operand.  */
	else if (TREE_CODE (operand) == ADDR_EXPR)
	  result = TREE_OPERAND (operand, 0);

	/* Otherwise, build and fold the indirect reference.  */
	else
	  {
	    result = build_fold_indirect_ref (operand);
	    TREE_READONLY (result) = TYPE_READONLY (TREE_TYPE (type));
	  }

	if (!TYPE_IS_FAT_POINTER_P (type) && TYPE_VOLATILE (TREE_TYPE (type)))
	  {
	    TREE_SIDE_EFFECTS (result) = 1;
	    if (TREE_CODE (result) == INDIRECT_REF)
	      TREE_THIS_VOLATILE (result) = TYPE_VOLATILE (TREE_TYPE (result));
	  }

	if ((TREE_CODE (result) == INDIRECT_REF
	     || TREE_CODE (result) == UNCONSTRAINED_ARRAY_REF)
	    && can_never_be_null)
	  TREE_THIS_NOTRAP (result) = 1;

	break;
      }

    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
      {
	tree modulus = ((operation_type
			 && TREE_CODE (operation_type) == INTEGER_TYPE
			 && TYPE_MODULAR_P (operation_type))
			? TYPE_MODULUS (operation_type) : NULL_TREE);
	int mod_pow2 = modulus && integer_pow2p (modulus);

	/* If this is a modular type, there are various possibilities
	   depending on the operation and whether the modulus is a
	   power of two or not.  */

	if (modulus)
	  {
	    gcc_assert (operation_type == base_type);
	    operand = convert (operation_type, operand);

	    /* The fastest in the negate case for binary modulus is
	       the straightforward code; the TRUNC_MOD_EXPR below
	       is an AND operation.  */
	    if (op_code == NEGATE_EXPR && mod_pow2)
	      result = fold_build2 (TRUNC_MOD_EXPR, operation_type,
				    fold_build1 (NEGATE_EXPR, operation_type,
						 operand),
				    modulus);

	    /* For nonbinary negate case, return zero for zero operand,
	       else return the modulus minus the operand.  If the modulus
	       is a power of two minus one, we can do the subtraction
	       as an XOR since it is equivalent and faster on most machines. */
	    else if (op_code == NEGATE_EXPR && !mod_pow2)
	      {
		if (integer_pow2p (fold_build2 (PLUS_EXPR, operation_type,
						modulus,
						convert (operation_type,
							 integer_one_node))))
		  result = fold_build2 (BIT_XOR_EXPR, operation_type,
					operand, modulus);
		else
		  result = fold_build2 (MINUS_EXPR, operation_type,
					modulus, operand);

		result = fold_build3 (COND_EXPR, operation_type,
				      fold_build2 (NE_EXPR,
						   boolean_type_node,
						   operand,
						   convert
						     (operation_type,
						      integer_zero_node)),
				      result, operand);
	      }
	    else
	      {
		/* For the NOT cases, we need a constant equal to
		   the modulus minus one.  For a binary modulus, we
		   XOR against the constant and subtract the operand from
		   that constant for nonbinary modulus.  */

		tree cnst = fold_build2 (MINUS_EXPR, operation_type, modulus,
					 convert (operation_type,
						  integer_one_node));

		if (mod_pow2)
		  result = fold_build2 (BIT_XOR_EXPR, operation_type,
					operand, cnst);
		else
		  result = fold_build2 (MINUS_EXPR, operation_type,
					cnst, operand);
	      }

	    break;
	  }
      }

      /* ... fall through ... */

    default:
      gcc_assert (operation_type == base_type);
      result = fold_build1 (op_code, operation_type,
			    convert (operation_type, operand));
    }

  if (result_type && TREE_TYPE (result) != result_type)
    result = convert (result_type, result);

  return result;
}

/* Similar, but for COND_EXPR.  */

tree
build_cond_expr (tree result_type, tree condition_operand,
                 tree true_operand, tree false_operand)
{
  bool addr_p = false;
  tree result;

  /* The front-end verified that result, true and false operands have
     same base type.  Convert everything to the result type.  */
  true_operand = convert (result_type, true_operand);
  false_operand = convert (result_type, false_operand);

  /* If the result type is unconstrained, take the address of the operands and
     then dereference the result.  Likewise if the result type is passed by
     reference, because creating a temporary of this type is not allowed.  */
  if (TREE_CODE (result_type) == UNCONSTRAINED_ARRAY_TYPE
      || TYPE_IS_BY_REFERENCE_P (result_type)
      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (result_type)))
    {
      result_type = build_pointer_type (result_type);
      true_operand = build_unary_op (ADDR_EXPR, result_type, true_operand);
      false_operand = build_unary_op (ADDR_EXPR, result_type, false_operand);
      addr_p = true;
    }

  result = fold_build3 (COND_EXPR, result_type, condition_operand,
			true_operand, false_operand);

  /* If we have a common SAVE_EXPR (possibly surrounded by arithmetics)
     in both arms, make sure it gets evaluated by moving it ahead of the
     conditional expression.  This is necessary because it is evaluated
     in only one place at run time and would otherwise be uninitialized
     in one of the arms.  */
  true_operand = skip_simple_arithmetic (true_operand);
  false_operand = skip_simple_arithmetic (false_operand);

  if (true_operand == false_operand && TREE_CODE (true_operand) == SAVE_EXPR)
    result = build2 (COMPOUND_EXPR, result_type, true_operand, result);

  if (addr_p)
    result = build_unary_op (INDIRECT_REF, NULL_TREE, result);

  return result;
}

/* Similar, but for COMPOUND_EXPR.  */

tree
build_compound_expr (tree result_type, tree stmt_operand, tree expr_operand)
{
  bool addr_p = false;
  tree result;

  /* If the result type is unconstrained, take the address of the operand and
     then dereference the result.  Likewise if the result type is passed by
     reference, but this is natively handled in the gimplifier.  */
  if (TREE_CODE (result_type) == UNCONSTRAINED_ARRAY_TYPE
      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (result_type)))
    {
      result_type = build_pointer_type (result_type);
      expr_operand = build_unary_op (ADDR_EXPR, result_type, expr_operand);
      addr_p = true;
    }

  result = fold_build2 (COMPOUND_EXPR, result_type, stmt_operand,
			expr_operand);

  if (addr_p)
    result = build_unary_op (INDIRECT_REF, NULL_TREE, result);

  return result;
}

/* Conveniently construct a function call expression.  FNDECL names the
   function to be called, N is the number of arguments, and the "..."
   parameters are the argument expressions.  Unlike build_call_expr
   this doesn't fold the call, hence it will always return a CALL_EXPR.  */

tree
build_call_n_expr (tree fndecl, int n, ...)
{
  va_list ap;
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);

  va_start (ap, n);
  fn = build_call_valist (TREE_TYPE (fntype), fn, n, ap);
  va_end (ap);
  return fn;
}

/* Call a function that raises an exception and pass the line number and file
   name, if requested.  MSG says which exception function to call.

   GNAT_NODE is the gnat node conveying the source location for which the
   error should be signaled, or Empty in which case the error is signaled on
   the current ref_file_name/input_line.

   KIND says which kind of exception this is for
   (N_Raise_{Constraint,Storage,Program}_Error).  */

tree
build_call_raise (int msg, Node_Id gnat_node, char kind)
{
  tree fndecl = gnat_raise_decls[msg];
  tree label = get_exception_label (kind);
  tree filename;
  int line_number;
  const char *str;
  int len;

  /* If this is to be done as a goto, handle that case.  */
  if (label)
    {
      Entity_Id local_raise = Get_Local_Raise_Call_Entity ();
      tree gnu_result = build1 (GOTO_EXPR, void_type_node, label);

      /* If Local_Raise is present, generate
	 Local_Raise (exception'Identity);  */
      if (Present (local_raise))
	{
	  tree gnu_local_raise
	    = gnat_to_gnu_entity (local_raise, NULL_TREE, 0);
	  tree gnu_exception_entity
	    = gnat_to_gnu_entity (Get_RT_Exception_Entity (msg), NULL_TREE, 0);
	  tree gnu_call
	    = build_call_n_expr (gnu_local_raise, 1,
				 build_unary_op (ADDR_EXPR, NULL_TREE,
						 gnu_exception_entity));

	  gnu_result = build2 (COMPOUND_EXPR, void_type_node,
			       gnu_call, gnu_result);}

      return gnu_result;
    }

  str
    = (Debug_Flag_NN || Exception_Locations_Suppressed)
      ? ""
      : (gnat_node != Empty && Sloc (gnat_node) != No_Location)
        ? IDENTIFIER_POINTER
          (get_identifier (Get_Name_String
			   (Debug_Source_Name
			    (Get_Source_File_Index (Sloc (gnat_node))))))
        : ref_filename;

  len = strlen (str);
  filename = build_string (len, str);
  line_number
    = (gnat_node != Empty && Sloc (gnat_node) != No_Location)
      ? Get_Logical_Line_Number (Sloc(gnat_node)) : input_line;

  TREE_TYPE (filename) = build_array_type (unsigned_char_type_node,
					   build_index_type (size_int (len)));

  return
    build_call_n_expr (fndecl, 2,
		       build1 (ADDR_EXPR,
			       build_pointer_type (unsigned_char_type_node),
			       filename),
		       build_int_cst (NULL_TREE, line_number));
}

/* Similar to build_call_raise, for an index or range check exception as
   determined by MSG, with extra information generated of the form
   "INDEX out of range FIRST..LAST".  */

tree
build_call_raise_range (int msg, Node_Id gnat_node,
			tree index, tree first, tree last)
{
  tree fndecl = gnat_raise_decls_ext[msg];
  tree filename;
  int line_number, column_number;
  const char *str;
  int len;

  str
    = (Debug_Flag_NN || Exception_Locations_Suppressed)
      ? ""
      : (gnat_node != Empty && Sloc (gnat_node) != No_Location)
        ? IDENTIFIER_POINTER
          (get_identifier (Get_Name_String
			   (Debug_Source_Name
			    (Get_Source_File_Index (Sloc (gnat_node))))))
        : ref_filename;

  len = strlen (str);
  filename = build_string (len, str);
  if (gnat_node != Empty && Sloc (gnat_node) != No_Location)
    {
      line_number = Get_Logical_Line_Number (Sloc (gnat_node));
      column_number = Get_Column_Number (Sloc (gnat_node));
    }
  else
    {
      line_number = input_line;
      column_number = 0;
    }

  TREE_TYPE (filename) = build_array_type (unsigned_char_type_node,
					   build_index_type (size_int (len)));

  return
    build_call_n_expr (fndecl, 6,
		       build1 (ADDR_EXPR,
			       build_pointer_type (unsigned_char_type_node),
			       filename),
		       build_int_cst (NULL_TREE, line_number),
		       build_int_cst (NULL_TREE, column_number),
		       convert (integer_type_node, index),
		       convert (integer_type_node, first),
		       convert (integer_type_node, last));
}

/* Similar to build_call_raise, with extra information about the column
   where the check failed.  */

tree
build_call_raise_column (int msg, Node_Id gnat_node)
{
  tree fndecl = gnat_raise_decls_ext[msg];
  tree filename;
  int line_number, column_number;
  const char *str;
  int len;

  str
    = (Debug_Flag_NN || Exception_Locations_Suppressed)
      ? ""
      : (gnat_node != Empty && Sloc (gnat_node) != No_Location)
        ? IDENTIFIER_POINTER
          (get_identifier (Get_Name_String
			   (Debug_Source_Name
			    (Get_Source_File_Index (Sloc (gnat_node))))))
        : ref_filename;

  len = strlen (str);
  filename = build_string (len, str);
  if (gnat_node != Empty && Sloc (gnat_node) != No_Location)
    {
      line_number = Get_Logical_Line_Number (Sloc (gnat_node));
      column_number = Get_Column_Number (Sloc (gnat_node));
    }
  else
    {
      line_number = input_line;
      column_number = 0;
    }

  TREE_TYPE (filename) = build_array_type (unsigned_char_type_node,
					   build_index_type (size_int (len)));

  return
    build_call_n_expr (fndecl, 3,
		       build1 (ADDR_EXPR,
			       build_pointer_type (unsigned_char_type_node),
			       filename),
		       build_int_cst (NULL_TREE, line_number),
		       build_int_cst (NULL_TREE, column_number));
}

/* qsort comparer for the bit positions of two constructor elements
   for record components.  */

static int
compare_elmt_bitpos (const PTR rt1, const PTR rt2)
{
  const constructor_elt * const elmt1 = (const constructor_elt * const) rt1;
  const constructor_elt * const elmt2 = (const constructor_elt * const) rt2;
  const_tree const field1 = elmt1->index;
  const_tree const field2 = elmt2->index;
  const int ret
    = tree_int_cst_compare (bit_position (field1), bit_position (field2));

  return ret ? ret : (int) (DECL_UID (field1) - DECL_UID (field2));
}

/* Return a CONSTRUCTOR of TYPE whose elements are V.  */

tree
gnat_build_constructor (tree type, VEC(constructor_elt,gc) *v)
{
  bool allconstant = (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST);
  bool side_effects = false;
  tree result, obj, val;
  unsigned int n_elmts;

  /* Scan the elements to see if they are all constant or if any has side
     effects, to let us set global flags on the resulting constructor.  Count
     the elements along the way for possible sorting purposes below.  */
  FOR_EACH_CONSTRUCTOR_ELT (v, n_elmts, obj, val)
    {
      /* The predicate must be in keeping with output_constructor.  */
      if ((!TREE_CONSTANT (val) && !TREE_STATIC (val))
	  || (TREE_CODE (type) == RECORD_TYPE
	      && CONSTRUCTOR_BITFIELD_P (obj)
	      && !initializer_constant_valid_for_bitfield_p (val))
	  || !initializer_constant_valid_p (val, TREE_TYPE (val)))
	allconstant = false;

      if (TREE_SIDE_EFFECTS (val))
	side_effects = true;
    }

  /* For record types with constant components only, sort field list
     by increasing bit position.  This is necessary to ensure the
     constructor can be output as static data.  */
  if (allconstant && TREE_CODE (type) == RECORD_TYPE && n_elmts > 1)
    VEC_qsort (constructor_elt, v, compare_elmt_bitpos);

  result = build_constructor (type, v);
  TREE_CONSTANT (result) = TREE_STATIC (result) = allconstant;
  TREE_SIDE_EFFECTS (result) = side_effects;
  TREE_READONLY (result) = TYPE_READONLY (type) || allconstant;
  return result;
}

/* Return a COMPONENT_REF to access a field that is given by COMPONENT,
   an IDENTIFIER_NODE giving the name of the field, or FIELD, a FIELD_DECL,
   for the field.  Don't fold the result if NO_FOLD_P is true.

   We also handle the fact that we might have been passed a pointer to the
   actual record and know how to look for fields in variant parts.  */

static tree
build_simple_component_ref (tree record_variable, tree component,
                            tree field, bool no_fold_p)
{
  tree record_type = TYPE_MAIN_VARIANT (TREE_TYPE (record_variable));
  tree ref, inner_variable;

  gcc_assert (RECORD_OR_UNION_TYPE_P (record_type)
	      && COMPLETE_TYPE_P (record_type)
	      && (component == NULL_TREE) != (field == NULL_TREE));

  /* If no field was specified, look for a field with the specified name in
     the current record only.  */
  if (!field)
    for (field = TYPE_FIELDS (record_type);
	 field;
	 field = DECL_CHAIN (field))
      if (DECL_NAME (field) == component)
	break;

  if (!field)
    return NULL_TREE;

  /* If this field is not in the specified record, see if we can find a field
     in the specified record whose original field is the same as this one.  */
  if (DECL_CONTEXT (field) != record_type)
    {
      tree new_field;

      /* First loop thru normal components.  */
      for (new_field = TYPE_FIELDS (record_type);
	   new_field;
	   new_field = DECL_CHAIN (new_field))
	if (SAME_FIELD_P (field, new_field))
	  break;

      /* Next, see if we're looking for an inherited component in an extension.
	 If so, look thru the extension directly, but not if the type contains
	 a placeholder, as it might be needed for a later substitution.  */
      if (!new_field
	  && TREE_CODE (record_variable) == VIEW_CONVERT_EXPR
	  && TYPE_ALIGN_OK (record_type)
	  && !type_contains_placeholder_p (record_type)
	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (record_variable, 0)))
	     == RECORD_TYPE
	  && TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (record_variable, 0))))
	{
	  ref = build_simple_component_ref (TREE_OPERAND (record_variable, 0),
					    NULL_TREE, field, no_fold_p);
	  if (ref)
	    return ref;
	}

      /* Next, loop thru DECL_INTERNAL_P components if we haven't found the
	 component in the first search.  Doing this search in two steps is
	 required to avoid hidden homonymous fields in the _Parent field.  */
      if (!new_field)
	for (new_field = TYPE_FIELDS (record_type);
	     new_field;
	     new_field = DECL_CHAIN (new_field))
	  if (DECL_INTERNAL_P (new_field))
	    {
	      tree field_ref
		= build_simple_component_ref (record_variable,
					      NULL_TREE, new_field, no_fold_p);
	      ref = build_simple_component_ref (field_ref, NULL_TREE, field,
						no_fold_p);
	      if (ref)
		return ref;
	    }

      field = new_field;
    }

  if (!field)
    return NULL_TREE;

  /* If the field's offset has overflowed, do not try to access it, as doing
     so may trigger sanity checks deeper in the back-end.  Note that we don't
     need to warn since this will be done on trying to declare the object.  */
  if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST
      && TREE_OVERFLOW (DECL_FIELD_OFFSET (field)))
    return NULL_TREE;

  /* Look through conversion between type variants.  This is transparent as
     far as the field is concerned.  */
  if (TREE_CODE (record_variable) == VIEW_CONVERT_EXPR
      && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (record_variable, 0)))
	 == record_type)
    inner_variable = TREE_OPERAND (record_variable, 0);
  else
    inner_variable = record_variable;

  ref = build3 (COMPONENT_REF, TREE_TYPE (field), inner_variable, field,
		NULL_TREE);

  if (TREE_READONLY (record_variable)
      || TREE_READONLY (field)
      || TYPE_READONLY (record_type))
    TREE_READONLY (ref) = 1;

  if (TREE_THIS_VOLATILE (record_variable)
      || TREE_THIS_VOLATILE (field)
      || TYPE_VOLATILE (record_type))
    TREE_THIS_VOLATILE (ref) = 1;

  if (no_fold_p)
    return ref;

  /* The generic folder may punt in this case because the inner array type
     can be self-referential, but folding is in fact not problematic.  */
  if (TREE_CODE (record_variable) == CONSTRUCTOR
      && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (record_variable)))
    {
      VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (record_variable);
      unsigned HOST_WIDE_INT idx;
      tree index, value;
      FOR_EACH_CONSTRUCTOR_ELT (elts, idx, index, value)
	if (index == field)
	  return value;
      return ref;
    }

  return fold (ref);
}

/* Like build_simple_component_ref, except that we give an error if the
   reference could not be found.  */

tree
build_component_ref (tree record_variable, tree component,
                     tree field, bool no_fold_p)
{
  tree ref = build_simple_component_ref (record_variable, component, field,
					 no_fold_p);

  if (ref)
    return ref;

  /* If FIELD was specified, assume this is an invalid user field so raise
     Constraint_Error.  Otherwise, we have no type to return so abort.  */
  gcc_assert (field);
  return build1 (NULL_EXPR, TREE_TYPE (field),
		 build_call_raise (CE_Discriminant_Check_Failed, Empty,
				   N_Raise_Constraint_Error));
}

/* Helper for build_call_alloc_dealloc, with arguments to be interpreted
   identically.  Process the case where a GNAT_PROC to call is provided.  */

static inline tree
build_call_alloc_dealloc_proc (tree gnu_obj, tree gnu_size, tree gnu_type,
			       Entity_Id gnat_proc, Entity_Id gnat_pool)
{
  tree gnu_proc = gnat_to_gnu (gnat_proc);
  tree gnu_call;

  /* A storage pool's underlying type is a record type (for both predefined
     storage pools and GNAT simple storage pools). The secondary stack uses
     the same mechanism, but its pool object (SS_Pool) is an integer.  */
  if (Is_Record_Type (Underlying_Type (Etype (gnat_pool))))
    {
      /* The size is the third parameter; the alignment is the
	 same type.  */
      Entity_Id gnat_size_type
	= Etype (Next_Formal (Next_Formal (First_Formal (gnat_proc))));
      tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);

      tree gnu_pool = gnat_to_gnu (gnat_pool);
      tree gnu_pool_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_pool);
      tree gnu_align = size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT);

      gnu_size = convert (gnu_size_type, gnu_size);
      gnu_align = convert (gnu_size_type, gnu_align);

      /* The first arg is always the address of the storage pool; next
	 comes the address of the object, for a deallocator, then the
	 size and alignment.  */
      if (gnu_obj)
	gnu_call = build_call_n_expr (gnu_proc, 4, gnu_pool_addr, gnu_obj,
				      gnu_size, gnu_align);
      else
	gnu_call = build_call_n_expr (gnu_proc, 3, gnu_pool_addr,
				      gnu_size, gnu_align);
    }

  /* Secondary stack case.  */
  else
    {
      /* The size is the second parameter.  */
      Entity_Id gnat_size_type
	= Etype (Next_Formal (First_Formal (gnat_proc)));
      tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);

      gnu_size = convert (gnu_size_type, gnu_size);

      /* The first arg is the address of the object, for a deallocator,
	 then the size.  */
      if (gnu_obj)
	gnu_call = build_call_n_expr (gnu_proc, 2, gnu_obj, gnu_size);
      else
	gnu_call = build_call_n_expr (gnu_proc, 1, gnu_size);
    }

  return gnu_call;
}

/* Helper for build_call_alloc_dealloc, to build and return an allocator for
   DATA_SIZE bytes aimed at containing a DATA_TYPE object, using the default
   __gnat_malloc allocator.  Honor DATA_TYPE alignments greater than what the
   latter offers.  */

static inline tree
maybe_wrap_malloc (tree data_size, tree data_type, Node_Id gnat_node)
{
  /* When the DATA_TYPE alignment is stricter than what malloc offers
     (super-aligned case), we allocate an "aligning" wrapper type and return
     the address of its single data field with the malloc's return value
     stored just in front.  */

  unsigned int data_align = TYPE_ALIGN (data_type);
  unsigned int system_allocator_alignment
      = get_target_system_allocator_alignment () * BITS_PER_UNIT;

  tree aligning_type
    = ((data_align > system_allocator_alignment)
       ? make_aligning_type (data_type, data_align, data_size,
			     system_allocator_alignment,
			     POINTER_SIZE / BITS_PER_UNIT)
       : NULL_TREE);

  tree size_to_malloc
    = aligning_type ? TYPE_SIZE_UNIT (aligning_type) : data_size;

  tree malloc_ptr;

  /* On VMS, if pointers are 64-bit and the allocator size is 32-bit or
     Convention C, allocate 32-bit memory.  */
  if (TARGET_ABI_OPEN_VMS
      && POINTER_SIZE == 64
      && Nkind (gnat_node) == N_Allocator
      && (UI_To_Int (Esize (Etype (gnat_node))) == 32
          || Convention (Etype (gnat_node)) == Convention_C))
    malloc_ptr = build_call_n_expr (malloc32_decl, 1, size_to_malloc);
  else
    malloc_ptr = build_call_n_expr (malloc_decl, 1, size_to_malloc);

  if (aligning_type)
    {
      /* Latch malloc's return value and get a pointer to the aligning field
	 first.  */
      tree storage_ptr = gnat_protect_expr (malloc_ptr);

      tree aligning_record_addr
	= convert (build_pointer_type (aligning_type), storage_ptr);

      tree aligning_record
	= build_unary_op (INDIRECT_REF, NULL_TREE, aligning_record_addr);

      tree aligning_field
	= build_component_ref (aligning_record, NULL_TREE,
			       TYPE_FIELDS (aligning_type), false);

      tree aligning_field_addr
        = build_unary_op (ADDR_EXPR, NULL_TREE, aligning_field);

      /* Then arrange to store the allocator's return value ahead
	 and return.  */
      tree storage_ptr_slot_addr
	= build_binary_op (POINTER_PLUS_EXPR, ptr_void_type_node,
			   convert (ptr_void_type_node, aligning_field_addr),
			   size_int (-(HOST_WIDE_INT) POINTER_SIZE
				     / BITS_PER_UNIT));

      tree storage_ptr_slot
	= build_unary_op (INDIRECT_REF, NULL_TREE,
			  convert (build_pointer_type (ptr_void_type_node),
				   storage_ptr_slot_addr));

      return
	build2 (COMPOUND_EXPR, TREE_TYPE (aligning_field_addr),
		build_binary_op (INIT_EXPR, NULL_TREE,
				 storage_ptr_slot, storage_ptr),
		aligning_field_addr);
    }
  else
    return malloc_ptr;
}

/* Helper for build_call_alloc_dealloc, to release a DATA_TYPE object
   designated by DATA_PTR using the __gnat_free entry point.  */

static inline tree
maybe_wrap_free (tree data_ptr, tree data_type)
{
  /* In the regular alignment case, we pass the data pointer straight to free.
     In the superaligned case, we need to retrieve the initial allocator
     return value, stored in front of the data block at allocation time.  */

  unsigned int data_align = TYPE_ALIGN (data_type);
  unsigned int system_allocator_alignment
      = get_target_system_allocator_alignment () * BITS_PER_UNIT;

  tree free_ptr;

  if (data_align > system_allocator_alignment)
    {
      /* DATA_FRONT_PTR (void *)
	 = (void *)DATA_PTR - (void *)sizeof (void *))  */
      tree data_front_ptr
	= build_binary_op
	  (POINTER_PLUS_EXPR, ptr_void_type_node,
	   convert (ptr_void_type_node, data_ptr),
	   size_int (-(HOST_WIDE_INT) POINTER_SIZE / BITS_PER_UNIT));

      /* FREE_PTR (void *) = *(void **)DATA_FRONT_PTR  */
      free_ptr
	= build_unary_op
	  (INDIRECT_REF, NULL_TREE,
	   convert (build_pointer_type (ptr_void_type_node), data_front_ptr));
    }
  else
    free_ptr = data_ptr;

  return build_call_n_expr (free_decl, 1, free_ptr);
}

/* Build a GCC tree to call an allocation or deallocation function.
   If GNU_OBJ is nonzero, it is an object to deallocate.  Otherwise,
   generate an allocator.

   GNU_SIZE is the number of bytes to allocate and GNU_TYPE is the contained
   object type, used to determine the to-be-honored address alignment.
   GNAT_PROC, if present, is a procedure to call and GNAT_POOL is the storage
   pool to use.  If not present, malloc and free are used.  GNAT_NODE is used
   to provide an error location for restriction violation messages.  */

tree
build_call_alloc_dealloc (tree gnu_obj, tree gnu_size, tree gnu_type,
                          Entity_Id gnat_proc, Entity_Id gnat_pool,
                          Node_Id gnat_node)
{
  gnu_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_size, gnu_obj);

  /* Explicit proc to call ?  This one is assumed to deal with the type
     alignment constraints.  */
  if (Present (gnat_proc))
    return build_call_alloc_dealloc_proc (gnu_obj, gnu_size, gnu_type,
					  gnat_proc, gnat_pool);

  /* Otherwise, object to "free" or "malloc" with possible special processing
     for alignments stricter than what the default allocator honors.  */
  else if (gnu_obj)
    return maybe_wrap_free (gnu_obj, gnu_type);
  else
    {
      /* Assert that we no longer can be called with this special pool.  */
      gcc_assert (gnat_pool != -1);

      /* Check that we aren't violating the associated restriction.  */
      if (!(Nkind (gnat_node) == N_Allocator && Comes_From_Source (gnat_node)))
	Check_No_Implicit_Heap_Alloc (gnat_node);

      return maybe_wrap_malloc (gnu_size, gnu_type, gnat_node);
    }
}

/* Build a GCC tree that corresponds to allocating an object of TYPE whose
   initial value is INIT, if INIT is nonzero.  Convert the expression to
   RESULT_TYPE, which must be some pointer type, and return the result.

   GNAT_PROC and GNAT_POOL optionally give the procedure to call and
   the storage pool to use.  GNAT_NODE is used to provide an error
   location for restriction violation messages.  If IGNORE_INIT_TYPE is
   true, ignore the type of INIT for the purpose of determining the size;
   this will cause the maximum size to be allocated if TYPE is of
   self-referential size.  */

tree
build_allocator (tree type, tree init, tree result_type, Entity_Id gnat_proc,
                 Entity_Id gnat_pool, Node_Id gnat_node, bool ignore_init_type)
{
  tree size, storage, storage_deref, storage_init;

  /* If the initializer, if present, is a NULL_EXPR, just return a new one.  */
  if (init && TREE_CODE (init) == NULL_EXPR)
    return build1 (NULL_EXPR, result_type, TREE_OPERAND (init, 0));

  /* If the initializer, if present, is a COND_EXPR, deal with each branch.  */
  else if (init && TREE_CODE (init) == COND_EXPR)
    return build3 (COND_EXPR, result_type, TREE_OPERAND (init, 0),
		   build_allocator (type, TREE_OPERAND (init, 1), result_type,
				    gnat_proc, gnat_pool, gnat_node,
				    ignore_init_type),
		   build_allocator (type, TREE_OPERAND (init, 2), result_type,
				    gnat_proc, gnat_pool, gnat_node,
				    ignore_init_type));

  /* If RESULT_TYPE is a fat or thin pointer, set SIZE to be the sum of the
     sizes of the object and its template.  Allocate the whole thing and
     fill in the parts that are known.  */
  else if (TYPE_IS_FAT_OR_THIN_POINTER_P (result_type))
    {
      tree storage_type
	= build_unc_object_type_from_ptr (result_type, type,
					  get_identifier ("ALLOC"), false);
      tree template_type = TREE_TYPE (TYPE_FIELDS (storage_type));
      tree storage_ptr_type = build_pointer_type (storage_type);

      size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (storage_type),
					     init);

      /* If the size overflows, pass -1 so Storage_Error will be raised.  */
      if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
	size = size_int (-1);

      storage = build_call_alloc_dealloc (NULL_TREE, size, storage_type,
					  gnat_proc, gnat_pool, gnat_node);
      storage = convert (storage_ptr_type, gnat_protect_expr (storage));
      storage_deref = build_unary_op (INDIRECT_REF, NULL_TREE, storage);
      TREE_THIS_NOTRAP (storage_deref) = 1;

      /* If there is an initializing expression, then make a constructor for
	 the entire object including the bounds and copy it into the object.
	 If there is no initializing expression, just set the bounds.  */
      if (init)
	{
	  VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, 2);

	  CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (storage_type),
				  build_template (template_type, type, init));
	  CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (storage_type)),
				  init);
	  storage_init
	    = build_binary_op (INIT_EXPR, NULL_TREE, storage_deref,
			       gnat_build_constructor (storage_type, v));
	}
      else
	storage_init
	  = build_binary_op (INIT_EXPR, NULL_TREE,
			     build_component_ref (storage_deref, NULL_TREE,
						  TYPE_FIELDS (storage_type),
						  false),
			     build_template (template_type, type, NULL_TREE));

      return build2 (COMPOUND_EXPR, result_type,
		     storage_init, convert (result_type, storage));
    }

  size = TYPE_SIZE_UNIT (type);

  /* If we have an initializing expression, see if its size is simpler
     than the size from the type.  */
  if (!ignore_init_type && init && TYPE_SIZE_UNIT (TREE_TYPE (init))
      && (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (init))) == INTEGER_CST
	  || CONTAINS_PLACEHOLDER_P (size)))
    size = TYPE_SIZE_UNIT (TREE_TYPE (init));

  /* If the size is still self-referential, reference the initializing
     expression, if it is present.  If not, this must have been a
     call to allocate a library-level object, in which case we use
     the maximum size.  */
  if (CONTAINS_PLACEHOLDER_P (size))
    {
      if (!ignore_init_type && init)
	size = substitute_placeholder_in_expr (size, init);
      else
	size = max_size (size, true);
    }

  /* If the size overflows, pass -1 so Storage_Error will be raised.  */
  if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
    size = size_int (-1);

  storage = convert (result_type,
		     build_call_alloc_dealloc (NULL_TREE, size, type,
					       gnat_proc, gnat_pool,
					       gnat_node));

  /* If we have an initial value, protect the new address, assign the value
     and return the address with a COMPOUND_EXPR.  */
  if (init)
    {
      storage = gnat_protect_expr (storage);
      storage_deref = build_unary_op (INDIRECT_REF, NULL_TREE, storage);
      TREE_THIS_NOTRAP (storage_deref) = 1;
      storage_init
	= build_binary_op (INIT_EXPR, NULL_TREE, storage_deref, init);
      return build2 (COMPOUND_EXPR, result_type, storage_init, storage);
    }

  return storage;
}

/* Indicate that we need to take the address of T and that it therefore
   should not be allocated in a register.  Returns true if successful.  */

bool
gnat_mark_addressable (tree t)
{
  while (true)
    switch (TREE_CODE (t))
      {
      case ADDR_EXPR:
      case COMPONENT_REF:
      case ARRAY_REF:
      case ARRAY_RANGE_REF:
      case REALPART_EXPR:
      case IMAGPART_EXPR:
      case VIEW_CONVERT_EXPR:
      case NON_LVALUE_EXPR:
      CASE_CONVERT:
	t = TREE_OPERAND (t, 0);
	break;

      case COMPOUND_EXPR:
	t = TREE_OPERAND (t, 1);
	break;

      case CONSTRUCTOR:
	TREE_ADDRESSABLE (t) = 1;
	return true;

      case VAR_DECL:
      case PARM_DECL:
      case RESULT_DECL:
	TREE_ADDRESSABLE (t) = 1;
	return true;

      case FUNCTION_DECL:
	TREE_ADDRESSABLE (t) = 1;
	return true;

      case CONST_DECL:
	return DECL_CONST_CORRESPONDING_VAR (t)
	       && gnat_mark_addressable (DECL_CONST_CORRESPONDING_VAR (t));

      default:
	return true;
    }
}

/* Save EXP for later use or reuse.  This is equivalent to save_expr in tree.c
   but we know how to handle our own nodes.  */

tree
gnat_save_expr (tree exp)
{
  tree type = TREE_TYPE (exp);
  enum tree_code code = TREE_CODE (exp);

  if (TREE_CONSTANT (exp) || code == SAVE_EXPR || code == NULL_EXPR)
    return exp;

  if (code == UNCONSTRAINED_ARRAY_REF)
    {
      tree t = build1 (code, type, gnat_save_expr (TREE_OPERAND (exp, 0)));
      TREE_READONLY (t) = TYPE_READONLY (type);
      return t;
    }

  /* If this is a COMPONENT_REF of a fat pointer, save the entire fat pointer.
     This may be more efficient, but will also allow us to more easily find
     the match for the PLACEHOLDER_EXPR.  */
  if (code == COMPONENT_REF
      && TYPE_IS_FAT_POINTER_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
    return build3 (code, type, gnat_save_expr (TREE_OPERAND (exp, 0)),
		   TREE_OPERAND (exp, 1), TREE_OPERAND (exp, 2));

  return save_expr (exp);
}

/* Protect EXP for immediate reuse.  This is a variant of gnat_save_expr that
   is optimized under the assumption that EXP's value doesn't change before
   its subsequent reuse(s) except through its potential reevaluation.  */

tree
gnat_protect_expr (tree exp)
{
  tree type = TREE_TYPE (exp);
  enum tree_code code = TREE_CODE (exp);

  if (TREE_CONSTANT (exp) || code == SAVE_EXPR || code == NULL_EXPR)
    return exp;

  /* If EXP has no side effects, we theoretically don't need to do anything.
     However, we may be recursively passed more and more complex expressions
     involving checks which will be reused multiple times and eventually be
     unshared for gimplification; in order to avoid a complexity explosion
     at that point, we protect any expressions more complex than a simple
     arithmetic expression.  */
  if (!TREE_SIDE_EFFECTS (exp))
    {
      tree inner = skip_simple_arithmetic (exp);
      if (!EXPR_P (inner) || REFERENCE_CLASS_P (inner))
	return exp;
    }

  /* If this is a conversion, protect what's inside the conversion.  */
  if (code == NON_LVALUE_EXPR
      || CONVERT_EXPR_CODE_P (code)
      || code == VIEW_CONVERT_EXPR)
  return build1 (code, type, gnat_protect_expr (TREE_OPERAND (exp, 0)));

  /* If we're indirectly referencing something, we only need to protect the
     address since the data itself can't change in these situations.  */
  if (code == INDIRECT_REF || code == UNCONSTRAINED_ARRAY_REF)
    {
      tree t = build1 (code, type, gnat_protect_expr (TREE_OPERAND (exp, 0)));
      TREE_READONLY (t) = TYPE_READONLY (type);
      return t;
    }

  /* If this is a COMPONENT_REF of a fat pointer, save the entire fat pointer.
     This may be more efficient, but will also allow us to more easily find
     the match for the PLACEHOLDER_EXPR.  */
  if (code == COMPONENT_REF
      && TYPE_IS_FAT_POINTER_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
    return build3 (code, type, gnat_protect_expr (TREE_OPERAND (exp, 0)),
		   TREE_OPERAND (exp, 1), TREE_OPERAND (exp, 2));

  /* If this is a fat pointer or something that can be placed in a register,
     just make a SAVE_EXPR.  Likewise for a CALL_EXPR as large objects are
     returned via invisible reference in most ABIs so the temporary will
     directly be filled by the callee.  */
  if (TYPE_IS_FAT_POINTER_P (type)
      || TYPE_MODE (type) != BLKmode
      || code == CALL_EXPR)
    return save_expr (exp);

  /* Otherwise reference, protect the address and dereference.  */
  return
    build_unary_op (INDIRECT_REF, type,
		    save_expr (build_unary_op (ADDR_EXPR,
					       build_reference_type (type),
					       exp)));
}

/* This is equivalent to stabilize_reference_1 in tree.c but we take an extra
   argument to force evaluation of everything.  */

static tree
gnat_stabilize_reference_1 (tree e, bool force)
{
  enum tree_code code = TREE_CODE (e);
  tree type = TREE_TYPE (e);
  tree result;

  /* We cannot ignore const expressions because it might be a reference
     to a const array but whose index contains side-effects.  But we can
     ignore things that are actual constant or that already have been
     handled by this function.  */
  if (TREE_CONSTANT (e) || code == SAVE_EXPR)
    return e;

  switch (TREE_CODE_CLASS (code))
    {
    case tcc_exceptional:
    case tcc_declaration:
    case tcc_comparison:
    case tcc_expression:
    case tcc_reference:
    case tcc_vl_exp:
      /* If this is a COMPONENT_REF of a fat pointer, save the entire
	 fat pointer.  This may be more efficient, but will also allow
	 us to more easily find the match for the PLACEHOLDER_EXPR.  */
      if (code == COMPONENT_REF
	  && TYPE_IS_FAT_POINTER_P (TREE_TYPE (TREE_OPERAND (e, 0))))
	result
	  = build3 (code, type,
		    gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force),
		    TREE_OPERAND (e, 1), TREE_OPERAND (e, 2));
      /* If the expression has side-effects, then encase it in a SAVE_EXPR
	 so that it will only be evaluated once.  */
      /* The tcc_reference and tcc_comparison classes could be handled as
	 below, but it is generally faster to only evaluate them once.  */
      else if (TREE_SIDE_EFFECTS (e) || force)
	return save_expr (e);
      else
	return e;
      break;

    case tcc_binary:
      /* Recursively stabilize each operand.  */
      result
	= build2 (code, type,
		  gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force),
		  gnat_stabilize_reference_1 (TREE_OPERAND (e, 1), force));
      break;

    case tcc_unary:
      /* Recursively stabilize each operand.  */
      result
	= build1 (code, type,
		  gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force));
      break;

    default:
      gcc_unreachable ();
    }

  /* See similar handling in gnat_stabilize_reference.  */
  TREE_READONLY (result) = TREE_READONLY (e);
  TREE_SIDE_EFFECTS (result) |= TREE_SIDE_EFFECTS (e);
  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);

  if (code == INDIRECT_REF
      || code == UNCONSTRAINED_ARRAY_REF
      || code == ARRAY_REF
      || code == ARRAY_RANGE_REF)
    TREE_THIS_NOTRAP (result) = TREE_THIS_NOTRAP (e);

  return result;
}

/* This is equivalent to stabilize_reference in tree.c but we know how to
   handle our own nodes and we take extra arguments.  FORCE says whether to
   force evaluation of everything.  We set SUCCESS to true unless we walk
   through something we don't know how to stabilize.  */

tree
gnat_stabilize_reference (tree ref, bool force, bool *success)
{
  tree type = TREE_TYPE (ref);
  enum tree_code code = TREE_CODE (ref);
  tree result;

  /* Assume we'll success unless proven otherwise.  */
  if (success)
    *success = true;

  switch (code)
    {
    case CONST_DECL:
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      /* No action is needed in this case.  */
      return ref;

    case ADDR_EXPR:
    CASE_CONVERT:
    case FLOAT_EXPR:
    case FIX_TRUNC_EXPR:
    case VIEW_CONVERT_EXPR:
      result
	= build1 (code, type,
		  gnat_stabilize_reference (TREE_OPERAND (ref, 0), force,
					    success));
      break;

    case INDIRECT_REF:
    case UNCONSTRAINED_ARRAY_REF:
      result = build1 (code, type,
		       gnat_stabilize_reference_1 (TREE_OPERAND (ref, 0),
						   force));
      break;

    case COMPONENT_REF:
     result = build3 (COMPONENT_REF, type,
		      gnat_stabilize_reference (TREE_OPERAND (ref, 0), force,
						success),
		      TREE_OPERAND (ref, 1), NULL_TREE);
      break;

    case BIT_FIELD_REF:
      result = build3 (BIT_FIELD_REF, type,
		       gnat_stabilize_reference (TREE_OPERAND (ref, 0), force,
						 success),
		       TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
      break;

    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      result = build4 (code, type,
		       gnat_stabilize_reference (TREE_OPERAND (ref, 0), force,
						 success),
		       gnat_stabilize_reference_1 (TREE_OPERAND (ref, 1),
						   force),
		       NULL_TREE, NULL_TREE);
      break;

    case CALL_EXPR:
      result = gnat_stabilize_reference_1 (ref, force);
      break;

    case COMPOUND_EXPR:
      result = build2 (COMPOUND_EXPR, type,
		       gnat_stabilize_reference (TREE_OPERAND (ref, 0), force,
						 success),
		       gnat_stabilize_reference (TREE_OPERAND (ref, 1), force,
						 success));
      break;

    case CONSTRUCTOR:
      /* Constructors with 1 element are used extensively to formally
	 convert objects to special wrapping types.  */
      if (TREE_CODE (type) == RECORD_TYPE
	  && VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ref)) == 1)
	{
	  tree index
	    = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (ref), 0)->index;
	  tree value
	    = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (ref), 0)->value;
	  result
	    = build_constructor_single (type, index,
					gnat_stabilize_reference_1 (value,
								    force));
	}
      else
	{
	  if (success)
	    *success = false;
	  return ref;
	}
      break;

    case ERROR_MARK:
      ref = error_mark_node;

      /* ...  fall through to failure ... */

      /* If arg isn't a kind of lvalue we recognize, make no change.
	 Caller should recognize the error for an invalid lvalue.  */
    default:
      if (success)
	*success = false;
      return ref;
    }

  /* TREE_THIS_VOLATILE and TREE_SIDE_EFFECTS set on the initial expression
     may not be sustained across some paths, such as the way via build1 for
     INDIRECT_REF.  We reset those flags here in the general case, which is
     consistent with the GCC version of this routine.

     Special care should be taken regarding TREE_SIDE_EFFECTS, because some
     paths introduce side-effects where there was none initially (e.g. if a
     SAVE_EXPR is built) and we also want to keep track of that.  */
  TREE_READONLY (result) = TREE_READONLY (ref);
  TREE_SIDE_EFFECTS (result) |= TREE_SIDE_EFFECTS (ref);
  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);

  if (code == INDIRECT_REF
      || code == UNCONSTRAINED_ARRAY_REF
      || code == ARRAY_REF
      || code == ARRAY_RANGE_REF)
    TREE_THIS_NOTRAP (result) = TREE_THIS_NOTRAP (ref);

  return result;
}

/* If EXPR is an expression that is invariant in the current function, in the
   sense that it can be evaluated anywhere in the function and any number of
   times, return EXPR or an equivalent expression.  Otherwise return NULL.  */

tree
gnat_invariant_expr (tree expr)
{
  tree type = TREE_TYPE (expr), t;

  expr = remove_conversions (expr, false);

  while ((TREE_CODE (expr) == CONST_DECL
	  || (TREE_CODE (expr) == VAR_DECL && TREE_READONLY (expr)))
	 && decl_function_context (expr) == current_function_decl
	 && DECL_INITIAL (expr))
    expr = remove_conversions (DECL_INITIAL (expr), false);

  if (TREE_CONSTANT (expr))
    return fold_convert (type, expr);

  t = expr;

  while (true)
    {
      switch (TREE_CODE (t))
	{
	case COMPONENT_REF:
	  if (TREE_OPERAND (t, 2) != NULL_TREE)
	    return NULL_TREE;
	  break;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  if (!TREE_CONSTANT (TREE_OPERAND (t, 1))
	      || TREE_OPERAND (t, 2) != NULL_TREE
	      || TREE_OPERAND (t, 3) != NULL_TREE)
	    return NULL_TREE;
	  break;

	case BIT_FIELD_REF:
	case VIEW_CONVERT_EXPR:
	case REALPART_EXPR:
	case IMAGPART_EXPR:
	  break;

	case INDIRECT_REF:
	  if (!TREE_READONLY (t)
	      || TREE_SIDE_EFFECTS (t)
	      || !TREE_THIS_NOTRAP (t))
	    return NULL_TREE;
	  break;

	default:
	  goto object;
	}

      t = TREE_OPERAND (t, 0);
    }

object:
  if (TREE_SIDE_EFFECTS (t))
    return NULL_TREE;

  if (TREE_CODE (t) == CONST_DECL
      && (DECL_EXTERNAL (t)
	  || decl_function_context (t) != current_function_decl))
    return fold_convert (type, expr);

  if (!TREE_READONLY (t))
    return NULL_TREE;

  if (TREE_CODE (t) == PARM_DECL)
    return fold_convert (type, expr);

  if (TREE_CODE (t) == VAR_DECL
      && (DECL_EXTERNAL (t)
	  || decl_function_context (t) != current_function_decl))
    return fold_convert (type, expr);

  return NULL_TREE;
}