summaryrefslogtreecommitdiff
path: root/gcc/ada/s-arit64.adb
blob: ce4f75abef5eeacc6b572a9a78844ff39a70b60b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                      S Y S T E M . A R I T H _ 6 4                       --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Interfaces; use Interfaces;
with Ada.Unchecked_Conversion;

package body System.Arith_64 is

   pragma Suppress (Overflow_Check);
   pragma Suppress (Range_Check);

   subtype Uns64 is Unsigned_64;
   function To_Uns is new Ada.Unchecked_Conversion (Int64, Uns64);
   function To_Int is new Ada.Unchecked_Conversion (Uns64, Int64);

   subtype Uns32 is Unsigned_32;

   -----------------------
   -- Local Subprograms --
   -----------------------

   function "+" (A, B : Uns32) return Uns64;
   function "+" (A : Uns64; B : Uns32) return Uns64;
   pragma Inline ("+");
   --  Length doubling additions

   function "*" (A, B : Uns32) return Uns64;
   pragma Inline ("*");
   --  Length doubling multiplication

   function "/" (A : Uns64; B : Uns32) return Uns64;
   pragma Inline ("/");
   --  Length doubling division

   function "rem" (A : Uns64; B : Uns32) return Uns64;
   pragma Inline ("rem");
   --  Length doubling remainder

   function "&" (Hi, Lo : Uns32) return Uns64;
   pragma Inline ("&");
   --  Concatenate hi, lo values to form 64-bit result

   function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean;
   --  Determines if 96 bit value X1&X2&X3 <= Y1&Y2&Y3

   function Lo (A : Uns64) return Uns32;
   pragma Inline (Lo);
   --  Low order half of 64-bit value

   function Hi (A : Uns64) return Uns32;
   pragma Inline (Hi);
   --  High order half of 64-bit value

   procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32);
   --  Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 with mod 2**96 wrap

   function To_Neg_Int (A : Uns64) return Int64;
   --  Convert to negative integer equivalent. If the input is in the range
   --  0 .. 2 ** 63, then the corresponding negative signed integer (obtained
   --  by negating the given value) is returned, otherwise constraint error
   --  is raised.

   function To_Pos_Int (A : Uns64) return Int64;
   --  Convert to positive integer equivalent. If the input is in the range
   --  0 .. 2 ** 63-1, then the corresponding non-negative signed integer is
   --  returned, otherwise constraint error is raised.

   procedure Raise_Error;
   pragma No_Return (Raise_Error);
   --  Raise constraint error with appropriate message

   ---------
   -- "&" --
   ---------

   function "&" (Hi, Lo : Uns32) return Uns64 is
   begin
      return Shift_Left (Uns64 (Hi), 32) or Uns64 (Lo);
   end "&";

   ---------
   -- "*" --
   ---------

   function "*" (A, B : Uns32) return Uns64 is
   begin
      return Uns64 (A) * Uns64 (B);
   end "*";

   ---------
   -- "+" --
   ---------

   function "+" (A, B : Uns32) return Uns64 is
   begin
      return Uns64 (A) + Uns64 (B);
   end "+";

   function "+" (A : Uns64; B : Uns32) return Uns64 is
   begin
      return A + Uns64 (B);
   end "+";

   ---------
   -- "/" --
   ---------

   function "/" (A : Uns64; B : Uns32) return Uns64 is
   begin
      return A / Uns64 (B);
   end "/";

   -----------
   -- "rem" --
   -----------

   function "rem" (A : Uns64; B : Uns32) return Uns64 is
   begin
      return A rem Uns64 (B);
   end "rem";

   --------------------------
   -- Add_With_Ovflo_Check --
   --------------------------

   function Add_With_Ovflo_Check (X, Y : Int64) return Int64 is
      R : constant Int64 := To_Int (To_Uns (X) + To_Uns (Y));

   begin
      if X >= 0 then
         if Y < 0 or else R >= 0 then
            return R;
         end if;

      else -- X < 0
         if Y > 0 or else R < 0 then
            return R;
         end if;
      end if;

      Raise_Error;
   end Add_With_Ovflo_Check;

   -------------------
   -- Double_Divide --
   -------------------

   procedure Double_Divide
     (X, Y, Z : Int64;
      Q, R    : out Int64;
      Round   : Boolean)
   is
      Xu  : constant Uns64 := To_Uns (abs X);
      Yu  : constant Uns64 := To_Uns (abs Y);

      Yhi : constant Uns32 := Hi (Yu);
      Ylo : constant Uns32 := Lo (Yu);

      Zu  : constant Uns64 := To_Uns (abs Z);
      Zhi : constant Uns32 := Hi (Zu);
      Zlo : constant Uns32 := Lo (Zu);

      T1, T2     : Uns64;
      Du, Qu, Ru : Uns64;
      Den_Pos    : Boolean;

   begin
      if Yu = 0 or else Zu = 0 then
         Raise_Error;
      end if;

      --  Compute Y * Z. Note that if the result overflows 64 bits unsigned,
      --  then the rounded result is clearly zero (since the dividend is at
      --  most 2**63 - 1, the extra bit of precision is nice here).

      if Yhi /= 0 then
         if Zhi /= 0 then
            Q := 0;
            R := X;
            return;
         else
            T2 := Yhi * Zlo;
         end if;

      else
         T2 := (if Zhi /= 0 then Ylo * Zhi else 0);
      end if;

      T1 := Ylo * Zlo;
      T2 := T2 + Hi (T1);

      if Hi (T2) /= 0 then
         Q := 0;
         R := X;
         return;
      end if;

      Du := Lo (T2) & Lo (T1);

      --  Set final signs (RM 4.5.5(27-30))

      Den_Pos := (Y < 0) = (Z < 0);

      --  Check overflow case of largest negative number divided by 1

      if X = Int64'First and then Du = 1 and then not Den_Pos then
         Raise_Error;
      end if;

      --  Perform the actual division

      Qu := Xu / Du;
      Ru := Xu rem Du;

      --  Deal with rounding case

      if Round and then Ru > (Du - Uns64'(1)) / Uns64'(2) then
         Qu := Qu + Uns64'(1);
      end if;

      --  Case of dividend (X) sign positive

      if X >= 0 then
         R := To_Int (Ru);
         Q := (if Den_Pos then To_Int (Qu) else -To_Int (Qu));

      --  Case of dividend (X) sign negative

      else
         R := -To_Int (Ru);
         Q := (if Den_Pos then -To_Int (Qu) else To_Int (Qu));
      end if;
   end Double_Divide;

   --------
   -- Hi --
   --------

   function Hi (A : Uns64) return Uns32 is
   begin
      return Uns32 (Shift_Right (A, 32));
   end Hi;

   ---------
   -- Le3 --
   ---------

   function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean is
   begin
      if X1 < Y1 then
         return True;
      elsif X1 > Y1 then
         return False;
      elsif X2 < Y2 then
         return True;
      elsif X2 > Y2 then
         return False;
      else
         return X3 <= Y3;
      end if;
   end Le3;

   --------
   -- Lo --
   --------

   function Lo (A : Uns64) return Uns32 is
   begin
      return Uns32 (A and 16#FFFF_FFFF#);
   end Lo;

   -------------------------------
   -- Multiply_With_Ovflo_Check --
   -------------------------------

   function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64 is
      Xu  : constant Uns64 := To_Uns (abs X);
      Xhi : constant Uns32 := Hi (Xu);
      Xlo : constant Uns32 := Lo (Xu);

      Yu  : constant Uns64 := To_Uns (abs Y);
      Yhi : constant Uns32 := Hi (Yu);
      Ylo : constant Uns32 := Lo (Yu);

      T1, T2 : Uns64;

   begin
      if Xhi /= 0 then
         if Yhi /= 0 then
            Raise_Error;
         else
            T2 := Xhi * Ylo;
         end if;

      elsif Yhi /= 0 then
         T2 := Xlo * Yhi;

      else -- Yhi = Xhi = 0
         T2 := 0;
      end if;

      --  Here we have T2 set to the contribution to the upper half
      --  of the result from the upper halves of the input values.

      T1 := Xlo * Ylo;
      T2 := T2 + Hi (T1);

      if Hi (T2) /= 0 then
         Raise_Error;
      end if;

      T2 := Lo (T2) & Lo (T1);

      if X >= 0 then
         if Y >= 0 then
            return To_Pos_Int (T2);
         else
            return To_Neg_Int (T2);
         end if;
      else -- X < 0
         if Y < 0 then
            return To_Pos_Int (T2);
         else
            return To_Neg_Int (T2);
         end if;
      end if;

   end Multiply_With_Ovflo_Check;

   -----------------
   -- Raise_Error --
   -----------------

   procedure Raise_Error is
   begin
      raise Constraint_Error with "64-bit arithmetic overflow";
   end Raise_Error;

   -------------------
   -- Scaled_Divide --
   -------------------

   procedure Scaled_Divide
     (X, Y, Z : Int64;
      Q, R    : out Int64;
      Round   : Boolean)
   is
      Xu  : constant Uns64 := To_Uns (abs X);
      Xhi : constant Uns32 := Hi (Xu);
      Xlo : constant Uns32 := Lo (Xu);

      Yu  : constant Uns64 := To_Uns (abs Y);
      Yhi : constant Uns32 := Hi (Yu);
      Ylo : constant Uns32 := Lo (Yu);

      Zu  : Uns64 := To_Uns (abs Z);
      Zhi : Uns32 := Hi (Zu);
      Zlo : Uns32 := Lo (Zu);

      D : array (1 .. 4) of Uns32;
      --  The dividend, four digits (D(1) is high order)

      Qd : array (1 .. 2) of Uns32;
      --  The quotient digits, two digits (Qd(1) is high order)

      S1, S2, S3 : Uns32;
      --  Value to subtract, three digits (S1 is high order)

      Qu : Uns64;
      Ru : Uns64;
      --  Unsigned quotient and remainder

      Scale : Natural;
      --  Scaling factor used for multiple-precision divide. Dividend and
      --  Divisor are multiplied by 2 ** Scale, and the final remainder
      --  is divided by the scaling factor. The reason for this scaling
      --  is to allow more accurate estimation of quotient digits.

      T1, T2, T3 : Uns64;
      --  Temporary values

   begin
      --  First do the multiplication, giving the four digit dividend

      T1 := Xlo * Ylo;
      D (4) := Lo (T1);
      D (3) := Hi (T1);

      if Yhi /= 0 then
         T1 := Xlo * Yhi;
         T2 := D (3) + Lo (T1);
         D (3) := Lo (T2);
         D (2) := Hi (T1) + Hi (T2);

         if Xhi /= 0 then
            T1 := Xhi * Ylo;
            T2 := D (3) + Lo (T1);
            D (3) := Lo (T2);
            T3 := D (2) + Hi (T1);
            T3 := T3 + Hi (T2);
            D (2) := Lo (T3);
            D (1) := Hi (T3);

            T1 := (D (1) & D (2)) + Uns64'(Xhi * Yhi);
            D (1) := Hi (T1);
            D (2) := Lo (T1);

         else
            D (1) := 0;
         end if;

      else
         if Xhi /= 0 then
            T1 := Xhi * Ylo;
            T2 := D (3) + Lo (T1);
            D (3) := Lo (T2);
            D (2) := Hi (T1) + Hi (T2);

         else
            D (2) := 0;
         end if;

         D (1) := 0;
      end if;

      --  Now it is time for the dreaded multiple precision division. First
      --  an easy case, check for the simple case of a one digit divisor.

      if Zhi = 0 then
         if D (1) /= 0 or else D (2) >= Zlo then
            Raise_Error;

         --  Here we are dividing at most three digits by one digit

         else
            T1 := D (2) & D (3);
            T2 := Lo (T1 rem Zlo) & D (4);

            Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
            Ru := T2 rem Zlo;
         end if;

      --  If divisor is double digit and too large, raise error

      elsif (D (1) & D (2)) >= Zu then
         Raise_Error;

      --  This is the complex case where we definitely have a double digit
      --  divisor and a dividend of at least three digits. We use the classical
      --  multiple division algorithm (see section (4.3.1) of Knuth's "The Art
      --  of Computer Programming", Vol. 2 for a description (algorithm D).

      else
         --  First normalize the divisor so that it has the leading bit on.
         --  We do this by finding the appropriate left shift amount.

         Scale := 0;

         if (Zhi and 16#FFFF0000#) = 0 then
            Scale := 16;
            Zu := Shift_Left (Zu, 16);
         end if;

         if (Hi (Zu) and 16#FF00_0000#) = 0 then
            Scale := Scale + 8;
            Zu := Shift_Left (Zu, 8);
         end if;

         if (Hi (Zu) and 16#F000_0000#) = 0 then
            Scale := Scale + 4;
            Zu := Shift_Left (Zu, 4);
         end if;

         if (Hi (Zu) and 16#C000_0000#) = 0 then
            Scale := Scale + 2;
            Zu := Shift_Left (Zu, 2);
         end if;

         if (Hi (Zu) and 16#8000_0000#) = 0 then
            Scale := Scale + 1;
            Zu := Shift_Left (Zu, 1);
         end if;

         Zhi := Hi (Zu);
         Zlo := Lo (Zu);

         --  Note that when we scale up the dividend, it still fits in four
         --  digits, since we already tested for overflow, and scaling does
         --  not change the invariant that (D (1) & D (2)) >= Zu.

         T1 := Shift_Left (D (1) & D (2), Scale);
         D (1) := Hi (T1);
         T2 := Shift_Left (0 & D (3), Scale);
         D (2) := Lo (T1) or Hi (T2);
         T3 := Shift_Left (0 & D (4), Scale);
         D (3) := Lo (T2) or Hi (T3);
         D (4) := Lo (T3);

         --  Loop to compute quotient digits, runs twice for Qd(1) and Qd(2)

         for J in 0 .. 1 loop

            --  Compute next quotient digit. We have to divide three digits by
            --  two digits. We estimate the quotient by dividing the leading
            --  two digits by the leading digit. Given the scaling we did above
            --  which ensured the first bit of the divisor is set, this gives
            --  an estimate of the quotient that is at most two too high.

            Qd (J + 1) := (if D (J + 1) = Zhi
                           then 2 ** 32 - 1
                           else Lo ((D (J + 1) & D (J + 2)) / Zhi));

            --  Compute amount to subtract

            T1 := Qd (J + 1) * Zlo;
            T2 := Qd (J + 1) * Zhi;
            S3 := Lo (T1);
            T1 := Hi (T1) + Lo (T2);
            S2 := Lo (T1);
            S1 := Hi (T1) + Hi (T2);

            --  Adjust quotient digit if it was too high

            loop
               exit when Le3 (S1, S2, S3, D (J + 1), D (J + 2), D (J + 3));
               Qd (J + 1) := Qd (J + 1) - 1;
               Sub3 (S1, S2, S3, 0, Zhi, Zlo);
            end loop;

            --  Now subtract S1&S2&S3 from D1&D2&D3 ready for next step

            Sub3 (D (J + 1), D (J + 2), D (J + 3), S1, S2, S3);
         end loop;

         --  The two quotient digits are now set, and the remainder of the
         --  scaled division is in D3&D4. To get the remainder for the
         --  original unscaled division, we rescale this dividend.

         --  We rescale the divisor as well, to make the proper comparison
         --  for rounding below.

         Qu := Qd (1) & Qd (2);
         Ru := Shift_Right (D (3) & D (4), Scale);
         Zu := Shift_Right (Zu, Scale);
      end if;

      --  Deal with rounding case

      if Round and then Ru > (Zu - Uns64'(1)) / Uns64'(2) then
         Qu := Qu + Uns64 (1);
      end if;

      --  Set final signs (RM 4.5.5(27-30))

      --  Case of dividend (X * Y) sign positive

      if (X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0) then
         R := To_Pos_Int (Ru);
         Q := (if Z > 0 then To_Pos_Int (Qu) else To_Neg_Int (Qu));

      --  Case of dividend (X * Y) sign negative

      else
         R := To_Neg_Int (Ru);
         Q := (if Z > 0 then To_Neg_Int (Qu) else To_Pos_Int (Qu));
      end if;
   end Scaled_Divide;

   ----------
   -- Sub3 --
   ----------

   procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32) is
   begin
      if Y3 > X3 then
         if X2 = 0 then
            X1 := X1 - 1;
         end if;

         X2 := X2 - 1;
      end if;

      X3 := X3 - Y3;

      if Y2 > X2 then
         X1 := X1 - 1;
      end if;

      X2 := X2 - Y2;
      X1 := X1 - Y1;
   end Sub3;

   -------------------------------
   -- Subtract_With_Ovflo_Check --
   -------------------------------

   function Subtract_With_Ovflo_Check (X, Y : Int64) return Int64 is
      R : constant Int64 := To_Int (To_Uns (X) - To_Uns (Y));

   begin
      if X >= 0 then
         if Y > 0 or else R >= 0 then
            return R;
         end if;

      else -- X < 0
         if Y <= 0 or else R < 0 then
            return R;
         end if;
      end if;

      Raise_Error;
   end Subtract_With_Ovflo_Check;

   ----------------
   -- To_Neg_Int --
   ----------------

   function To_Neg_Int (A : Uns64) return Int64 is
      R : constant Int64 := -To_Int (A);

   begin
      if R <= 0 then
         return R;
      else
         Raise_Error;
      end if;
   end To_Neg_Int;

   ----------------
   -- To_Pos_Int --
   ----------------

   function To_Pos_Int (A : Uns64) return Int64 is
      R : constant Int64 := To_Int (A);

   begin
      if R >= 0 then
         return R;
      else
         Raise_Error;
      end if;
   end To_Pos_Int;

end System.Arith_64;