summaryrefslogtreecommitdiff
path: root/gcc/ada/s-fatgen.adb
blob: 20f3ead28282202c744f78b4243bdaa35a9d6d31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                       S Y S T E M . F A T _ G E N                        --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2007, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  The implementation here is portable to any IEEE implementation. It does
--  not handle non-binary radix, and also assumes that model numbers and
--  machine numbers are basically identical, which is not true of all possible
--  floating-point implementations. On a non-IEEE machine, this body must be
--  specialized appropriately, or better still, its generic instantiations
--  should be replaced by efficient machine-specific code.

with Ada.Unchecked_Conversion;
with System;
package body System.Fat_Gen is

   Float_Radix        : constant T := T (T'Machine_Radix);
   Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);

   pragma Assert (T'Machine_Radix = 2);
   --  This version does not handle radix 16

   --  Constants for Decompose and Scaling

   Rad    : constant T := T (T'Machine_Radix);
   Invrad : constant T := 1.0 / Rad;

   subtype Expbits is Integer range 0 .. 6;
   --  2 ** (2 ** 7) might overflow.  how big can radix-16 exponents get?

   Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);

   R_Power : constant array (Expbits) of T :=
     (Rad **  1,
      Rad **  2,
      Rad **  4,
      Rad **  8,
      Rad ** 16,
      Rad ** 32,
      Rad ** 64);

   R_Neg_Power : constant array (Expbits) of T :=
     (Invrad **  1,
      Invrad **  2,
      Invrad **  4,
      Invrad **  8,
      Invrad ** 16,
      Invrad ** 32,
      Invrad ** 64);

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Decompose (XX : T; Frac : out T; Expo : out UI);
   --  Decomposes a floating-point number into fraction and exponent parts.
   --  Both results are signed, with Frac having the sign of XX, and UI has
   --  the sign of the exponent. The absolute value of Frac is in the range
   --  0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.

   function Gradual_Scaling  (Adjustment : UI) return T;
   --  Like Scaling with a first argument of 1.0, but returns the smallest
   --  denormal rather than zero when the adjustment is smaller than
   --  Machine_Emin. Used for Succ and Pred.

   --------------
   -- Adjacent --
   --------------

   function Adjacent (X, Towards : T) return T is
   begin
      if Towards = X then
         return X;
      elsif Towards > X then
         return Succ (X);
      else
         return Pred (X);
      end if;
   end Adjacent;

   -------------
   -- Ceiling --
   -------------

   function Ceiling (X : T) return T is
      XT : constant T := Truncation (X);
   begin
      if X <= 0.0 then
         return XT;
      elsif X = XT then
         return X;
      else
         return XT + 1.0;
      end if;
   end Ceiling;

   -------------
   -- Compose --
   -------------

   function Compose (Fraction : T; Exponent : UI) return T is
      Arg_Frac : T;
      Arg_Exp  : UI;
      pragma Unreferenced (Arg_Exp);
   begin
      Decompose (Fraction, Arg_Frac, Arg_Exp);
      return Scaling (Arg_Frac, Exponent);
   end Compose;

   ---------------
   -- Copy_Sign --
   ---------------

   function Copy_Sign (Value, Sign : T) return T is
      Result : T;

      function Is_Negative (V : T) return Boolean;
      pragma Import (Intrinsic, Is_Negative);

   begin
      Result := abs Value;

      if Is_Negative (Sign) then
         return -Result;
      else
         return Result;
      end if;
   end Copy_Sign;

   ---------------
   -- Decompose --
   ---------------

   procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
      X : constant T := T'Machine (XX);

   begin
      if X = 0.0 then
         Frac := X;
         Expo := 0;

         --  More useful would be defining Expo to be T'Machine_Emin - 1 or
         --  T'Machine_Emin - T'Machine_Mantissa, which would preserve
         --  monotonicity of the exponent function ???

      --  Check for infinities, transfinites, whatnot

      elsif X > T'Safe_Last then
         Frac := Invrad;
         Expo := T'Machine_Emax + 1;

      elsif X < T'Safe_First then
         Frac := -Invrad;
         Expo := T'Machine_Emax + 2;    -- how many extra negative values?

      else
         --  Case of nonzero finite x. Essentially, we just multiply
         --  by Rad ** (+-2**N) to reduce the range.

         declare
            Ax : T  := abs X;
            Ex : UI := 0;

         --  Ax * Rad ** Ex is invariant

         begin
            if Ax >= 1.0 then
               while Ax >= R_Power (Expbits'Last) loop
                  Ax := Ax * R_Neg_Power (Expbits'Last);
                  Ex := Ex + Log_Power (Expbits'Last);
               end loop;

               --  Ax < Rad ** 64

               for N in reverse Expbits'First .. Expbits'Last - 1 loop
                  if Ax >= R_Power (N) then
                     Ax := Ax * R_Neg_Power (N);
                     Ex := Ex + Log_Power (N);
                  end if;

                  --  Ax < R_Power (N)
               end loop;

               --  1 <= Ax < Rad

               Ax := Ax * Invrad;
               Ex := Ex + 1;

            else
               --  0 < ax < 1

               while Ax < R_Neg_Power (Expbits'Last) loop
                  Ax := Ax * R_Power (Expbits'Last);
                  Ex := Ex - Log_Power (Expbits'Last);
               end loop;

               --  Rad ** -64 <= Ax < 1

               for N in reverse Expbits'First .. Expbits'Last - 1 loop
                  if Ax < R_Neg_Power (N) then
                     Ax := Ax * R_Power (N);
                     Ex := Ex - Log_Power (N);
                  end if;

                  --  R_Neg_Power (N) <= Ax < 1
               end loop;
            end if;

            if X > 0.0 then
               Frac := Ax;
            else
               Frac := -Ax;
            end if;

            Expo := Ex;
         end;
      end if;
   end Decompose;

   --------------
   -- Exponent --
   --------------

   function Exponent (X : T) return UI is
      X_Frac : T;
      X_Exp  : UI;
      pragma Unreferenced (X_Frac);
   begin
      Decompose (X, X_Frac, X_Exp);
      return X_Exp;
   end Exponent;

   -----------
   -- Floor --
   -----------

   function Floor (X : T) return T is
      XT : constant T := Truncation (X);
   begin
      if X >= 0.0 then
         return XT;
      elsif XT = X then
         return X;
      else
         return XT - 1.0;
      end if;
   end Floor;

   --------------
   -- Fraction --
   --------------

   function Fraction (X : T) return T is
      X_Frac : T;
      X_Exp  : UI;
      pragma Unreferenced (X_Exp);
   begin
      Decompose (X, X_Frac, X_Exp);
      return X_Frac;
   end Fraction;

   ---------------------
   -- Gradual_Scaling --
   ---------------------

   function Gradual_Scaling  (Adjustment : UI) return T is
      Y  : T;
      Y1 : T;
      Ex : UI := Adjustment;

   begin
      if Adjustment < T'Machine_Emin - 1 then
         Y  := 2.0 ** T'Machine_Emin;
         Y1 := Y;
         Ex := Ex - T'Machine_Emin;
         while Ex < 0 loop
            Y := T'Machine (Y / 2.0);

            if Y = 0.0 then
               return Y1;
            end if;

            Ex := Ex + 1;
            Y1 := Y;
         end loop;

         return Y1;

      else
         return Scaling (1.0, Adjustment);
      end if;
   end Gradual_Scaling;

   ------------------
   -- Leading_Part --
   ------------------

   function Leading_Part (X : T; Radix_Digits : UI) return T is
      L    : UI;
      Y, Z : T;

   begin
      if Radix_Digits >= T'Machine_Mantissa then
         return X;

      elsif Radix_Digits <= 0 then
         raise Constraint_Error;

      else
         L := Exponent (X) - Radix_Digits;
         Y := Truncation (Scaling (X, -L));
         Z := Scaling (Y, L);
         return Z;
      end if;
   end Leading_Part;

   -------------
   -- Machine --
   -------------

   --  The trick with Machine is to force the compiler to store the result
   --  in memory so that we do not have extra precision used. The compiler
   --  is clever, so we have to outwit its possible optimizations! We do
   --  this by using an intermediate pragma Volatile location.

   function Machine (X : T) return T is
      Temp : T;
      pragma Volatile (Temp);
   begin
      Temp := X;
      return Temp;
   end Machine;

   ----------------------
   -- Machine_Rounding --
   ----------------------

   --  For now, the implementation is identical to that of Rounding, which is
   --  a permissible behavior, but is not the most efficient possible approach.

   function Machine_Rounding (X : T) return T is
      Result : T;
      Tail   : T;

   begin
      Result := Truncation (abs X);
      Tail   := abs X - Result;

      if Tail >= 0.5  then
         Result := Result + 1.0;
      end if;

      if X > 0.0 then
         return Result;

      elsif X < 0.0 then
         return -Result;

      --  For zero case, make sure sign of zero is preserved

      else
         return X;
      end if;
   end Machine_Rounding;

   -----------
   -- Model --
   -----------

   --  We treat Model as identical to Machine. This is true of IEEE and other
   --  nice floating-point systems, but not necessarily true of all systems.

   function Model (X : T) return T is
   begin
      return Machine (X);
   end Model;

   ----------
   -- Pred --
   ----------

   --  Subtract from the given number a number equivalent to the value of its
   --  least significant bit. Given that the most significant bit represents
   --  a value of 1.0 * radix ** (exp - 1), the value we want is obtained by
   --  shifting this by (mantissa-1) bits to the right, i.e. decreasing the
   --  exponent by that amount.

   --  Zero has to be treated specially, since its exponent is zero

   function Pred (X : T) return T is
      X_Frac : T;
      X_Exp  : UI;

   begin
      if X = 0.0 then
         return -Succ (X);

      else
         Decompose (X, X_Frac, X_Exp);

         --  A special case, if the number we had was a positive power of
         --  two, then we want to subtract half of what we would otherwise
         --  subtract, since the exponent is going to be reduced.

         --  Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
         --  then we know that we have a positive number (and hence a
         --  positive power of 2).

         if X_Frac = 0.5 then
            return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);

         --  Otherwise the exponent is unchanged

         else
            return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
         end if;
      end if;
   end Pred;

   ---------------
   -- Remainder --
   ---------------

   function Remainder (X, Y : T) return T is
      A        : T;
      B        : T;
      Arg      : T;
      P        : T;
      P_Frac   : T;
      Sign_X   : T;
      IEEE_Rem : T;
      Arg_Exp  : UI;
      P_Exp    : UI;
      K        : UI;
      P_Even   : Boolean;

      Arg_Frac : T;
      pragma Unreferenced (Arg_Frac);

   begin
      if Y = 0.0 then
         raise Constraint_Error;
      end if;

      if X > 0.0 then
         Sign_X :=  1.0;
         Arg := X;
      else
         Sign_X := -1.0;
         Arg := -X;
      end if;

      P := abs Y;

      if Arg < P then
         P_Even := True;
         IEEE_Rem := Arg;
         P_Exp := Exponent (P);

      else
         Decompose (Arg, Arg_Frac, Arg_Exp);
         Decompose (P,   P_Frac,   P_Exp);

         P := Compose (P_Frac, Arg_Exp);
         K := Arg_Exp - P_Exp;
         P_Even := True;
         IEEE_Rem := Arg;

         for Cnt in reverse 0 .. K loop
            if IEEE_Rem >= P then
               P_Even := False;
               IEEE_Rem := IEEE_Rem - P;
            else
               P_Even := True;
            end if;

            P := P * 0.5;
         end loop;
      end if;

      --  That completes the calculation of modulus remainder. The final
      --  step is get the IEEE remainder. Here we need to compare Rem with
      --  (abs Y) / 2. We must be careful of unrepresentable Y/2 value
      --  caused by subnormal numbers

      if P_Exp >= 0 then
         A := IEEE_Rem;
         B := abs Y * 0.5;

      else
         A := IEEE_Rem * 2.0;
         B := abs Y;
      end if;

      if A > B or else (A = B and then not P_Even) then
         IEEE_Rem := IEEE_Rem - abs Y;
      end if;

      return Sign_X * IEEE_Rem;
   end Remainder;

   --------------
   -- Rounding --
   --------------

   function Rounding (X : T) return T is
      Result : T;
      Tail   : T;

   begin
      Result := Truncation (abs X);
      Tail   := abs X - Result;

      if Tail >= 0.5  then
         Result := Result + 1.0;
      end if;

      if X > 0.0 then
         return Result;

      elsif X < 0.0 then
         return -Result;

      --  For zero case, make sure sign of zero is preserved

      else
         return X;
      end if;
   end Rounding;

   -------------
   -- Scaling --
   -------------

   --  Return x * rad ** adjustment quickly,
   --  or quietly underflow to zero, or overflow naturally.

   function Scaling (X : T; Adjustment : UI) return T is
   begin
      if X = 0.0 or else Adjustment = 0 then
         return X;
      end if;

      --  Nonzero x. essentially, just multiply repeatedly by Rad ** (+-2**n)

      declare
         Y  : T  := X;
         Ex : UI := Adjustment;

      --  Y * Rad ** Ex is invariant

      begin
         if Ex < 0 then
            while Ex <= -Log_Power (Expbits'Last) loop
               Y := Y * R_Neg_Power (Expbits'Last);
               Ex := Ex + Log_Power (Expbits'Last);
            end loop;

            --  -64 < Ex <= 0

            for N in reverse Expbits'First .. Expbits'Last - 1 loop
               if Ex <= -Log_Power (N) then
                  Y := Y * R_Neg_Power (N);
                  Ex := Ex + Log_Power (N);
               end if;

               --  -Log_Power (N) < Ex <= 0
            end loop;

            --  Ex = 0

         else
            --  Ex >= 0

            while Ex >= Log_Power (Expbits'Last) loop
               Y := Y * R_Power (Expbits'Last);
               Ex := Ex - Log_Power (Expbits'Last);
            end loop;

            --  0 <= Ex < 64

            for N in reverse Expbits'First .. Expbits'Last - 1 loop
               if Ex >= Log_Power (N) then
                  Y := Y * R_Power (N);
                  Ex := Ex - Log_Power (N);
               end if;

               --  0 <= Ex < Log_Power (N)

            end loop;

            --  Ex = 0
         end if;

         return Y;
      end;
   end Scaling;

   ----------
   -- Succ --
   ----------

   --  Similar computation to that of Pred: find value of least significant
   --  bit of given number, and add. Zero has to be treated specially since
   --  the exponent can be zero, and also we want the smallest denormal if
   --  denormals are supported.

   function Succ (X : T) return T is
      X_Frac : T;
      X_Exp  : UI;
      X1, X2 : T;

   begin
      if X = 0.0 then
         X1 := 2.0 ** T'Machine_Emin;

         --  Following loop generates smallest denormal

         loop
            X2 := T'Machine (X1 / 2.0);
            exit when X2 = 0.0;
            X1 := X2;
         end loop;

         return X1;

      else
         Decompose (X, X_Frac, X_Exp);

         --  A special case, if the number we had was a negative power of
         --  two, then we want to add half of what we would otherwise add,
         --  since the exponent is going to be reduced.

         --  Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
         --  then we know that we have a ngeative number (and hence a
         --  negative power of 2).

         if X_Frac = -0.5 then
            return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);

         --  Otherwise the exponent is unchanged

         else
            return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
         end if;
      end if;
   end Succ;

   ----------------
   -- Truncation --
   ----------------

   --  The basic approach is to compute

   --    T'Machine (RM1 + N) - RM1

   --  where N >= 0.0 and RM1 = radix ** (mantissa - 1)

   --  This works provided that the intermediate result (RM1 + N) does not
   --  have extra precision (which is why we call Machine). When we compute
   --  RM1 + N, the exponent of N will be normalized and the mantissa shifted
   --  shifted appropriately so the lower order bits, which cannot contribute
   --  to the integer part of N, fall off on the right. When we subtract RM1
   --  again, the significant bits of N are shifted to the left, and what we
   --  have is an integer, because only the first e bits are different from
   --  zero (assuming binary radix here).

   function Truncation (X : T) return T is
      Result : T;

   begin
      Result := abs X;

      if Result >= Radix_To_M_Minus_1 then
         return Machine (X);

      else
         Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;

         if Result > abs X  then
            Result := Result - 1.0;
         end if;

         if X > 0.0 then
            return  Result;

         elsif X < 0.0 then
            return -Result;

         --  For zero case, make sure sign of zero is preserved

         else
            return X;
         end if;
      end if;
   end Truncation;

   -----------------------
   -- Unbiased_Rounding --
   -----------------------

   function Unbiased_Rounding (X : T) return T is
      Abs_X  : constant T := abs X;
      Result : T;
      Tail   : T;

   begin
      Result := Truncation (Abs_X);
      Tail   := Abs_X - Result;

      if Tail > 0.5  then
         Result := Result + 1.0;

      elsif Tail = 0.5 then
         Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
      end if;

      if X > 0.0 then
         return Result;

      elsif X < 0.0 then
         return -Result;

      --  For zero case, make sure sign of zero is preserved

      else
         return X;
      end if;
   end Unbiased_Rounding;

   -----------
   -- Valid --
   -----------

   --  Note: this routine does not work for VAX float. We compensate for this
   --  in Exp_Attr by using the Valid functions in Vax_Float_Operations rather
   --  than the corresponding instantiation of this function.

   function Valid (X : not null access T) return Boolean is

      IEEE_Emin : constant Integer := T'Machine_Emin - 1;
      IEEE_Emax : constant Integer := T'Machine_Emax - 1;

      IEEE_Bias : constant Integer := -(IEEE_Emin - 1);

      subtype IEEE_Exponent_Range is
        Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;

      --  The implementation of this floating point attribute uses a
      --  representation type Float_Rep that allows direct access to the
      --  exponent and mantissa parts of a floating point number.

      --  The Float_Rep type is an array of Float_Word elements. This
      --  representation is chosen to make it possible to size the type based
      --  on a generic parameter. Since the array size is known at compile
      --  time, efficient code can still be generated. The size of Float_Word
      --  elements should be large enough to allow accessing the exponent in
      --  one read, but small enough so that all floating point object sizes
      --  are a multiple of the Float_Word'Size.

      --  The following conditions must be met for all possible
      --  instantiations of the attributes package:

      --    - T'Size is an integral multiple of Float_Word'Size

      --    - The exponent and sign are completely contained in a single
      --      component of Float_Rep, named Most_Significant_Word (MSW).

      --    - The sign occupies the most significant bit of the MSW and the
      --      exponent is in the following bits. Unused bits (if any) are in
      --      the least significant part.

      type Float_Word is mod 2**Positive'Min (System.Word_Size, 32);
      type Rep_Index is range 0 .. 7;

      Rep_Words : constant Positive :=
         (T'Size + Float_Word'Size - 1) / Float_Word'Size;
      Rep_Last  : constant Rep_Index := Rep_Index'Min
        (Rep_Index (Rep_Words - 1), (T'Mantissa + 16) / Float_Word'Size);
      --  Determine the number of Float_Words needed for representing the
      --  entire floating-point value. Do not take into account excessive
      --  padding, as occurs on IA-64 where 80 bits floats get padded to 128
      --  bits. In general, the exponent field cannot be larger than 15 bits,
      --  even for 128-bit floating-poin t types, so the final format size
      --  won't be larger than T'Mantissa + 16.

      type Float_Rep is
         array (Rep_Index range 0 .. Rep_Index (Rep_Words - 1)) of Float_Word;

      pragma Suppress_Initialization (Float_Rep);
      --  This pragma supresses the generation of an initialization procedure
      --  for type Float_Rep when operating in Initialize/Normalize_Scalars
      --  mode. This is not just a matter of efficiency, but of functionality,
      --  since Valid has a pragma Inline_Always, which is not permitted if
      --  there are nested subprograms present.

      Most_Significant_Word : constant Rep_Index :=
                                Rep_Last * Standard'Default_Bit_Order;
      --  Finding the location of the Exponent_Word is a bit tricky. In general
      --  we assume Word_Order = Bit_Order. This expression needs to be refined
      --  for VMS.

      Exponent_Factor : constant Float_Word :=
                          2**(Float_Word'Size - 1) /
                            Float_Word (IEEE_Emax - IEEE_Emin + 3) *
                              Boolean'Pos (Most_Significant_Word /= 2) +
                                Boolean'Pos (Most_Significant_Word = 2);
      --  Factor that the extracted exponent needs to be divided by to be in
      --  range 0 .. IEEE_Emax - IEEE_Emin + 2. Special kludge: Exponent_Factor
      --  is 1 for x86/IA64 double extended as GCC adds unused bits to the
      --  type.

      Exponent_Mask : constant Float_Word :=
                        Float_Word (IEEE_Emax - IEEE_Emin + 2) *
                          Exponent_Factor;
      --  Value needed to mask out the exponent field. This assumes that the
      --  range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
      --  in Natural.

      function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);

      type Float_Access is access all T;
      function To_Address is
         new Ada.Unchecked_Conversion (Float_Access, System.Address);

      XA : constant System.Address := To_Address (Float_Access (X));

      R : Float_Rep;
      pragma Import (Ada, R);
      for R'Address use XA;
      --  R is a view of the input floating-point parameter. Note that we
      --  must avoid copying the actual bits of this parameter in float
      --  form (since it may be a signalling NaN.

      E  : constant IEEE_Exponent_Range :=
             Integer ((R (Most_Significant_Word) and Exponent_Mask) /
                                                        Exponent_Factor)
               - IEEE_Bias;
      --  Mask/Shift T to only get bits from the exponent. Then convert biased
      --  value to integer value.

      SR : Float_Rep;
      --  Float_Rep representation of significant of X.all

   begin
      if T'Denorm then

         --  All denormalized numbers are valid, so only invalid numbers are
         --  overflows and NaN's, both with exponent = Emax + 1.

         return E /= IEEE_Emax + 1;

      end if;

      --  All denormalized numbers except 0.0 are invalid

      --  Set exponent of X to zero, so we end up with the significand, which
      --  definitely is a valid number and can be converted back to a float.

      SR := R;
      SR (Most_Significant_Word) :=
           (SR (Most_Significant_Word)
             and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;

      return (E in IEEE_Emin .. IEEE_Emax) or else
         ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
   end Valid;

   ---------------------
   -- Unaligned_Valid --
   ---------------------

   function Unaligned_Valid (A : System.Address) return Boolean is
      subtype FS is String (1 .. T'Size / Character'Size);
      type FSP is access FS;

      function To_FSP is new Ada.Unchecked_Conversion (Address, FSP);

      Local_T : aliased T;

   begin
      --  Note that we have to be sure that we do not load the value into a
      --  floating-point register, since a signalling NaN may cause a trap.
      --  The following assignment is what does the actual alignment, since
      --  we know that the target Local_T is aligned.

      To_FSP (Local_T'Address).all := To_FSP (A).all;

      --  Now that we have an aligned value, we can use the normal aligned
      --  version of Valid to obtain the required result.

      return Valid (Local_T'Access);
   end Unaligned_Valid;

end System.Fat_Gen;