1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . F A T _ G E N --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- The implementation here is portable to any IEEE implementation. It does
-- not handle nonbinary radix, and also assumes that model numbers and
-- machine numbers are basically identical, which is not true of all possible
-- floating-point implementations. On a non-IEEE machine, this body must be
-- specialized appropriately, or better still, its generic instantiations
-- should be replaced by efficient machine-specific code.
with Ada.Unchecked_Conversion;
with System;
package body System.Fat_Gen is
Float_Radix : constant T := T (T'Machine_Radix);
Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
pragma Assert (T'Machine_Radix = 2);
-- This version does not handle radix 16
-- Constants for Decompose and Scaling
Rad : constant T := T (T'Machine_Radix);
Invrad : constant T := 1.0 / Rad;
subtype Expbits is Integer range 0 .. 6;
-- 2 ** (2 ** 7) might overflow. How big can radix-16 exponents get?
Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
R_Power : constant array (Expbits) of T :=
(Rad ** 1,
Rad ** 2,
Rad ** 4,
Rad ** 8,
Rad ** 16,
Rad ** 32,
Rad ** 64);
R_Neg_Power : constant array (Expbits) of T :=
(Invrad ** 1,
Invrad ** 2,
Invrad ** 4,
Invrad ** 8,
Invrad ** 16,
Invrad ** 32,
Invrad ** 64);
-----------------------
-- Local Subprograms --
-----------------------
procedure Decompose (XX : T; Frac : out T; Expo : out UI);
-- Decomposes a floating-point number into fraction and exponent parts.
-- Both results are signed, with Frac having the sign of XX, and UI has
-- the sign of the exponent. The absolute value of Frac is in the range
-- 0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.
function Gradual_Scaling (Adjustment : UI) return T;
-- Like Scaling with a first argument of 1.0, but returns the smallest
-- denormal rather than zero when the adjustment is smaller than
-- Machine_Emin. Used for Succ and Pred.
--------------
-- Adjacent --
--------------
function Adjacent (X, Towards : T) return T is
begin
if Towards = X then
return X;
elsif Towards > X then
return Succ (X);
else
return Pred (X);
end if;
end Adjacent;
-------------
-- Ceiling --
-------------
function Ceiling (X : T) return T is
XT : constant T := Truncation (X);
begin
if X <= 0.0 then
return XT;
elsif X = XT then
return X;
else
return XT + 1.0;
end if;
end Ceiling;
-------------
-- Compose --
-------------
function Compose (Fraction : T; Exponent : UI) return T is
Arg_Frac : T;
Arg_Exp : UI;
pragma Unreferenced (Arg_Exp);
begin
Decompose (Fraction, Arg_Frac, Arg_Exp);
return Scaling (Arg_Frac, Exponent);
end Compose;
---------------
-- Copy_Sign --
---------------
function Copy_Sign (Value, Sign : T) return T is
Result : T;
function Is_Negative (V : T) return Boolean;
pragma Import (Intrinsic, Is_Negative);
begin
Result := abs Value;
if Is_Negative (Sign) then
return -Result;
else
return Result;
end if;
end Copy_Sign;
---------------
-- Decompose --
---------------
procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
X : constant T := T'Machine (XX);
begin
if X = 0.0 then
-- The normalized exponent of zero is zero, see RM A.5.2(15)
Frac := X;
Expo := 0;
-- Check for infinities, transfinites, whatnot
elsif X > T'Safe_Last then
Frac := Invrad;
Expo := T'Machine_Emax + 1;
elsif X < T'Safe_First then
Frac := -Invrad;
Expo := T'Machine_Emax + 2; -- how many extra negative values?
else
-- Case of nonzero finite x. Essentially, we just multiply
-- by Rad ** (+-2**N) to reduce the range.
declare
Ax : T := abs X;
Ex : UI := 0;
-- Ax * Rad ** Ex is invariant
begin
if Ax >= 1.0 then
while Ax >= R_Power (Expbits'Last) loop
Ax := Ax * R_Neg_Power (Expbits'Last);
Ex := Ex + Log_Power (Expbits'Last);
end loop;
-- Ax < Rad ** 64
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ax >= R_Power (N) then
Ax := Ax * R_Neg_Power (N);
Ex := Ex + Log_Power (N);
end if;
-- Ax < R_Power (N)
end loop;
-- 1 <= Ax < Rad
Ax := Ax * Invrad;
Ex := Ex + 1;
else
-- 0 < ax < 1
while Ax < R_Neg_Power (Expbits'Last) loop
Ax := Ax * R_Power (Expbits'Last);
Ex := Ex - Log_Power (Expbits'Last);
end loop;
-- Rad ** -64 <= Ax < 1
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ax < R_Neg_Power (N) then
Ax := Ax * R_Power (N);
Ex := Ex - Log_Power (N);
end if;
-- R_Neg_Power (N) <= Ax < 1
end loop;
end if;
Frac := (if X > 0.0 then Ax else -Ax);
Expo := Ex;
end;
end if;
end Decompose;
--------------
-- Exponent --
--------------
function Exponent (X : T) return UI is
X_Frac : T;
X_Exp : UI;
pragma Unreferenced (X_Frac);
begin
Decompose (X, X_Frac, X_Exp);
return X_Exp;
end Exponent;
-----------
-- Floor --
-----------
function Floor (X : T) return T is
XT : constant T := Truncation (X);
begin
if X >= 0.0 then
return XT;
elsif XT = X then
return X;
else
return XT - 1.0;
end if;
end Floor;
--------------
-- Fraction --
--------------
function Fraction (X : T) return T is
X_Frac : T;
X_Exp : UI;
pragma Unreferenced (X_Exp);
begin
Decompose (X, X_Frac, X_Exp);
return X_Frac;
end Fraction;
---------------------
-- Gradual_Scaling --
---------------------
function Gradual_Scaling (Adjustment : UI) return T is
Y : T;
Y1 : T;
Ex : UI := Adjustment;
begin
if Adjustment < T'Machine_Emin - 1 then
Y := 2.0 ** T'Machine_Emin;
Y1 := Y;
Ex := Ex - T'Machine_Emin;
while Ex < 0 loop
Y := T'Machine (Y / 2.0);
if Y = 0.0 then
return Y1;
end if;
Ex := Ex + 1;
Y1 := Y;
end loop;
return Y1;
else
return Scaling (1.0, Adjustment);
end if;
end Gradual_Scaling;
------------------
-- Leading_Part --
------------------
function Leading_Part (X : T; Radix_Digits : UI) return T is
L : UI;
Y, Z : T;
begin
if Radix_Digits >= T'Machine_Mantissa then
return X;
elsif Radix_Digits <= 0 then
raise Constraint_Error;
else
L := Exponent (X) - Radix_Digits;
Y := Truncation (Scaling (X, -L));
Z := Scaling (Y, L);
return Z;
end if;
end Leading_Part;
-------------
-- Machine --
-------------
-- The trick with Machine is to force the compiler to store the result
-- in memory so that we do not have extra precision used. The compiler
-- is clever, so we have to outwit its possible optimizations. We do
-- this by using an intermediate pragma Volatile location.
function Machine (X : T) return T is
Temp : T;
pragma Volatile (Temp);
begin
Temp := X;
return Temp;
end Machine;
----------------------
-- Machine_Rounding --
----------------------
-- For now, the implementation is identical to that of Rounding, which is
-- a permissible behavior, but is not the most efficient possible approach.
function Machine_Rounding (X : T) return T is
Result : T;
Tail : T;
begin
Result := Truncation (abs X);
Tail := abs X - Result;
if Tail >= 0.5 then
Result := Result + 1.0;
end if;
if X > 0.0 then
return Result;
elsif X < 0.0 then
return -Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Machine_Rounding;
-----------
-- Model --
-----------
-- We treat Model as identical to Machine. This is true of IEEE and other
-- nice floating-point systems, but not necessarily true of all systems.
function Model (X : T) return T is
begin
return Machine (X);
end Model;
----------
-- Pred --
----------
function Pred (X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
-- Zero has to be treated specially, since its exponent is zero
if X = 0.0 then
return -Succ (X);
-- Special treatment for most negative number
elsif X = T'First then
-- If not generating infinities, we raise a constraint error
if T'Machine_Overflows then
raise Constraint_Error with "Pred of largest negative number";
-- Otherwise generate a negative infinity
else
return X / (X - X);
end if;
-- For infinities, return unchanged
elsif X < T'First or else X > T'Last then
return X;
-- Subtract from the given number a number equivalent to the value
-- of its least significant bit. Given that the most significant bit
-- represents a value of 1.0 * radix ** (exp - 1), the value we want
-- is obtained by shifting this by (mantissa-1) bits to the right,
-- i.e. decreasing the exponent by that amount.
else
Decompose (X, X_Frac, X_Exp);
-- A special case, if the number we had was a positive power of
-- two, then we want to subtract half of what we would otherwise
-- subtract, since the exponent is going to be reduced.
-- Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
-- then we know that we have a positive number (and hence a
-- positive power of 2).
if X_Frac = 0.5 then
return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
-- Otherwise the exponent is unchanged
else
return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
end if;
end if;
end Pred;
---------------
-- Remainder --
---------------
function Remainder (X, Y : T) return T is
A : T;
B : T;
Arg : T;
P : T;
P_Frac : T;
Sign_X : T;
IEEE_Rem : T;
Arg_Exp : UI;
P_Exp : UI;
K : UI;
P_Even : Boolean;
Arg_Frac : T;
pragma Unreferenced (Arg_Frac);
begin
if Y = 0.0 then
raise Constraint_Error;
end if;
if X > 0.0 then
Sign_X := 1.0;
Arg := X;
else
Sign_X := -1.0;
Arg := -X;
end if;
P := abs Y;
if Arg < P then
P_Even := True;
IEEE_Rem := Arg;
P_Exp := Exponent (P);
else
Decompose (Arg, Arg_Frac, Arg_Exp);
Decompose (P, P_Frac, P_Exp);
P := Compose (P_Frac, Arg_Exp);
K := Arg_Exp - P_Exp;
P_Even := True;
IEEE_Rem := Arg;
for Cnt in reverse 0 .. K loop
if IEEE_Rem >= P then
P_Even := False;
IEEE_Rem := IEEE_Rem - P;
else
P_Even := True;
end if;
P := P * 0.5;
end loop;
end if;
-- That completes the calculation of modulus remainder. The final
-- step is get the IEEE remainder. Here we need to compare Rem with
-- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
-- caused by subnormal numbers
if P_Exp >= 0 then
A := IEEE_Rem;
B := abs Y * 0.5;
else
A := IEEE_Rem * 2.0;
B := abs Y;
end if;
if A > B or else (A = B and then not P_Even) then
IEEE_Rem := IEEE_Rem - abs Y;
end if;
return Sign_X * IEEE_Rem;
end Remainder;
--------------
-- Rounding --
--------------
function Rounding (X : T) return T is
Result : T;
Tail : T;
begin
Result := Truncation (abs X);
Tail := abs X - Result;
if Tail >= 0.5 then
Result := Result + 1.0;
end if;
if X > 0.0 then
return Result;
elsif X < 0.0 then
return -Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Rounding;
-------------
-- Scaling --
-------------
-- Return x * rad ** adjustment quickly, or quietly underflow to zero,
-- or overflow naturally.
function Scaling (X : T; Adjustment : UI) return T is
begin
if X = 0.0 or else Adjustment = 0 then
return X;
end if;
-- Nonzero x essentially, just multiply repeatedly by Rad ** (+-2**n)
declare
Y : T := X;
Ex : UI := Adjustment;
-- Y * Rad ** Ex is invariant
begin
if Ex < 0 then
while Ex <= -Log_Power (Expbits'Last) loop
Y := Y * R_Neg_Power (Expbits'Last);
Ex := Ex + Log_Power (Expbits'Last);
end loop;
-- -64 < Ex <= 0
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ex <= -Log_Power (N) then
Y := Y * R_Neg_Power (N);
Ex := Ex + Log_Power (N);
end if;
-- -Log_Power (N) < Ex <= 0
end loop;
-- Ex = 0
else
-- Ex >= 0
while Ex >= Log_Power (Expbits'Last) loop
Y := Y * R_Power (Expbits'Last);
Ex := Ex - Log_Power (Expbits'Last);
end loop;
-- 0 <= Ex < 64
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ex >= Log_Power (N) then
Y := Y * R_Power (N);
Ex := Ex - Log_Power (N);
end if;
-- 0 <= Ex < Log_Power (N)
end loop;
-- Ex = 0
end if;
return Y;
end;
end Scaling;
----------
-- Succ --
----------
function Succ (X : T) return T is
X_Frac : T;
X_Exp : UI;
X1, X2 : T;
begin
-- Treat zero specially since it has a zero exponent
if X = 0.0 then
X1 := 2.0 ** T'Machine_Emin;
-- Following loop generates smallest denormal
loop
X2 := T'Machine (X1 / 2.0);
exit when X2 = 0.0;
X1 := X2;
end loop;
return X1;
-- Special treatment for largest positive number
elsif X = T'Last then
-- If not generating infinities, we raise a constraint error
if T'Machine_Overflows then
raise Constraint_Error with "Succ of largest negative number";
-- Otherwise generate a positive infinity
else
return X / (X - X);
end if;
-- For infinities, return unchanged
elsif X < T'First or else X > T'Last then
return X;
-- Add to the given number a number equivalent to the value
-- of its least significant bit. Given that the most significant bit
-- represents a value of 1.0 * radix ** (exp - 1), the value we want
-- is obtained by shifting this by (mantissa-1) bits to the right,
-- i.e. decreasing the exponent by that amount.
else
Decompose (X, X_Frac, X_Exp);
-- A special case, if the number we had was a negative power of two,
-- then we want to add half of what we would otherwise add, since the
-- exponent is going to be reduced.
-- Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
-- then we know that we have a negative number (and hence a negative
-- power of 2).
if X_Frac = -0.5 then
return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
-- Otherwise the exponent is unchanged
else
return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
end if;
end if;
end Succ;
----------------
-- Truncation --
----------------
-- The basic approach is to compute
-- T'Machine (RM1 + N) - RM1
-- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
-- This works provided that the intermediate result (RM1 + N) does not
-- have extra precision (which is why we call Machine). When we compute
-- RM1 + N, the exponent of N will be normalized and the mantissa shifted
-- shifted appropriately so the lower order bits, which cannot contribute
-- to the integer part of N, fall off on the right. When we subtract RM1
-- again, the significant bits of N are shifted to the left, and what we
-- have is an integer, because only the first e bits are different from
-- zero (assuming binary radix here).
function Truncation (X : T) return T is
Result : T;
begin
Result := abs X;
if Result >= Radix_To_M_Minus_1 then
return Machine (X);
else
Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
if Result > abs X then
Result := Result - 1.0;
end if;
if X > 0.0 then
return Result;
elsif X < 0.0 then
return -Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end if;
end Truncation;
-----------------------
-- Unbiased_Rounding --
-----------------------
function Unbiased_Rounding (X : T) return T is
Abs_X : constant T := abs X;
Result : T;
Tail : T;
begin
Result := Truncation (Abs_X);
Tail := Abs_X - Result;
if Tail > 0.5 then
Result := Result + 1.0;
elsif Tail = 0.5 then
Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
end if;
if X > 0.0 then
return Result;
elsif X < 0.0 then
return -Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Unbiased_Rounding;
-----------
-- Valid --
-----------
function Valid (X : not null access T) return Boolean is
IEEE_Emin : constant Integer := T'Machine_Emin - 1;
IEEE_Emax : constant Integer := T'Machine_Emax - 1;
IEEE_Bias : constant Integer := -(IEEE_Emin - 1);
subtype IEEE_Exponent_Range is
Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
-- The implementation of this floating point attribute uses a
-- representation type Float_Rep that allows direct access to the
-- exponent and mantissa parts of a floating point number.
-- The Float_Rep type is an array of Float_Word elements. This
-- representation is chosen to make it possible to size the type based
-- on a generic parameter. Since the array size is known at compile
-- time, efficient code can still be generated. The size of Float_Word
-- elements should be large enough to allow accessing the exponent in
-- one read, but small enough so that all floating point object sizes
-- are a multiple of the Float_Word'Size.
-- The following conditions must be met for all possible instantiations
-- of the attributes package:
-- - T'Size is an integral multiple of Float_Word'Size
-- - The exponent and sign are completely contained in a single
-- component of Float_Rep, named Most_Significant_Word (MSW).
-- - The sign occupies the most significant bit of the MSW and the
-- exponent is in the following bits. Unused bits (if any) are in
-- the least significant part.
type Float_Word is mod 2**Positive'Min (System.Word_Size, 32);
type Rep_Index is range 0 .. 7;
Rep_Words : constant Positive :=
(T'Size + Float_Word'Size - 1) / Float_Word'Size;
Rep_Last : constant Rep_Index :=
Rep_Index'Min
(Rep_Index (Rep_Words - 1),
(T'Mantissa + 16) / Float_Word'Size);
-- Determine the number of Float_Words needed for representing the
-- entire floating-point value. Do not take into account excessive
-- padding, as occurs on IA-64 where 80 bits floats get padded to 128
-- bits. In general, the exponent field cannot be larger than 15 bits,
-- even for 128-bit floating-point types, so the final format size
-- won't be larger than T'Mantissa + 16.
type Float_Rep is
array (Rep_Index range 0 .. Rep_Index (Rep_Words - 1)) of Float_Word;
pragma Suppress_Initialization (Float_Rep);
-- This pragma suppresses the generation of an initialization procedure
-- for type Float_Rep when operating in Initialize/Normalize_Scalars
-- mode. This is not just a matter of efficiency, but of functionality,
-- since Valid has a pragma Inline_Always, which is not permitted if
-- there are nested subprograms present.
Most_Significant_Word : constant Rep_Index :=
Rep_Last * Standard'Default_Bit_Order;
-- Finding the location of the Exponent_Word is a bit tricky. In general
-- we assume Word_Order = Bit_Order.
Exponent_Factor : constant Float_Word :=
2**(Float_Word'Size - 1) /
Float_Word (IEEE_Emax - IEEE_Emin + 3) *
Boolean'Pos (Most_Significant_Word /= 2) +
Boolean'Pos (Most_Significant_Word = 2);
-- Factor that the extracted exponent needs to be divided by to be in
-- range 0 .. IEEE_Emax - IEEE_Emin + 2. Special case: Exponent_Factor
-- is 1 for x86/IA64 double extended (GCC adds unused bits to the type).
Exponent_Mask : constant Float_Word :=
Float_Word (IEEE_Emax - IEEE_Emin + 2) *
Exponent_Factor;
-- Value needed to mask out the exponent field. This assumes that the
-- range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
-- in Natural.
function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);
type Float_Access is access all T;
function To_Address is
new Ada.Unchecked_Conversion (Float_Access, System.Address);
XA : constant System.Address := To_Address (Float_Access (X));
R : Float_Rep;
pragma Import (Ada, R);
for R'Address use XA;
-- R is a view of the input floating-point parameter. Note that we
-- must avoid copying the actual bits of this parameter in float
-- form (since it may be a signalling NaN).
E : constant IEEE_Exponent_Range :=
Integer ((R (Most_Significant_Word) and Exponent_Mask) /
Exponent_Factor)
- IEEE_Bias;
-- Mask/Shift T to only get bits from the exponent. Then convert biased
-- value to integer value.
SR : Float_Rep;
-- Float_Rep representation of significant of X.all
begin
if T'Denorm then
-- All denormalized numbers are valid, so the only invalid numbers
-- are overflows and NaNs, both with exponent = Emax + 1.
return E /= IEEE_Emax + 1;
end if;
-- All denormalized numbers except 0.0 are invalid
-- Set exponent of X to zero, so we end up with the significand, which
-- definitely is a valid number and can be converted back to a float.
SR := R;
SR (Most_Significant_Word) :=
(SR (Most_Significant_Word)
and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;
return (E in IEEE_Emin .. IEEE_Emax) or else
((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
end Valid;
end System.Fat_Gen;
|