1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . G E N E R I C _ C O M P L E X _ L A P A C K --
-- --
-- S p e c --
-- --
-- Copyright (C) 2006-2007, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Package comment required ???
with Ada.Numerics.Generic_Complex_Types;
generic
type Real is digits <>;
type Real_Vector is array (Integer range <>) of Real;
with package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real);
use Complex_Types;
type Complex_Vector is array (Integer range <>) of Complex;
type Complex_Matrix is array (Integer range <>, Integer range <>)
of Complex;
package System.Generic_Complex_LAPACK is
pragma Pure;
type Integer_Vector is array (Integer range <>) of Integer;
Upper : aliased constant Character := 'U';
Lower : aliased constant Character := 'L';
-- LAPACK Computational Routines
-- getrf computes LU factorization of a general m-by-n matrix
procedure getrf
(M : Natural;
N : Natural;
A : in out Complex_Matrix;
Ld_A : Positive;
I_Piv : out Integer_Vector;
Info : access Integer);
-- getri computes inverse of an LU-factored square matrix,
-- with multiple right-hand sides
procedure getri
(N : Natural;
A : in out Complex_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
Work : in out Complex_Vector;
L_Work : Integer;
Info : access Integer);
-- getrs solves a system of linear equations with an LU-factored
-- square matrix, with multiple right-hand sides
procedure getrs
(Trans : access constant Character;
N : Natural;
N_Rhs : Natural;
A : Complex_Matrix;
Ld_A : Positive;
I_Piv : Integer_Vector;
B : in out Complex_Matrix;
Ld_B : Positive;
Info : access Integer);
-- heevr computes selected eigenvalues and, optionally,
-- eigenvectors of a Hermitian matrix using the Relatively
-- Robust Representations
procedure heevr
(Job_Z : access constant Character;
Rng : access constant Character;
Uplo : access constant Character;
N : Natural;
A : in out Complex_Matrix;
Ld_A : Positive;
Vl, Vu : Real := 0.0;
Il, Iu : Integer := 1;
Abs_Tol : Real := 0.0;
M : out Integer;
W : out Real_Vector;
Z : out Complex_Matrix;
Ld_Z : Positive;
I_Supp_Z : out Integer_Vector;
Work : out Complex_Vector;
L_Work : Integer;
R_Work : out Real_Vector;
LR_Work : Integer;
I_Work : out Integer_Vector;
LI_Work : Integer;
Info : access Integer);
-- steqr computes all eigenvalues and eigenvectors of a symmetric or
-- Hermitian matrix reduced to tridiagonal form (QR algorithm)
procedure steqr
(Comp_Z : access constant Character;
N : Natural;
D : in out Real_Vector;
E : in out Real_Vector;
Z : in out Complex_Matrix;
Ld_Z : Positive;
Work : out Real_Vector;
Info : access Integer);
end System.Generic_Complex_LAPACK;
|