1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . R E G E X P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1999-2016, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
with System.Case_Util;
package body System.Regexp is
Initial_Max_States_In_Primary_Table : constant := 100;
-- Initial size for the number of states in the indefinite state
-- machine. The number of states will be increased as needed.
--
-- This is also used as the maximal number of meta states (groups of
-- states) in the secondary table.
Open_Paren : constant Character := '(';
Close_Paren : constant Character := ')';
Open_Bracket : constant Character := '[';
Close_Bracket : constant Character := ']';
type State_Index is new Natural;
type Column_Index is new Natural;
type Regexp_Array is array
(State_Index range <>, Column_Index range <>) of State_Index;
-- First index is for the state number. Second index is for the character
-- type. Contents is the new State.
type Regexp_Array_Access is access Regexp_Array;
-- Use this type through the functions Set below, so that it can grow
-- dynamically depending on the needs.
type Mapping is array (Character'Range) of Column_Index;
-- Mapping between characters and column in the Regexp_Array
type Boolean_Array is array (State_Index range <>) of Boolean;
type Regexp_Value
(Alphabet_Size : Column_Index;
Num_States : State_Index) is
record
Map : Mapping;
States : Regexp_Array (1 .. Num_States, 0 .. Alphabet_Size);
Is_Final : Boolean_Array (1 .. Num_States);
Case_Sensitive : Boolean;
end record;
-- Deterministic finite-state machine
-----------------------
-- Local Subprograms --
-----------------------
procedure Set
(Table : in out Regexp_Array_Access;
State : State_Index;
Column : Column_Index;
Value : State_Index);
-- Sets a value in the table. If the table is too small, reallocate it
-- dynamically so that (State, Column) is a valid index in it.
function Get
(Table : Regexp_Array_Access;
State : State_Index;
Column : Column_Index) return State_Index;
-- Returns the value in the table at (State, Column). If this index does
-- not exist in the table, returns zero.
procedure Free is new Ada.Unchecked_Deallocation
(Regexp_Array, Regexp_Array_Access);
------------
-- Adjust --
------------
procedure Adjust (R : in out Regexp) is
Tmp : Regexp_Access;
begin
if R.R /= null then
Tmp := new Regexp_Value (Alphabet_Size => R.R.Alphabet_Size,
Num_States => R.R.Num_States);
Tmp.all := R.R.all;
R.R := Tmp;
end if;
end Adjust;
-------------
-- Compile --
-------------
function Compile
(Pattern : String;
Glob : Boolean := False;
Case_Sensitive : Boolean := True) return Regexp
is
S : String := Pattern;
-- The pattern which is really compiled (when the pattern is case
-- insensitive, we convert this string to lower-cases
Map : Mapping := (others => 0);
-- Mapping between characters and columns in the tables
Alphabet_Size : Column_Index := 0;
-- Number of significant characters in the regular expression.
-- This total does not include special operators, such as *, (, ...
procedure Check_Well_Formed_Pattern;
-- Check that the pattern to compile is well-formed, so that subsequent
-- code can rely on this without performing each time the checks to
-- avoid accessing the pattern outside its bounds. However, not all
-- well-formedness rules are checked. In particular, rules about special
-- characters not being treated as regular characters are not checked.
procedure Create_Mapping;
-- Creates a mapping between characters in the regexp and columns
-- in the tables representing the regexp. Test that the regexp is
-- well-formed Modifies Alphabet_Size and Map
procedure Create_Primary_Table
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index);
-- Creates the first version of the regexp (this is a non deterministic
-- finite state machine, which is unadapted for a fast pattern
-- matching algorithm). We use a recursive algorithm to process the
-- parenthesis sub-expressions.
--
-- Table : at the end of the procedure : Column 0 is for any character
-- ('.') and the last columns are for no character (closure). Num_States
-- is set to the number of states in the table Start_State is the number
-- of the starting state in the regexp End_State is the number of the
-- final state when the regexp matches.
procedure Create_Primary_Table_Glob
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index);
-- Same function as above, but it deals with the second possible
-- grammar for 'globbing pattern', which is a kind of subset of the
-- whole regular expression grammar.
function Create_Secondary_Table
(First_Table : Regexp_Array_Access;
Start_State : State_Index;
End_State : State_Index) return Regexp;
-- Creates the definitive table representing the regular expression
-- This is actually a transformation of the primary table First_Table,
-- where every state is grouped with the states in its 'no-character'
-- columns. The transitions between the new states are then recalculated
-- and if necessary some new states are created.
--
-- Note that the resulting finite-state machine is not optimized in
-- terms of the number of states : it would be more time-consuming to
-- add a third pass to reduce the number of states in the machine, with
-- no speed improvement...
procedure Raise_Exception (M : String; Index : Integer);
pragma No_Return (Raise_Exception);
-- Raise an exception, indicating an error at character Index in S
-------------------------------
-- Check_Well_Formed_Pattern --
-------------------------------
procedure Check_Well_Formed_Pattern is
J : Integer;
Past_Elmt : Boolean := False;
-- Set to True everywhere an elmt has been parsed, if Glob=False,
-- meaning there can be now an occurrence of '*', '+' and '?'.
Past_Term : Boolean := False;
-- Set to True everywhere a term has been parsed, if Glob=False,
-- meaning there can be now an occurrence of '|'.
Parenthesis_Level : Integer := 0;
Curly_Level : Integer := 0;
Last_Open : Integer := S'First - 1;
-- The last occurrence of an opening parenthesis, if Glob=False,
-- or the last occurrence of an opening curly brace, if Glob=True.
procedure Raise_Exception_If_No_More_Chars (K : Integer := 0);
-- If no more characters are raised, call Raise_Exception
--------------------------------------
-- Raise_Exception_If_No_More_Chars --
--------------------------------------
procedure Raise_Exception_If_No_More_Chars (K : Integer := 0) is
begin
if J + K > S'Last then
Raise_Exception ("Ill-formed pattern while parsing", J);
end if;
end Raise_Exception_If_No_More_Chars;
-- Start of processing for Check_Well_Formed_Pattern
begin
J := S'First;
while J <= S'Last loop
case S (J) is
when Open_Bracket =>
J := J + 1;
Raise_Exception_If_No_More_Chars;
if not Glob then
if S (J) = '^' then
J := J + 1;
Raise_Exception_If_No_More_Chars;
end if;
end if;
-- The first character never has a special meaning
if S (J) = ']' or else S (J) = '-' then
J := J + 1;
Raise_Exception_If_No_More_Chars;
end if;
-- The set of characters cannot be empty
if S (J) = ']' then
Raise_Exception
("Set of characters cannot be empty in regular "
& "expression", J);
end if;
declare
Possible_Range_Start : Boolean := True;
-- Set True everywhere a range character '-' can occur
begin
loop
exit when S (J) = Close_Bracket;
-- The current character should be followed by a
-- closing bracket.
Raise_Exception_If_No_More_Chars (1);
if S (J) = '-'
and then S (J + 1) /= Close_Bracket
then
if not Possible_Range_Start then
Raise_Exception
("No mix of ranges is allowed in "
& "regular expression", J);
end if;
J := J + 1;
Raise_Exception_If_No_More_Chars;
-- Range cannot be followed by '-' character,
-- except as last character in the set.
Possible_Range_Start := False;
else
Possible_Range_Start := True;
end if;
if S (J) = '\' then
J := J + 1;
Raise_Exception_If_No_More_Chars;
end if;
J := J + 1;
end loop;
end;
-- A closing bracket can end an elmt or term
Past_Elmt := True;
Past_Term := True;
when Close_Bracket =>
-- A close bracket must follow a open_bracket, and cannot be
-- found alone on the line.
Raise_Exception
("Incorrect character ']' in regular expression", J);
when '\' =>
if J < S'Last then
J := J + 1;
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
else
-- \ not allowed at the end of the regexp
Raise_Exception
("Incorrect character '\' in regular expression", J);
end if;
when Open_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level + 1;
Last_Open := J;
-- An open parenthesis does not end an elmt or term
Past_Elmt := False;
Past_Term := False;
end if;
when Close_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level - 1;
if Parenthesis_Level < 0 then
Raise_Exception
("')' is not associated with '(' in regular "
& "expression", J);
end if;
if J = Last_Open + 1 then
Raise_Exception
("Empty parentheses not allowed in regular "
& "expression", J);
end if;
if not Past_Term then
Raise_Exception
("Closing parenthesis not allowed here in regular "
& "expression", J);
end if;
-- A closing parenthesis can end an elmt or term
Past_Elmt := True;
Past_Term := True;
end if;
when '{' =>
if Glob then
Curly_Level := Curly_Level + 1;
Last_Open := J;
else
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
end if;
-- No need to check for ',' as the code always accepts them
when '}' =>
if Glob then
Curly_Level := Curly_Level - 1;
if Curly_Level < 0 then
Raise_Exception
("'}' is not associated with '{' in regular "
& "expression", J);
end if;
if J = Last_Open + 1 then
Raise_Exception
("Empty curly braces not allowed in regular "
& "expression", J);
end if;
else
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
end if;
when '*' | '?' | '+' =>
if not Glob then
-- These operators must apply to an elmt sub-expression,
-- and cannot be found if one has not just been parsed.
if not Past_Elmt then
Raise_Exception
("'*', '+' and '?' operators must be "
& "applied to an element in regular expression", J);
end if;
Past_Elmt := False;
Past_Term := True;
end if;
when '|' =>
if not Glob then
-- This operator must apply to a term sub-expression,
-- and cannot be found if one has not just been parsed.
if not Past_Term then
Raise_Exception
("'|' operator must be "
& "applied to a term in regular expression", J);
end if;
Past_Elmt := False;
Past_Term := False;
end if;
when others =>
if not Glob then
-- Any character can be an elmt or a term
Past_Elmt := True;
Past_Term := True;
end if;
end case;
J := J + 1;
end loop;
-- A closing parenthesis must follow an open parenthesis
if Parenthesis_Level /= 0 then
Raise_Exception
("'(' must always be associated with a ')'", J);
end if;
-- A closing curly brace must follow an open curly brace
if Curly_Level /= 0 then
Raise_Exception
("'{' must always be associated with a '}'", J);
end if;
end Check_Well_Formed_Pattern;
--------------------
-- Create_Mapping --
--------------------
procedure Create_Mapping is
procedure Add_In_Map (C : Character);
-- Add a character in the mapping, if it is not already defined
----------------
-- Add_In_Map --
----------------
procedure Add_In_Map (C : Character) is
begin
if Map (C) = 0 then
Alphabet_Size := Alphabet_Size + 1;
Map (C) := Alphabet_Size;
end if;
end Add_In_Map;
J : Integer := S'First;
Parenthesis_Level : Integer := 0;
Curly_Level : Integer := 0;
Last_Open : Integer := S'First - 1;
-- Start of processing for Create_Mapping
begin
while J <= S'Last loop
case S (J) is
when Open_Bracket =>
J := J + 1;
if S (J) = '^' then
J := J + 1;
end if;
if S (J) = ']' or else S (J) = '-' then
J := J + 1;
end if;
-- The first character never has a special meaning
loop
if J > S'Last then
Raise_Exception
("Ran out of characters while parsing ", J);
end if;
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= Close_Bracket
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Add_In_Map (Char);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Add_In_Map (S (J));
end if;
J := J + 1;
end loop;
-- A close bracket must follow a open_bracket and cannot be
-- found alone on the line
when Close_Bracket =>
Raise_Exception
("Incorrect character ']' in regular expression", J);
when '\' =>
if J < S'Last then
J := J + 1;
Add_In_Map (S (J));
else
-- Back slash \ not allowed at the end of the regexp
Raise_Exception
("Incorrect character '\' in regular expression", J);
end if;
when Open_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level + 1;
Last_Open := J;
else
Add_In_Map (Open_Paren);
end if;
when Close_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level - 1;
if Parenthesis_Level < 0 then
Raise_Exception
("')' is not associated with '(' in regular "
& "expression", J);
end if;
if J = Last_Open + 1 then
Raise_Exception
("Empty parenthesis not allowed in regular "
& "expression", J);
end if;
else
Add_In_Map (Close_Paren);
end if;
when '.' =>
if Glob then
Add_In_Map ('.');
end if;
when '{' =>
if not Glob then
Add_In_Map (S (J));
else
Curly_Level := Curly_Level + 1;
end if;
when '}' =>
if not Glob then
Add_In_Map (S (J));
else
Curly_Level := Curly_Level - 1;
end if;
when '*' | '?' =>
if not Glob then
if J = S'First then
Raise_Exception
("'*', '+', '?' and '|' operators cannot be in "
& "first position in regular expression", J);
end if;
end if;
when '|' | '+' =>
if not Glob then
if J = S'First then
-- These operators must apply to a sub-expression,
-- and cannot be found at the beginning of the line
Raise_Exception
("'*', '+', '?' and '|' operators cannot be in "
& "first position in regular expression", J);
end if;
else
Add_In_Map (S (J));
end if;
when others =>
Add_In_Map (S (J));
end case;
J := J + 1;
end loop;
-- A closing parenthesis must follow an open parenthesis
if Parenthesis_Level /= 0 then
Raise_Exception
("'(' must always be associated with a ')'", J);
end if;
if Curly_Level /= 0 then
Raise_Exception
("'{' must always be associated with a '}'", J);
end if;
end Create_Mapping;
--------------------------
-- Create_Primary_Table --
--------------------------
procedure Create_Primary_Table
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index)
is
Empty_Char : constant Column_Index := Alphabet_Size + 1;
Current_State : State_Index := 0;
-- Index of the last created state
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index);
-- Add a empty-character transition from State to To_State
procedure Create_Repetition
(Repetition : Character;
Start_Prev : State_Index;
End_Prev : State_Index;
New_Start : out State_Index;
New_End : in out State_Index);
-- Create the table in case we have a '*', '+' or '?'.
-- Start_Prev .. End_Prev should indicate respectively the start and
-- end index of the previous expression, to which '*', '+' or '?' is
-- applied.
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index);
-- Fill the table for the regexp Simple. This is the recursive
-- procedure called to handle () expressions If End_State = 0, then
-- the call to Create_Simple creates an independent regexp, not a
-- concatenation Start_Index .. End_Index is the starting index in
-- the string S.
--
-- Warning: it may look like we are creating too many empty-string
-- transitions, but they are needed to get the correct regexp.
-- The table is filled as follow ( s means start-state, e means
-- end-state) :
--
-- regexp state_num | a b * empty_string
-- ------- ------------------------------
-- a 1 (s) | 2 - - -
-- 2 (e) | - - - -
--
-- ab 1 (s) | 2 - - -
-- 2 | - - - 3
-- 3 | - 4 - -
-- 4 (e) | - - - -
--
-- a|b 1 | 2 - - -
-- 2 | - - - 6
-- 3 | - 4 - -
-- 4 | - - - 6
-- 5 (s) | - - - 1,3
-- 6 (e) | - - - -
--
-- a* 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1,4
-- 4 (e) | - - - 3
--
-- (a) 1 (s) | 2 - - -
-- 2 (e) | - - - -
--
-- a+ 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1
-- 4 (e) | - - - 3
--
-- a? 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1,4
-- 4 (e) | - - - -
--
-- . 1 (s) | 2 2 2 -
-- 2 (e) | - - - -
function Next_Sub_Expression
(Start_Index : Integer;
End_Index : Integer) return Integer;
-- Returns the index of the last character of the next sub-expression
-- in Simple. Index cannot be greater than End_Index.
--------------------
-- Add_Empty_Char --
--------------------
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index)
is
J : Column_Index := Empty_Char;
begin
while Get (Table, State, J) /= 0 loop
J := J + 1;
end loop;
Set (Table, State, J, To_State);
end Add_Empty_Char;
-----------------------
-- Create_Repetition --
-----------------------
procedure Create_Repetition
(Repetition : Character;
Start_Prev : State_Index;
End_Prev : State_Index;
New_Start : out State_Index;
New_End : in out State_Index)
is
begin
New_Start := Current_State + 1;
if New_End /= 0 then
Add_Empty_Char (New_End, New_Start);
end if;
Current_State := Current_State + 2;
New_End := Current_State;
Add_Empty_Char (End_Prev, New_End);
Add_Empty_Char (New_Start, Start_Prev);
if Repetition /= '+' then
Add_Empty_Char (New_Start, New_End);
end if;
if Repetition /= '?' then
Add_Empty_Char (New_End, New_Start);
end if;
end Create_Repetition;
-------------------
-- Create_Simple --
-------------------
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index)
is
J : Integer := Start_Index;
Last_Start : State_Index := 0;
begin
Start_State := 0;
End_State := 0;
while J <= End_Index loop
case S (J) is
when Open_Paren =>
declare
J_Start : constant Integer := J + 1;
Next_Start : State_Index;
Next_End : State_Index;
begin
J := Next_Sub_Expression (J, End_Index);
Create_Simple (J_Start, J - 1, Next_Start, Next_End);
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Next_Start,
Next_End,
Last_Start,
End_State);
else
Last_Start := Next_Start;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Next_End;
end if;
end;
when '|' =>
declare
Start_Prev : constant State_Index := Start_State;
End_Prev : constant State_Index := End_State;
Start_J : constant Integer := J + 1;
Start_Next : State_Index := 0;
End_Next : State_Index := 0;
begin
J := Next_Sub_Expression (J, End_Index);
-- Create a new state for the start of the alternative
Current_State := Current_State + 1;
Last_Start := Current_State;
Start_State := Last_Start;
-- Create the tree for the second part of alternative
Create_Simple (Start_J, J, Start_Next, End_Next);
-- Create the end state
Add_Empty_Char (Last_Start, Start_Next);
Add_Empty_Char (Last_Start, Start_Prev);
Current_State := Current_State + 1;
End_State := Current_State;
Add_Empty_Char (End_Prev, End_State);
Add_Empty_Char (End_Next, End_State);
end;
when Open_Bracket =>
Current_State := Current_State + 1;
declare
Next_State : State_Index := Current_State + 1;
begin
J := J + 1;
if S (J) = '^' then
J := J + 1;
Next_State := 0;
for Column in 0 .. Alphabet_Size loop
Set (Table, Current_State, Column,
Value => Current_State + 1);
end loop;
end if;
-- Automatically add the first character
if S (J) = '-' or else S (J) = ']' then
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
J := J + 1;
end if;
-- Loop till closing bracket found
loop
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= ']'
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Set (Table, Current_State, Map (Char),
Value => Next_State);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
end if;
J := J + 1;
end loop;
end;
Current_State := Current_State + 1;
-- If the next symbol is a special symbol
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Current_State - 1,
Current_State,
Last_Start,
End_State);
else
Last_Start := Current_State - 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end if;
when '*' | '+' | '?' | Close_Paren | Close_Bracket =>
Raise_Exception
("Incorrect character in regular expression :", J);
when others =>
Current_State := Current_State + 1;
-- Create the state for the symbol S (J)
if S (J) = '.' then
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Current_State + 1);
end if;
Current_State := Current_State + 1;
-- If the next symbol is a special symbol
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Current_State - 1,
Current_State,
Last_Start,
End_State);
else
Last_Start := Current_State - 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end if;
end case;
if Start_State = 0 then
Start_State := Last_Start;
end if;
J := J + 1;
end loop;
end Create_Simple;
-------------------------
-- Next_Sub_Expression --
-------------------------
function Next_Sub_Expression
(Start_Index : Integer;
End_Index : Integer) return Integer
is
J : Integer := Start_Index;
Start_On_Alter : Boolean := False;
begin
if S (J) = '|' then
Start_On_Alter := True;
end if;
loop
exit when J = End_Index;
J := J + 1;
case S (J) is
when '\' =>
J := J + 1;
when Open_Bracket =>
loop
J := J + 1;
exit when S (J) = Close_Bracket;
if S (J) = '\' then
J := J + 1;
end if;
end loop;
when Open_Paren =>
J := Next_Sub_Expression (J, End_Index);
when Close_Paren =>
return J;
when '|' =>
if Start_On_Alter then
return J - 1;
end if;
when others =>
null;
end case;
end loop;
return J;
end Next_Sub_Expression;
-- Start of processing for Create_Primary_Table
begin
Table.all := (others => (others => 0));
Create_Simple (S'First, S'Last, Start_State, End_State);
Num_States := Current_State;
end Create_Primary_Table;
-------------------------------
-- Create_Primary_Table_Glob --
-------------------------------
procedure Create_Primary_Table_Glob
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index)
is
Empty_Char : constant Column_Index := Alphabet_Size + 1;
Current_State : State_Index := 0;
-- Index of the last created state
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index);
-- Add a empty-character transition from State to To_State
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index);
-- Fill the table for the S (Start_Index .. End_Index).
-- This is the recursive procedure called to handle () expressions
--------------------
-- Add_Empty_Char --
--------------------
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index)
is
J : Column_Index;
begin
J := Empty_Char;
while Get (Table, State, J) /= 0 loop
J := J + 1;
end loop;
Set (Table, State, J, Value => To_State);
end Add_Empty_Char;
-------------------
-- Create_Simple --
-------------------
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index)
is
J : Integer;
Last_Start : State_Index := 0;
begin
Start_State := 0;
End_State := 0;
J := Start_Index;
while J <= End_Index loop
case S (J) is
when Open_Bracket =>
Current_State := Current_State + 1;
declare
Next_State : State_Index := Current_State + 1;
begin
J := J + 1;
if S (J) = '^' then
J := J + 1;
Next_State := 0;
for Column in 0 .. Alphabet_Size loop
Set (Table, Current_State, Column,
Value => Current_State + 1);
end loop;
end if;
-- Automatically add the first character
if S (J) = '-' or else S (J) = ']' then
Set (Table, Current_State, Map (S (J)),
Value => Current_State);
J := J + 1;
end if;
-- Loop till closing bracket found
loop
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= ']'
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Set (Table, Current_State, Map (Char),
Value => Next_State);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
end if;
J := J + 1;
end loop;
end;
Last_Start := Current_State;
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
when '{' =>
declare
End_Sub : Integer;
Start_Regexp_Sub : State_Index;
End_Regexp_Sub : State_Index;
Create_Start : State_Index := 0;
Create_End : State_Index := 0;
-- Initialized to avoid junk warning
begin
while S (J) /= '}' loop
-- First step : find sub pattern
End_Sub := J + 1;
while S (End_Sub) /= ','
and then S (End_Sub) /= '}'
loop
End_Sub := End_Sub + 1;
end loop;
-- Second step : create a sub pattern
Create_Simple
(J + 1,
End_Sub - 1,
Start_Regexp_Sub,
End_Regexp_Sub);
J := End_Sub;
-- Third step : create an alternative
if Create_Start = 0 then
Current_State := Current_State + 1;
Create_Start := Current_State;
Add_Empty_Char (Create_Start, Start_Regexp_Sub);
Current_State := Current_State + 1;
Create_End := Current_State;
Add_Empty_Char (End_Regexp_Sub, Create_End);
else
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Create_Start);
Create_Start := Current_State;
Add_Empty_Char (Create_Start, Start_Regexp_Sub);
Add_Empty_Char (End_Regexp_Sub, Create_End);
end if;
end loop;
if End_State /= 0 then
Add_Empty_Char (End_State, Create_Start);
end if;
End_State := Create_End;
Last_Start := Create_Start;
end;
when '*' =>
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Current_State);
end if;
Add_Empty_Char (Current_State, Current_State + 1);
Add_Empty_Char (Current_State, Current_State + 3);
Last_Start := Current_State;
Current_State := Current_State + 1;
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Current_State + 1);
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Last_Start);
End_State := Current_State;
when others =>
Current_State := Current_State + 1;
if S (J) = '?' then
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
else
if S (J) = '\' then
J := J + 1;
end if;
-- Create the state for the symbol S (J)
Set (Table, Current_State, Map (S (J)),
Value => Current_State + 1);
end if;
Last_Start := Current_State;
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end case;
if Start_State = 0 then
Start_State := Last_Start;
end if;
J := J + 1;
end loop;
end Create_Simple;
-- Start of processing for Create_Primary_Table_Glob
begin
Table.all := (others => (others => 0));
Create_Simple (S'First, S'Last, Start_State, End_State);
Num_States := Current_State;
end Create_Primary_Table_Glob;
----------------------------
-- Create_Secondary_Table --
----------------------------
function Create_Secondary_Table
(First_Table : Regexp_Array_Access;
Start_State : State_Index;
End_State : State_Index) return Regexp
is
Last_Index : constant State_Index := First_Table'Last (1);
type Meta_State is array (0 .. Last_Index) of Boolean;
pragma Pack (Meta_State);
-- Whether a state from first_table belongs to a metastate.
No_States : constant Meta_State := (others => False);
type Meta_States_Array is array (State_Index range <>) of Meta_State;
type Meta_States_List is access all Meta_States_Array;
procedure Unchecked_Free is new Ada.Unchecked_Deallocation
(Meta_States_Array, Meta_States_List);
Meta_States : Meta_States_List;
-- Components of meta-states. A given state might belong to
-- several meta-states.
-- This array grows dynamically.
type Char_To_State is array (0 .. Alphabet_Size) of State_Index;
type Meta_States_Transition_Arr is
array (State_Index range <>) of Char_To_State;
type Meta_States_Transition is access all Meta_States_Transition_Arr;
procedure Unchecked_Free is new Ada.Unchecked_Deallocation
(Meta_States_Transition_Arr, Meta_States_Transition);
Table : Meta_States_Transition;
-- Documents the transitions between each meta-state. The
-- first index is the meta-state, the second column is the
-- character seen in the input, the value is the new meta-state.
Temp_State_Not_Null : Boolean;
Current_State : State_Index := 1;
-- The current meta-state we are creating
Nb_State : State_Index := 1;
-- The total number of meta-states created so far.
procedure Closure
(Meta_State : State_Index;
State : State_Index);
-- Compute the closure of the state (that is every other state which
-- has a empty-character transition) and add it to the state
procedure Ensure_Meta_State (Meta : State_Index);
-- grows the Meta_States array as needed to make sure that there
-- is enough space to store the new meta state.
-----------------------
-- Ensure_Meta_State --
-----------------------
procedure Ensure_Meta_State (Meta : State_Index) is
Tmp : Meta_States_List := Meta_States;
Tmp2 : Meta_States_Transition := Table;
begin
if Meta_States = null then
Meta_States := new Meta_States_Array
(1 .. State_Index'Max (Last_Index, Meta) + 1);
Meta_States (Meta_States'Range) := (others => No_States);
Table := new Meta_States_Transition_Arr
(1 .. State_Index'Max (Last_Index, Meta) + 1);
Table.all := (others => (others => 0));
elsif Meta > Meta_States'Last then
Meta_States := new Meta_States_Array
(1 .. State_Index'Max (2 * Tmp'Last, Meta));
Meta_States (Tmp'Range) := Tmp.all;
Meta_States (Tmp'Last + 1 .. Meta_States'Last) :=
(others => No_States);
Unchecked_Free (Tmp);
Table := new Meta_States_Transition_Arr
(1 .. State_Index'Max (2 * Tmp2'Last, Meta) + 1);
Table (Tmp2'Range) := Tmp2.all;
Table (Tmp2'Last + 1 .. Table'Last) :=
(others => (others => 0));
Unchecked_Free (Tmp2);
end if;
end Ensure_Meta_State;
-------------
-- Closure --
-------------
procedure Closure
(Meta_State : State_Index;
State : State_Index)
is
begin
if not Meta_States (Meta_State)(State) then
Meta_States (Meta_State)(State) := True;
-- For each transition on empty-character
for Column in Alphabet_Size + 1 .. First_Table'Last (2) loop
exit when First_Table (State, Column) = 0;
Closure (Meta_State, First_Table (State, Column));
end loop;
end if;
end Closure;
-- Start of processing for Create_Secondary_Table
begin
-- Create a new state
Ensure_Meta_State (Current_State);
Closure (Current_State, Start_State);
while Current_State <= Nb_State loop
-- We will be trying, below, to create the next meta-state
Ensure_Meta_State (Nb_State + 1);
-- For every character in the regexp, calculate the possible
-- transitions from Current_State.
for Column in 0 .. Alphabet_Size loop
Temp_State_Not_Null := False;
for K in Meta_States (Current_State)'Range loop
if Meta_States (Current_State)(K)
and then First_Table (K, Column) /= 0
then
Closure (Nb_State + 1, First_Table (K, Column));
Temp_State_Not_Null := True;
end if;
end loop;
-- If at least one transition existed
if Temp_State_Not_Null then
-- Check if this new state corresponds to an old one
for K in 1 .. Nb_State loop
if Meta_States (K) = Meta_States (Nb_State + 1) then
Table (Current_State)(Column) := K;
-- Reset data, for the next time we try that state
Meta_States (Nb_State + 1) := No_States;
exit;
end if;
end loop;
-- If not, create a new state
if Table (Current_State)(Column) = 0 then
Nb_State := Nb_State + 1;
Ensure_Meta_State (Nb_State + 1);
Table (Current_State)(Column) := Nb_State;
end if;
end if;
end loop;
Current_State := Current_State + 1;
end loop;
-- Returns the regexp
declare
R : Regexp_Access;
begin
R := new Regexp_Value (Alphabet_Size => Alphabet_Size,
Num_States => Nb_State);
R.Map := Map;
R.Case_Sensitive := Case_Sensitive;
for S in 1 .. Nb_State loop
R.Is_Final (S) := Meta_States (S)(End_State);
end loop;
for State in 1 .. Nb_State loop
for K in 0 .. Alphabet_Size loop
R.States (State, K) := Table (State)(K);
end loop;
end loop;
Unchecked_Free (Meta_States);
Unchecked_Free (Table);
return (Ada.Finalization.Controlled with R => R);
end;
end Create_Secondary_Table;
---------------------
-- Raise_Exception --
---------------------
procedure Raise_Exception (M : String; Index : Integer) is
begin
raise Error_In_Regexp with M & " at offset" & Index'Img;
end Raise_Exception;
-- Start of processing for Compile
begin
-- Special case for the empty string: it always matches, and the
-- following processing would fail on it.
if S = "" then
return (Ada.Finalization.Controlled with
R => new Regexp_Value'
(Alphabet_Size => 0,
Num_States => 1,
Map => (others => 0),
States => (others => (others => 1)),
Is_Final => (others => True),
Case_Sensitive => True));
end if;
if not Case_Sensitive then
System.Case_Util.To_Lower (S);
end if;
-- Check the pattern is well-formed before any treatment
Check_Well_Formed_Pattern;
Create_Mapping;
-- Creates the primary table
declare
Table : Regexp_Array_Access;
Num_States : State_Index;
Start_State : State_Index;
End_State : State_Index;
R : Regexp;
begin
Table := new Regexp_Array (1 .. Initial_Max_States_In_Primary_Table,
0 .. Alphabet_Size + 10);
if not Glob then
Create_Primary_Table (Table, Num_States, Start_State, End_State);
else
Create_Primary_Table_Glob
(Table, Num_States, Start_State, End_State);
end if;
-- Creates the secondary table
R := Create_Secondary_Table (Table, Start_State, End_State);
Free (Table);
return R;
end;
end Compile;
--------------
-- Finalize --
--------------
procedure Finalize (R : in out Regexp) is
procedure Free is new
Ada.Unchecked_Deallocation (Regexp_Value, Regexp_Access);
begin
Free (R.R);
end Finalize;
---------
-- Get --
---------
function Get
(Table : Regexp_Array_Access;
State : State_Index;
Column : Column_Index) return State_Index
is
begin
if State <= Table'Last (1)
and then Column <= Table'Last (2)
then
return Table (State, Column);
else
return 0;
end if;
end Get;
-----------
-- Match --
-----------
function Match (S : String; R : Regexp) return Boolean is
Current_State : State_Index := 1;
begin
if R.R = null then
raise Constraint_Error;
end if;
for Char in S'Range loop
if R.R.Case_Sensitive then
Current_State := R.R.States (Current_State, R.R.Map (S (Char)));
else
Current_State :=
R.R.States (Current_State,
R.R.Map (System.Case_Util.To_Lower (S (Char))));
end if;
if Current_State = 0 then
return False;
end if;
end loop;
return R.R.Is_Final (Current_State);
end Match;
---------
-- Set --
---------
procedure Set
(Table : in out Regexp_Array_Access;
State : State_Index;
Column : Column_Index;
Value : State_Index)
is
New_Lines : State_Index;
New_Columns : Column_Index;
New_Table : Regexp_Array_Access;
begin
if State <= Table'Last (1)
and then Column <= Table'Last (2)
then
Table (State, Column) := Value;
else
-- Doubles the size of the table until it is big enough that
-- (State, Column) is a valid index.
New_Lines := Table'Last (1) * (State / Table'Last (1) + 1);
New_Columns := Table'Last (2) * (Column / Table'Last (2) + 1);
New_Table := new Regexp_Array (Table'First (1) .. New_Lines,
Table'First (2) .. New_Columns);
New_Table.all := (others => (others => 0));
for J in Table'Range (1) loop
for K in Table'Range (2) loop
New_Table (J, K) := Table (J, K);
end loop;
end loop;
Free (Table);
Table := New_Table;
Table (State, Column) := Value;
end if;
end Set;
end System.Regexp;
|