1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ A G G R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Itypes; use Itypes;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Sem; use Sem;
with Sem_Cat; use Sem_Cat;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stringt; use Stringt;
with Stand; use Stand;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with GNAT.Spelling_Checker; use GNAT.Spelling_Checker;
package body Sem_Aggr is
type Case_Bounds is record
Choice_Lo : Node_Id;
Choice_Hi : Node_Id;
Choice_Node : Node_Id;
end record;
type Case_Table_Type is array (Nat range <>) of Case_Bounds;
-- Table type used by Check_Case_Choices procedure
-----------------------
-- Local Subprograms --
-----------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
-- Sort the Case Table using the Lower Bound of each Choice as the key.
-- A simple insertion sort is used since the number of choices in a case
-- statement of variant part will usually be small and probably in near
-- sorted order.
procedure Check_Can_Never_Be_Null (N : Node_Id; Expr : Node_Id);
-- Ada 2005 (AI-231): Check bad usage of the null-exclusion issue
------------------------------------------------------
-- Subprograms used for RECORD AGGREGATE Processing --
------------------------------------------------------
procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
-- This procedure performs all the semantic checks required for record
-- aggregates. Note that for aggregates analysis and resolution go
-- hand in hand. Aggregate analysis has been delayed up to here and
-- it is done while resolving the aggregate.
--
-- N is the N_Aggregate node.
-- Typ is the record type for the aggregate resolution
--
-- While performing the semantic checks, this procedure
-- builds a new Component_Association_List where each record field
-- appears alone in a Component_Choice_List along with its corresponding
-- expression. The record fields in the Component_Association_List
-- appear in the same order in which they appear in the record type Typ.
--
-- Once this new Component_Association_List is built and all the
-- semantic checks performed, the original aggregate subtree is replaced
-- with the new named record aggregate just built. Note that the subtree
-- substitution is performed with Rewrite so as to be
-- able to retrieve the original aggregate.
--
-- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
-- yields the aggregate format expected by Gigi. Typically, this kind of
-- tree manipulations are done in the expander. However, because the
-- semantic checks that need to be performed on record aggregates really
-- go hand in hand with the record aggregate normalization, the aggregate
-- subtree transformation is performed during resolution rather than
-- expansion. Had we decided otherwise we would have had to duplicate
-- most of the code in the expansion procedure Expand_Record_Aggregate.
-- Note, however, that all the expansion concerning aggegates for tagged
-- records is done in Expand_Record_Aggregate.
--
-- The algorithm of Resolve_Record_Aggregate proceeds as follows:
--
-- 1. Make sure that the record type against which the record aggregate
-- has to be resolved is not abstract. Furthermore if the type is
-- a null aggregate make sure the input aggregate N is also null.
--
-- 2. Verify that the structure of the aggregate is that of a record
-- aggregate. Specifically, look for component associations and ensure
-- that each choice list only has identifiers or the N_Others_Choice
-- node. Also make sure that if present, the N_Others_Choice occurs
-- last and by itself.
--
-- 3. If Typ contains discriminants, the values for each discriminant
-- is looked for. If the record type Typ has variants, we check
-- that the expressions corresponding to each discriminant ruling
-- the (possibly nested) variant parts of Typ, are static. This
-- allows us to determine the variant parts to which the rest of
-- the aggregate must conform. The names of discriminants with their
-- values are saved in a new association list, New_Assoc_List which
-- is later augmented with the names and values of the remaining
-- components in the record type.
--
-- During this phase we also make sure that every discriminant is
-- assigned exactly one value. Note that when several values
-- for a given discriminant are found, semantic processing continues
-- looking for further errors. In this case it's the first
-- discriminant value found which we will be recorded.
--
-- IMPORTANT NOTE: For derived tagged types this procedure expects
-- First_Discriminant and Next_Discriminant to give the correct list
-- of discriminants, in the correct order.
--
-- 4. After all the discriminant values have been gathered, we can
-- set the Etype of the record aggregate. If Typ contains no
-- discriminants this is straightforward: the Etype of N is just
-- Typ, otherwise a new implicit constrained subtype of Typ is
-- built to be the Etype of N.
--
-- 5. Gather the remaining record components according to the discriminant
-- values. This involves recursively traversing the record type
-- structure to see what variants are selected by the given discriminant
-- values. This processing is a little more convoluted if Typ is a
-- derived tagged types since we need to retrieve the record structure
-- of all the ancestors of Typ.
--
-- 6. After gathering the record components we look for their values
-- in the record aggregate and emit appropriate error messages
-- should we not find such values or should they be duplicated.
--
-- 7. We then make sure no illegal component names appear in the
-- record aggegate and make sure that the type of the record
-- components appearing in a same choice list is the same.
-- Finally we ensure that the others choice, if present, is
-- used to provide the value of at least a record component.
--
-- 8. The original aggregate node is replaced with the new named
-- aggregate built in steps 3 through 6, as explained earlier.
--
-- Given the complexity of record aggregate resolution, the primary
-- goal of this routine is clarity and simplicity rather than execution
-- and storage efficiency. If there are only positional components in the
-- aggregate the running time is linear. If there are associations
-- the running time is still linear as long as the order of the
-- associations is not too far off the order of the components in the
-- record type. If this is not the case the running time is at worst
-- quadratic in the size of the association list.
procedure Check_Misspelled_Component
(Elements : Elist_Id;
Component : Node_Id);
-- Give possible misspelling diagnostic if Component is likely to be
-- a misspelling of one of the components of the Assoc_List.
-- This is called by Resolv_Aggr_Expr after producing
-- an invalid component error message.
procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
-- An optimization: determine whether a discriminated subtype has a
-- static constraint, and contains array components whose length is also
-- static, either because they are constrained by the discriminant, or
-- because the original component bounds are static.
-----------------------------------------------------
-- Subprograms used for ARRAY AGGREGATE Processing --
-----------------------------------------------------
function Resolve_Array_Aggregate
(N : Node_Id;
Index : Node_Id;
Index_Constr : Node_Id;
Component_Typ : Entity_Id;
Others_Allowed : Boolean)
return Boolean;
-- This procedure performs the semantic checks for an array aggregate.
-- True is returned if the aggregate resolution succeeds.
-- The procedure works by recursively checking each nested aggregate.
-- Specifically, after checking a sub-aggregate nested at the i-th level
-- we recursively check all the subaggregates at the i+1-st level (if any).
-- Note that for aggregates analysis and resolution go hand in hand.
-- Aggregate analysis has been delayed up to here and it is done while
-- resolving the aggregate.
--
-- N is the current N_Aggregate node to be checked.
--
-- Index is the index node corresponding to the array sub-aggregate that
-- we are currently checking (RM 4.3.3 (8)). Its Etype is the
-- corresponding index type (or subtype).
--
-- Index_Constr is the node giving the applicable index constraint if
-- any (RM 4.3.3 (10)). It "is a constraint provided by certain
-- contexts [...] that can be used to determine the bounds of the array
-- value specified by the aggregate". If Others_Allowed below is False
-- there is no applicable index constraint and this node is set to Index.
--
-- Component_Typ is the array component type.
--
-- Others_Allowed indicates whether an others choice is allowed
-- in the context where the top-level aggregate appeared.
--
-- The algorithm of Resolve_Array_Aggregate proceeds as follows:
--
-- 1. Make sure that the others choice, if present, is by itself and
-- appears last in the sub-aggregate. Check that we do not have
-- positional and named components in the array sub-aggregate (unless
-- the named association is an others choice). Finally if an others
-- choice is present, make sure it is allowed in the aggregate contex.
--
-- 2. If the array sub-aggregate contains discrete_choices:
--
-- (A) Verify their validity. Specifically verify that:
--
-- (a) If a null range is present it must be the only possible
-- choice in the array aggregate.
--
-- (b) Ditto for a non static range.
--
-- (c) Ditto for a non static expression.
--
-- In addition this step analyzes and resolves each discrete_choice,
-- making sure that its type is the type of the corresponding Index.
-- If we are not at the lowest array aggregate level (in the case of
-- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
-- recursively on each component expression. Otherwise, resolve the
-- bottom level component expressions against the expected component
-- type ONLY IF the component corresponds to a single discrete choice
-- which is not an others choice (to see why read the DELAYED
-- COMPONENT RESOLUTION below).
--
-- (B) Determine the bounds of the sub-aggregate and lowest and
-- highest choice values.
--
-- 3. For positional aggregates:
--
-- (A) Loop over the component expressions either recursively invoking
-- Resolve_Array_Aggregate on each of these for multi-dimensional
-- array aggregates or resolving the bottom level component
-- expressions against the expected component type.
--
-- (B) Determine the bounds of the positional sub-aggregates.
--
-- 4. Try to determine statically whether the evaluation of the array
-- sub-aggregate raises Constraint_Error. If yes emit proper
-- warnings. The precise checks are the following:
--
-- (A) Check that the index range defined by aggregate bounds is
-- compatible with corresponding index subtype.
-- We also check against the base type. In fact it could be that
-- Low/High bounds of the base type are static whereas those of
-- the index subtype are not. Thus if we can statically catch
-- a problem with respect to the base type we are guaranteed
-- that the same problem will arise with the index subtype
--
-- (B) If we are dealing with a named aggregate containing an others
-- choice and at least one discrete choice then make sure the range
-- specified by the discrete choices does not overflow the
-- aggregate bounds. We also check against the index type and base
-- type bounds for the same reasons given in (A).
--
-- (C) If we are dealing with a positional aggregate with an others
-- choice make sure the number of positional elements specified
-- does not overflow the aggregate bounds. We also check against
-- the index type and base type bounds as mentioned in (A).
--
-- Finally construct an N_Range node giving the sub-aggregate bounds.
-- Set the Aggregate_Bounds field of the sub-aggregate to be this
-- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
-- to build the appropriate aggregate subtype. Aggregate_Bounds
-- information is needed during expansion.
--
-- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
-- expressions in an array aggregate may call Duplicate_Subexpr or some
-- other routine that inserts code just outside the outermost aggregate.
-- If the array aggregate contains discrete choices or an others choice,
-- this may be wrong. Consider for instance the following example.
--
-- type Rec is record
-- V : Integer := 0;
-- end record;
--
-- type Acc_Rec is access Rec;
-- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
--
-- Then the transformation of "new Rec" that occurs during resolution
-- entails the following code modifications
--
-- P7b : constant Acc_Rec := new Rec;
-- RecIP (P7b.all);
-- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
--
-- This code transformation is clearly wrong, since we need to call
-- "new Rec" for each of the 3 array elements. To avoid this problem we
-- delay resolution of the components of non positional array aggregates
-- to the expansion phase. As an optimization, if the discrete choice
-- specifies a single value we do not delay resolution.
function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
-- This routine returns the type or subtype of an array aggregate.
--
-- N is the array aggregate node whose type we return.
--
-- Typ is the context type in which N occurs.
--
-- This routine creates an implicit array subtype whose bounds are
-- those defined by the aggregate. When this routine is invoked
-- Resolve_Array_Aggregate has already processed aggregate N. Thus the
-- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
-- sub-aggregate bounds. When building the aggegate itype, this function
-- traverses the array aggregate N collecting such Aggregate_Bounds and
-- constructs the proper array aggregate itype.
--
-- Note that in the case of multidimensional aggregates each inner
-- sub-aggregate corresponding to a given array dimension, may provide a
-- different bounds. If it is possible to determine statically that
-- some sub-aggregates corresponding to the same index do not have the
-- same bounds, then a warning is emitted. If such check is not possible
-- statically (because some sub-aggregate bounds are dynamic expressions)
-- then this job is left to the expander. In all cases the particular
-- bounds that this function will chose for a given dimension is the first
-- N_Range node for a sub-aggregate corresponding to that dimension.
--
-- Note that the Raises_Constraint_Error flag of an array aggregate
-- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
-- is set in Resolve_Array_Aggregate but the aggregate is not
-- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
-- first construct the proper itype for the aggregate (Gigi needs
-- this). After constructing the proper itype we will eventually replace
-- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
-- Of course in cases such as:
--
-- type Arr is array (integer range <>) of Integer;
-- A : Arr := (positive range -1 .. 2 => 0);
--
-- The bounds of the aggregate itype are cooked up to look reasonable
-- (in this particular case the bounds will be 1 .. 2).
procedure Aggregate_Constraint_Checks
(Exp : Node_Id;
Check_Typ : Entity_Id);
-- Checks expression Exp against subtype Check_Typ. If Exp is an
-- aggregate and Check_Typ a constrained record type with discriminants,
-- we generate the appropriate discriminant checks. If Exp is an array
-- aggregate then emit the appropriate length checks. If Exp is a scalar
-- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
-- ensure that range checks are performed at run time.
procedure Make_String_Into_Aggregate (N : Node_Id);
-- A string literal can appear in a context in which a one dimensional
-- array of characters is expected. This procedure simply rewrites the
-- string as an aggregate, prior to resolution.
---------------------------------
-- Aggregate_Constraint_Checks --
---------------------------------
procedure Aggregate_Constraint_Checks
(Exp : Node_Id;
Check_Typ : Entity_Id)
is
Exp_Typ : constant Entity_Id := Etype (Exp);
begin
if Raises_Constraint_Error (Exp) then
return;
end if;
-- This is really expansion activity, so make sure that expansion
-- is on and is allowed.
if not Expander_Active or else In_Default_Expression then
return;
end if;
-- First check if we have to insert discriminant checks
if Has_Discriminants (Exp_Typ) then
Apply_Discriminant_Check (Exp, Check_Typ);
-- Next emit length checks for array aggregates
elsif Is_Array_Type (Exp_Typ) then
Apply_Length_Check (Exp, Check_Typ);
-- Finally emit scalar and string checks. If we are dealing with a
-- scalar literal we need to check by hand because the Etype of
-- literals is not necessarily correct.
elsif Is_Scalar_Type (Exp_Typ)
and then Compile_Time_Known_Value (Exp)
then
if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}?", CE_Range_Check_Failed,
Ent => Base_Type (Check_Typ),
Typ => Base_Type (Check_Typ));
elsif Is_Out_Of_Range (Exp, Check_Typ) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}?", CE_Range_Check_Failed,
Ent => Check_Typ,
Typ => Check_Typ);
elsif not Range_Checks_Suppressed (Check_Typ) then
Apply_Scalar_Range_Check (Exp, Check_Typ);
end if;
elsif (Is_Scalar_Type (Exp_Typ)
or else Nkind (Exp) = N_String_Literal)
and then Exp_Typ /= Check_Typ
then
if Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) = E_Constant
then
-- If expression is a constant, it is worthwhile checking whether
-- it is a bound of the type.
if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
then
return;
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
-- Ada 2005 (AI-231): Generate conversion to the null-excluding
-- type to force the corresponding run-time check
elsif Is_Access_Type (Check_Typ)
and then Can_Never_Be_Null (Check_Typ)
and then not Can_Never_Be_Null (Exp_Typ)
then
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
end Aggregate_Constraint_Checks;
------------------------
-- Array_Aggr_Subtype --
------------------------
function Array_Aggr_Subtype
(N : Node_Id;
Typ : Entity_Id)
return Entity_Id
is
Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
-- Number of aggregate index dimensions.
Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
-- Constrained N_Range of each index dimension in our aggregate itype.
Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
-- Low and High bounds for each index dimension in our aggregate itype.
Is_Fully_Positional : Boolean := True;
procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
-- N is an array (sub-)aggregate. Dim is the dimension corresponding to
-- (sub-)aggregate N. This procedure collects the constrained N_Range
-- nodes corresponding to each index dimension of our aggregate itype.
-- These N_Range nodes are collected in Aggr_Range above.
-- Likewise collect in Aggr_Low & Aggr_High above the low and high
-- bounds of each index dimension. If, when collecting, two bounds
-- corresponding to the same dimension are static and found to differ,
-- then emit a warning, and mark N as raising Constraint_Error.
-------------------------
-- Collect_Aggr_Bounds --
-------------------------
procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
This_Range : constant Node_Id := Aggregate_Bounds (N);
-- The aggregate range node of this specific sub-aggregate.
This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
-- The aggregate bounds of this specific sub-aggregate.
Assoc : Node_Id;
Expr : Node_Id;
begin
-- Collect the first N_Range for a given dimension that you find.
-- For a given dimension they must be all equal anyway.
if No (Aggr_Range (Dim)) then
Aggr_Low (Dim) := This_Low;
Aggr_High (Dim) := This_High;
Aggr_Range (Dim) := This_Range;
else
if Compile_Time_Known_Value (This_Low) then
if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
Aggr_Low (Dim) := This_Low;
elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
Set_Raises_Constraint_Error (N);
Error_Msg_N ("Sub-aggregate low bound mismatch?", N);
Error_Msg_N ("Constraint_Error will be raised at run-time?",
N);
end if;
end if;
if Compile_Time_Known_Value (This_High) then
if not Compile_Time_Known_Value (Aggr_High (Dim)) then
Aggr_High (Dim) := This_High;
elsif
Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
then
Set_Raises_Constraint_Error (N);
Error_Msg_N ("Sub-aggregate high bound mismatch?", N);
Error_Msg_N ("Constraint_Error will be raised at run-time?",
N);
end if;
end if;
end if;
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (N)) then
Expr := First (Expressions (N));
while Present (Expr) loop
Collect_Aggr_Bounds (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (N)) then
Is_Fully_Positional := False;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Expr := Expression (Assoc);
Collect_Aggr_Bounds (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Collect_Aggr_Bounds;
-- Array_Aggr_Subtype variables
Itype : Entity_Id;
-- the final itype of the overall aggregate
Index_Constraints : constant List_Id := New_List;
-- The list of index constraints of the aggregate itype.
-- Start of processing for Array_Aggr_Subtype
begin
-- Make sure that the list of index constraints is properly attached
-- to the tree, and then collect the aggregate bounds.
Set_Parent (Index_Constraints, N);
Collect_Aggr_Bounds (N, 1);
-- Build the list of constrained indices of our aggregate itype.
for J in 1 .. Aggr_Dimension loop
Create_Index : declare
Index_Base : constant Entity_Id :=
Base_Type (Etype (Aggr_Range (J)));
Index_Typ : Entity_Id;
begin
-- Construct the Index subtype
Index_Typ := Create_Itype (Subtype_Kind (Ekind (Index_Base)), N);
Set_Etype (Index_Typ, Index_Base);
if Is_Character_Type (Index_Base) then
Set_Is_Character_Type (Index_Typ);
end if;
Set_Size_Info (Index_Typ, (Index_Base));
Set_RM_Size (Index_Typ, RM_Size (Index_Base));
Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
Set_Scalar_Range (Index_Typ, Aggr_Range (J));
if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
end if;
Set_Etype (Aggr_Range (J), Index_Typ);
Append (Aggr_Range (J), To => Index_Constraints);
end Create_Index;
end loop;
-- Now build the Itype
Itype := Create_Itype (E_Array_Subtype, N);
Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
Set_Convention (Itype, Convention (Typ));
Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
Set_Etype (Itype, Base_Type (Typ));
Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
Set_Is_Aliased (Itype, Is_Aliased (Typ));
Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
Copy_Suppress_Status (Index_Check, Typ, Itype);
Copy_Suppress_Status (Length_Check, Typ, Itype);
Set_First_Index (Itype, First (Index_Constraints));
Set_Is_Constrained (Itype, True);
Set_Is_Internal (Itype, True);
Init_Size_Align (Itype);
-- A simple optimization: purely positional aggregates of static
-- components should be passed to gigi unexpanded whenever possible,
-- and regardless of the staticness of the bounds themselves. Subse-
-- quent checks in exp_aggr verify that type is not packed, etc.
Set_Size_Known_At_Compile_Time (Itype,
Is_Fully_Positional
and then Comes_From_Source (N)
and then Size_Known_At_Compile_Time (Component_Type (Typ)));
-- We always need a freeze node for a packed array subtype, so that
-- we can build the Packed_Array_Type corresponding to the subtype.
-- If expansion is disabled, the packed array subtype is not built,
-- and we must not generate a freeze node for the type, or else it
-- will appear incomplete to gigi.
if Is_Packed (Itype) and then not In_Default_Expression
and then Expander_Active
then
Freeze_Itype (Itype, N);
end if;
return Itype;
end Array_Aggr_Subtype;
--------------------------------
-- Check_Misspelled_Component --
--------------------------------
procedure Check_Misspelled_Component
(Elements : Elist_Id;
Component : Node_Id)
is
Max_Suggestions : constant := 2;
Nr_Of_Suggestions : Natural := 0;
Suggestion_1 : Entity_Id := Empty;
Suggestion_2 : Entity_Id := Empty;
Component_Elmt : Elmt_Id;
begin
-- All the components of List are matched against Component and
-- a count is maintained of possible misspellings. When at the
-- end of the analysis there are one or two (not more!) possible
-- misspellings, these misspellings will be suggested as
-- possible correction.
Get_Name_String (Chars (Component));
declare
S : constant String (1 .. Name_Len) :=
Name_Buffer (1 .. Name_Len);
begin
Component_Elmt := First_Elmt (Elements);
while Nr_Of_Suggestions <= Max_Suggestions
and then Present (Component_Elmt)
loop
Get_Name_String (Chars (Node (Component_Elmt)));
if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then
Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
case Nr_Of_Suggestions is
when 1 => Suggestion_1 := Node (Component_Elmt);
when 2 => Suggestion_2 := Node (Component_Elmt);
when others => exit;
end case;
end if;
Next_Elmt (Component_Elmt);
end loop;
-- Report at most two suggestions
if Nr_Of_Suggestions = 1 then
Error_Msg_NE ("\possible misspelling of&",
Component, Suggestion_1);
elsif Nr_Of_Suggestions = 2 then
Error_Msg_Node_2 := Suggestion_2;
Error_Msg_NE ("\possible misspelling of& or&",
Component, Suggestion_1);
end if;
end;
end Check_Misspelled_Component;
----------------------------------------
-- Check_Static_Discriminated_Subtype --
----------------------------------------
procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
Disc : constant Entity_Id := First_Discriminant (T);
Comp : Entity_Id;
Ind : Entity_Id;
begin
if Has_Record_Rep_Clause (T) then
return;
elsif Present (Next_Discriminant (Disc)) then
return;
elsif Nkind (V) /= N_Integer_Literal then
return;
end if;
Comp := First_Component (T);
while Present (Comp) loop
if Is_Scalar_Type (Etype (Comp)) then
null;
elsif Is_Private_Type (Etype (Comp))
and then Present (Full_View (Etype (Comp)))
and then Is_Scalar_Type (Full_View (Etype (Comp)))
then
null;
elsif Is_Array_Type (Etype (Comp)) then
if Is_Bit_Packed_Array (Etype (Comp)) then
return;
end if;
Ind := First_Index (Etype (Comp));
while Present (Ind) loop
if Nkind (Ind) /= N_Range
or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
then
return;
end if;
Next_Index (Ind);
end loop;
else
return;
end if;
Next_Component (Comp);
end loop;
-- On exit, all components have statically known sizes.
Set_Size_Known_At_Compile_Time (T);
end Check_Static_Discriminated_Subtype;
--------------------------------
-- Make_String_Into_Aggregate --
--------------------------------
procedure Make_String_Into_Aggregate (N : Node_Id) is
Exprs : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (N);
Str : constant String_Id := Strval (N);
Strlen : constant Nat := String_Length (Str);
C : Char_Code;
C_Node : Node_Id;
New_N : Node_Id;
P : Source_Ptr;
begin
P := Loc + 1;
for J in 1 .. Strlen loop
C := Get_String_Char (Str, J);
Set_Character_Literal_Name (C);
C_Node := Make_Character_Literal (P, Name_Find, C);
Set_Etype (C_Node, Any_Character);
Append_To (Exprs, C_Node);
P := P + 1;
-- something special for wide strings ???
end loop;
New_N := Make_Aggregate (Loc, Expressions => Exprs);
Set_Analyzed (New_N);
Set_Etype (New_N, Any_Composite);
Rewrite (N, New_N);
end Make_String_Into_Aggregate;
-----------------------
-- Resolve_Aggregate --
-----------------------
procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
Pkind : constant Node_Kind := Nkind (Parent (N));
Aggr_Subtyp : Entity_Id;
-- The actual aggregate subtype. This is not necessarily the same as Typ
-- which is the subtype of the context in which the aggregate was found.
begin
-- Check for aggregates not allowed in configurable run-time mode.
-- We allow all cases of aggregates that do not come from source,
-- since these are all assumed to be small (e.g. bounds of a string
-- literal). We also allow aggregates of types we know to be small.
if not Support_Aggregates_On_Target
and then Comes_From_Source (N)
and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
then
Error_Msg_CRT ("aggregate", N);
end if;
if Is_Limited_Composite (Typ) then
Error_Msg_N ("aggregate type cannot have limited component", N);
Explain_Limited_Type (Typ, N);
-- Ada 2005 (AI-287): Limited aggregates allowed
elsif Is_Limited_Type (Typ)
and Ada_Version < Ada_05
then
Error_Msg_N ("aggregate type cannot be limited", N);
Explain_Limited_Type (Typ, N);
elsif Is_Class_Wide_Type (Typ) then
Error_Msg_N ("type of aggregate cannot be class-wide", N);
elsif Typ = Any_String
or else Typ = Any_Composite
then
Error_Msg_N ("no unique type for aggregate", N);
Set_Etype (N, Any_Composite);
elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
Error_Msg_N ("null record forbidden in array aggregate", N);
elsif Is_Record_Type (Typ) then
Resolve_Record_Aggregate (N, Typ);
elsif Is_Array_Type (Typ) then
-- First a special test, for the case of a positional aggregate
-- of characters which can be replaced by a string literal.
-- Do not perform this transformation if this was a string literal
-- to start with, whose components needed constraint checks, or if
-- the component type is non-static, because it will require those
-- checks and be transformed back into an aggregate.
if Number_Dimensions (Typ) = 1
and then
(Root_Type (Component_Type (Typ)) = Standard_Character
or else
Root_Type (Component_Type (Typ)) = Standard_Wide_Character)
and then No (Component_Associations (N))
and then not Is_Limited_Composite (Typ)
and then not Is_Private_Composite (Typ)
and then not Is_Bit_Packed_Array (Typ)
and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
and then Is_Static_Subtype (Component_Type (Typ))
then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
exit when Nkind (Expr) /= N_Character_Literal;
Next (Expr);
end loop;
if No (Expr) then
Start_String;
Expr := First (Expressions (N));
while Present (Expr) loop
Store_String_Char (Char_Literal_Value (Expr));
Next (Expr);
end loop;
Rewrite (N,
Make_String_Literal (Sloc (N), End_String));
Analyze_And_Resolve (N, Typ);
return;
end if;
end;
end if;
-- Here if we have a real aggregate to deal with
Array_Aggregate : declare
Aggr_Resolved : Boolean;
Aggr_Typ : constant Entity_Id := Etype (Typ);
-- This is the unconstrained array type, which is the type
-- against which the aggregate is to be resolved. Typ itself
-- is the array type of the context which may not be the same
-- subtype as the subtype for the final aggregate.
begin
-- In the following we determine whether an others choice is
-- allowed inside the array aggregate. The test checks the context
-- in which the array aggregate occurs. If the context does not
-- permit it, or the aggregate type is unconstrained, an others
-- choice is not allowed.
--
-- Note that there is no node for Explicit_Actual_Parameter.
-- To test for this context we therefore have to test for node
-- N_Parameter_Association which itself appears only if there is a
-- formal parameter. Consequently we also need to test for
-- N_Procedure_Call_Statement or N_Function_Call.
Set_Etype (N, Aggr_Typ); -- may be overridden later on
-- Ada 2005 (AI-231): Propagate the null_exclusion attribute to
-- the components of the array aggregate
if Ada_Version >= Ada_05 then
Set_Can_Never_Be_Null (Aggr_Typ, Can_Never_Be_Null (Typ));
end if;
if Is_Constrained (Typ) and then
(Pkind = N_Assignment_Statement or else
Pkind = N_Parameter_Association or else
Pkind = N_Function_Call or else
Pkind = N_Procedure_Call_Statement or else
Pkind = N_Generic_Association or else
Pkind = N_Formal_Object_Declaration or else
Pkind = N_Return_Statement or else
Pkind = N_Object_Declaration or else
Pkind = N_Component_Declaration or else
Pkind = N_Parameter_Specification or else
Pkind = N_Qualified_Expression or else
Pkind = N_Aggregate or else
Pkind = N_Extension_Aggregate or else
Pkind = N_Component_Association)
then
Aggr_Resolved :=
Resolve_Array_Aggregate
(N,
Index => First_Index (Aggr_Typ),
Index_Constr => First_Index (Typ),
Component_Typ => Component_Type (Typ),
Others_Allowed => True);
else
Aggr_Resolved :=
Resolve_Array_Aggregate
(N,
Index => First_Index (Aggr_Typ),
Index_Constr => First_Index (Aggr_Typ),
Component_Typ => Component_Type (Typ),
Others_Allowed => False);
end if;
if not Aggr_Resolved then
Aggr_Subtyp := Any_Composite;
else
Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
end if;
Set_Etype (N, Aggr_Subtyp);
end Array_Aggregate;
else
Error_Msg_N ("illegal context for aggregate", N);
end if;
-- If we can determine statically that the evaluation of the
-- aggregate raises Constraint_Error, then replace the
-- aggregate with an N_Raise_Constraint_Error node, but set the
-- Etype to the right aggregate subtype. Gigi needs this.
if Raises_Constraint_Error (N) then
Aggr_Subtyp := Etype (N);
Rewrite (N,
Make_Raise_Constraint_Error (Sloc (N),
Reason => CE_Range_Check_Failed));
Set_Raises_Constraint_Error (N);
Set_Etype (N, Aggr_Subtyp);
Set_Analyzed (N);
end if;
end Resolve_Aggregate;
-----------------------------
-- Resolve_Array_Aggregate --
-----------------------------
function Resolve_Array_Aggregate
(N : Node_Id;
Index : Node_Id;
Index_Constr : Node_Id;
Component_Typ : Entity_Id;
Others_Allowed : Boolean)
return Boolean
is
Loc : constant Source_Ptr := Sloc (N);
Failure : constant Boolean := False;
Success : constant Boolean := True;
Index_Typ : constant Entity_Id := Etype (Index);
Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
-- The type of the index corresponding to the array sub-aggregate
-- along with its low and upper bounds
Index_Base : constant Entity_Id := Base_Type (Index_Typ);
Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
-- ditto for the base type
function Add (Val : Uint; To : Node_Id) return Node_Id;
-- Creates a new expression node where Val is added to expression To.
-- Tries to constant fold whenever possible. To must be an already
-- analyzed expression.
procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
-- Checks that AH (the upper bound of an array aggregate) is <= BH
-- (the upper bound of the index base type). If the check fails a
-- warning is emitted, the Raises_Constraint_Error Flag of N is set,
-- and AH is replaced with a duplicate of BH.
procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
-- Checks that range AL .. AH is compatible with range L .. H. Emits a
-- warning if not and sets the Raises_Constraint_Error Flag in N.
procedure Check_Length (L, H : Node_Id; Len : Uint);
-- Checks that range L .. H contains at least Len elements. Emits a
-- warning if not and sets the Raises_Constraint_Error Flag in N.
function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
-- Returns True if range L .. H is dynamic or null.
procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
-- Given expression node From, this routine sets OK to False if it
-- cannot statically evaluate From. Otherwise it stores this static
-- value into Value.
function Resolve_Aggr_Expr
(Expr : Node_Id;
Single_Elmt : Boolean)
return Boolean;
-- Resolves aggregate expression Expr. Returs False if resolution
-- fails. If Single_Elmt is set to False, the expression Expr may be
-- used to initialize several array aggregate elements (this can
-- happen for discrete choices such as "L .. H => Expr" or the others
-- choice). In this event we do not resolve Expr unless expansion is
-- disabled. To know why, see the DELAYED COMPONENT RESOLUTION
-- note above.
---------
-- Add --
---------
function Add (Val : Uint; To : Node_Id) return Node_Id is
Expr_Pos : Node_Id;
Expr : Node_Id;
To_Pos : Node_Id;
begin
if Raises_Constraint_Error (To) then
return To;
end if;
-- First test if we can do constant folding
if Compile_Time_Known_Value (To)
or else Nkind (To) = N_Integer_Literal
then
Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
Set_Is_Static_Expression (Expr_Pos);
Set_Etype (Expr_Pos, Etype (To));
Set_Analyzed (Expr_Pos, Analyzed (To));
if not Is_Enumeration_Type (Index_Typ) then
Expr := Expr_Pos;
-- If we are dealing with enumeration return
-- Index_Typ'Val (Expr_Pos)
else
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => New_Reference_To (Index_Typ, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end if;
-- If we are here no constant folding possible
if not Is_Enumeration_Type (Index_Base) then
Expr :=
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr (To),
Right_Opnd => Make_Integer_Literal (Loc, Val));
-- If we are dealing with enumeration return
-- Index_Typ'Val (Index_Typ'Pos (To) + Val)
else
To_Pos :=
Make_Attribute_Reference
(Loc,
Prefix => New_Reference_To (Index_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Duplicate_Subexpr (To)));
Expr_Pos :=
Make_Op_Add (Loc,
Left_Opnd => To_Pos,
Right_Opnd => Make_Integer_Literal (Loc, Val));
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => New_Reference_To (Index_Typ, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end Add;
-----------------
-- Check_Bound --
-----------------
procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
Val_BH : Uint;
Val_AH : Uint;
OK_BH : Boolean;
OK_AH : Boolean;
begin
Get (Value => Val_BH, From => BH, OK => OK_BH);
Get (Value => Val_AH, From => AH, OK => OK_AH);
if OK_BH and then OK_AH and then Val_BH < Val_AH then
Set_Raises_Constraint_Error (N);
Error_Msg_N ("upper bound out of range?", AH);
Error_Msg_N ("Constraint_Error will be raised at run-time?", AH);
-- You need to set AH to BH or else in the case of enumerations
-- indices we will not be able to resolve the aggregate bounds.
AH := Duplicate_Subexpr (BH);
end if;
end Check_Bound;
------------------
-- Check_Bounds --
------------------
procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
Val_L : Uint;
Val_H : Uint;
Val_AL : Uint;
Val_AH : Uint;
OK_L : Boolean;
OK_H : Boolean;
OK_AL : Boolean;
OK_AH : Boolean;
begin
if Raises_Constraint_Error (N)
or else Dynamic_Or_Null_Range (AL, AH)
then
return;
end if;
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
Get (Value => Val_AL, From => AL, OK => OK_AL);
Get (Value => Val_AH, From => AH, OK => OK_AH);
if OK_L and then Val_L > Val_AL then
Set_Raises_Constraint_Error (N);
Error_Msg_N ("lower bound of aggregate out of range?", N);
Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
end if;
if OK_H and then Val_H < Val_AH then
Set_Raises_Constraint_Error (N);
Error_Msg_N ("upper bound of aggregate out of range?", N);
Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
end if;
end Check_Bounds;
------------------
-- Check_Length --
------------------
procedure Check_Length (L, H : Node_Id; Len : Uint) is
Val_L : Uint;
Val_H : Uint;
OK_L : Boolean;
OK_H : Boolean;
Range_Len : Uint;
begin
if Raises_Constraint_Error (N) then
return;
end if;
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
if not OK_L or else not OK_H then
return;
end if;
-- If null range length is zero
if Val_L > Val_H then
Range_Len := Uint_0;
else
Range_Len := Val_H - Val_L + 1;
end if;
if Range_Len < Len then
Set_Raises_Constraint_Error (N);
Error_Msg_N ("Too many elements?", N);
Error_Msg_N ("Constraint_Error will be raised at run-time?", N);
end if;
end Check_Length;
---------------------------
-- Dynamic_Or_Null_Range --
---------------------------
function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
Val_L : Uint;
Val_H : Uint;
OK_L : Boolean;
OK_H : Boolean;
begin
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
return not OK_L or else not OK_H
or else not Is_OK_Static_Expression (L)
or else not Is_OK_Static_Expression (H)
or else Val_L > Val_H;
end Dynamic_Or_Null_Range;
---------
-- Get --
---------
procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
begin
OK := True;
if Compile_Time_Known_Value (From) then
Value := Expr_Value (From);
-- If expression From is something like Some_Type'Val (10) then
-- Value = 10
elsif Nkind (From) = N_Attribute_Reference
and then Attribute_Name (From) = Name_Val
and then Compile_Time_Known_Value (First (Expressions (From)))
then
Value := Expr_Value (First (Expressions (From)));
else
Value := Uint_0;
OK := False;
end if;
end Get;
-----------------------
-- Resolve_Aggr_Expr --
-----------------------
function Resolve_Aggr_Expr
(Expr : Node_Id;
Single_Elmt : Boolean)
return Boolean
is
Nxt_Ind : constant Node_Id := Next_Index (Index);
Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
-- Index is the current index corresponding to the expresion.
Resolution_OK : Boolean := True;
-- Set to False if resolution of the expression failed.
begin
-- If the array type against which we are resolving the aggregate
-- has several dimensions, the expressions nested inside the
-- aggregate must be further aggregates (or strings).
if Present (Nxt_Ind) then
if Nkind (Expr) /= N_Aggregate then
-- A string literal can appear where a one-dimensional array
-- of characters is expected. If the literal looks like an
-- operator, it is still an operator symbol, which will be
-- transformed into a string when analyzed.
if Is_Character_Type (Component_Typ)
and then No (Next_Index (Nxt_Ind))
and then (Nkind (Expr) = N_String_Literal
or else Nkind (Expr) = N_Operator_Symbol)
then
-- A string literal used in a multidimensional array
-- aggregate in place of the final one-dimensional
-- aggregate must not be enclosed in parentheses.
if Paren_Count (Expr) /= 0 then
Error_Msg_N ("No parenthesis allowed here", Expr);
end if;
Make_String_Into_Aggregate (Expr);
else
Error_Msg_N ("nested array aggregate expected", Expr);
return Failure;
end if;
end if;
-- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
-- Required to check the null-exclusion attribute (if present).
-- This value may be overridden later on.
Set_Etype (Expr, Etype (N));
Resolution_OK := Resolve_Array_Aggregate
(Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
-- Do not resolve the expressions of discrete or others choices
-- unless the expression covers a single component, or the expander
-- is inactive.
elsif Single_Elmt
or else not Expander_Active
or else In_Default_Expression
then
Analyze_And_Resolve (Expr, Component_Typ);
Check_Non_Static_Context (Expr);
Aggregate_Constraint_Checks (Expr, Component_Typ);
Check_Unset_Reference (Expr);
end if;
if Raises_Constraint_Error (Expr)
and then Nkind (Parent (Expr)) /= N_Component_Association
then
Set_Raises_Constraint_Error (N);
end if;
return Resolution_OK;
end Resolve_Aggr_Expr;
-- Variables local to Resolve_Array_Aggregate
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
Who_Cares : Node_Id;
Aggr_Low : Node_Id := Empty;
Aggr_High : Node_Id := Empty;
-- The actual low and high bounds of this sub-aggegate
Choices_Low : Node_Id := Empty;
Choices_High : Node_Id := Empty;
-- The lowest and highest discrete choices values for a named aggregate
Nb_Elements : Uint := Uint_0;
-- The number of elements in a positional aggegate
Others_Present : Boolean := False;
Nb_Choices : Nat := 0;
-- Contains the overall number of named choices in this sub-aggregate
Nb_Discrete_Choices : Nat := 0;
-- The overall number of discrete choices (not counting others choice)
Case_Table_Size : Nat;
-- Contains the size of the case table needed to sort aggregate choices
-- Start of processing for Resolve_Array_Aggregate
begin
-- STEP 1: make sure the aggregate is correctly formatted
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Present := True;
if Choice /= First (Choices (Assoc))
or else Present (Next (Choice))
then
Error_Msg_N
("OTHERS must appear alone in a choice list", Choice);
return Failure;
end if;
if Present (Next (Assoc)) then
Error_Msg_N
("OTHERS must appear last in an aggregate", Choice);
return Failure;
end if;
if Ada_Version = Ada_83
and then Assoc /= First (Component_Associations (N))
and then (Nkind (Parent (N)) = N_Assignment_Statement
or else
Nkind (Parent (N)) = N_Object_Declaration)
then
Error_Msg_N
("(Ada 83) illegal context for OTHERS choice", N);
end if;
end if;
Nb_Choices := Nb_Choices + 1;
Next (Choice);
end loop;
Next (Assoc);
end loop;
end if;
-- At this point we know that the others choice, if present, is by
-- itself and appears last in the aggregate. Check if we have mixed
-- positional and discrete associations (other than the others choice).
if Present (Expressions (N))
and then (Nb_Choices > 1
or else (Nb_Choices = 1 and then not Others_Present))
then
Error_Msg_N
("named association cannot follow positional association",
First (Choices (First (Component_Associations (N)))));
return Failure;
end if;
-- Test for the validity of an others choice if present
if Others_Present and then not Others_Allowed then
Error_Msg_N
("OTHERS choice not allowed here",
First (Choices (First (Component_Associations (N)))));
return Failure;
end if;
-- Protect against cascaded errors
if Etype (Index_Typ) = Any_Type then
return Failure;
end if;
-- STEP 2: Process named components
if No (Expressions (N)) then
if Others_Present then
Case_Table_Size := Nb_Choices - 1;
else
Case_Table_Size := Nb_Choices;
end if;
Step_2 : declare
Low : Node_Id;
High : Node_Id;
-- Denote the lowest and highest values in an aggregate choice
Hi_Val : Uint;
Lo_Val : Uint;
-- High end of one range and Low end of the next. Should be
-- contiguous if there is no hole in the list of values.
Missing_Values : Boolean;
-- Set True if missing index values
S_Low : Node_Id := Empty;
S_High : Node_Id := Empty;
-- if a choice in an aggregate is a subtype indication these
-- denote the lowest and highest values of the subtype
Table : Case_Table_Type (1 .. Case_Table_Size);
-- Used to sort all the different choice values
Single_Choice : Boolean;
-- Set to true every time there is a single discrete choice in a
-- discrete association
Prev_Nb_Discrete_Choices : Nat;
-- Used to keep track of the number of discrete choices
-- in the current association.
begin
-- STEP 2 (A): Check discrete choices validity.
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
Choice := First (Choices (Assoc));
loop
Analyze (Choice);
if Nkind (Choice) = N_Others_Choice then
Single_Choice := False;
exit;
-- Test for subtype mark without constraint
elsif Is_Entity_Name (Choice) and then
Is_Type (Entity (Choice))
then
if Base_Type (Entity (Choice)) /= Index_Base then
Error_Msg_N
("invalid subtype mark in aggregate choice",
Choice);
return Failure;
end if;
elsif Nkind (Choice) = N_Subtype_Indication then
Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
-- Does the subtype indication evaluation raise CE ?
Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
Get_Index_Bounds (Choice, Low, High);
Check_Bounds (S_Low, S_High, Low, High);
else -- Choice is a range or an expression
Resolve (Choice, Index_Base);
Check_Unset_Reference (Choice);
Check_Non_Static_Context (Choice);
-- Do not range check a choice. This check is redundant
-- since this test is already performed when we check
-- that the bounds of the array aggregate are within
-- range.
Set_Do_Range_Check (Choice, False);
end if;
-- If we could not resolve the discrete choice stop here
if Etype (Choice) = Any_Type then
return Failure;
-- If the discrete choice raises CE get its original bounds.
elsif Nkind (Choice) = N_Raise_Constraint_Error then
Set_Raises_Constraint_Error (N);
Get_Index_Bounds (Original_Node (Choice), Low, High);
-- Otherwise get its bounds as usual
else
Get_Index_Bounds (Choice, Low, High);
end if;
if (Dynamic_Or_Null_Range (Low, High)
or else (Nkind (Choice) = N_Subtype_Indication
and then
Dynamic_Or_Null_Range (S_Low, S_High)))
and then Nb_Choices /= 1
then
Error_Msg_N
("dynamic or empty choice in aggregate " &
"must be the only choice", Choice);
return Failure;
end if;
Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
Table (Nb_Discrete_Choices).Choice_Lo := Low;
Table (Nb_Discrete_Choices).Choice_Hi := High;
Next (Choice);
if No (Choice) then
-- Check if we have a single discrete choice and whether
-- this discrete choice specifies a single value.
Single_Choice :=
(Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
and then (Low = High);
exit;
end if;
end loop;
-- Ada 2005 (AI-231)
Check_Can_Never_Be_Null (N, Expression (Assoc));
-- Ada 2005 (AI-287): In case of default initialized component
-- we delay the resolution to the expansion phase
if Box_Present (Assoc) then
-- Ada 2005 (AI-287): In case of default initialization
-- of a component the expander will generate calls to
-- the corresponding initialization subprogram.
null;
elsif not Resolve_Aggr_Expr (Expression (Assoc),
Single_Elmt => Single_Choice)
then
return Failure;
end if;
Next (Assoc);
end loop;
-- If aggregate contains more than one choice then these must be
-- static. Sort them and check that they are contiguous
if Nb_Discrete_Choices > 1 then
Sort_Case_Table (Table);
Missing_Values := False;
Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop
if Expr_Value (Table (J).Choice_Hi) >=
Expr_Value (Table (J + 1).Choice_Lo)
then
Error_Msg_N
("duplicate choice values in array aggregate",
Table (J).Choice_Hi);
return Failure;
elsif not Others_Present then
Hi_Val := Expr_Value (Table (J).Choice_Hi);
Lo_Val := Expr_Value (Table (J + 1).Choice_Lo);
-- If missing values, output error messages
if Lo_Val - Hi_Val > 1 then
-- Header message if not first missing value
if not Missing_Values then
Error_Msg_N
("missing index value(s) in array aggregate", N);
Missing_Values := True;
end if;
-- Output values of missing indexes
Lo_Val := Lo_Val - 1;
Hi_Val := Hi_Val + 1;
-- Enumeration type case
if Is_Enumeration_Type (Index_Typ) then
Error_Msg_Name_1 :=
Chars
(Get_Enum_Lit_From_Pos
(Index_Typ, Hi_Val, Loc));
if Lo_Val = Hi_Val then
Error_Msg_N ("\ %", N);
else
Error_Msg_Name_2 :=
Chars
(Get_Enum_Lit_From_Pos
(Index_Typ, Lo_Val, Loc));
Error_Msg_N ("\ % .. %", N);
end if;
-- Integer types case
else
Error_Msg_Uint_1 := Hi_Val;
if Lo_Val = Hi_Val then
Error_Msg_N ("\ ^", N);
else
Error_Msg_Uint_2 := Lo_Val;
Error_Msg_N ("\ ^ .. ^", N);
end if;
end if;
end if;
end if;
end loop Outer;
if Missing_Values then
Set_Etype (N, Any_Composite);
return Failure;
end if;
end if;
-- STEP 2 (B): Compute aggregate bounds and min/max choices values
if Nb_Discrete_Choices > 0 then
Choices_Low := Table (1).Choice_Lo;
Choices_High := Table (Nb_Discrete_Choices).Choice_Hi;
end if;
if Others_Present then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
else
Aggr_Low := Choices_Low;
Aggr_High := Choices_High;
end if;
end Step_2;
-- STEP 3: Process positional components
else
-- STEP 3 (A): Process positional elements
Expr := First (Expressions (N));
Nb_Elements := Uint_0;
while Present (Expr) loop
Nb_Elements := Nb_Elements + 1;
Check_Can_Never_Be_Null (N, Expr); -- Ada 2005 (AI-231)
if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
return Failure;
end if;
Next (Expr);
end loop;
if Others_Present then
Assoc := Last (Component_Associations (N));
Check_Can_Never_Be_Null
(N, Expression (Assoc)); -- Ada 2005 (AI-231)
-- Ada 2005 (AI-287): In case of default initialized component
-- we delay the resolution to the expansion phase.
if Box_Present (Assoc) then
-- Ada 2005 (AI-287): In case of default initialization
-- of a component the expander will generate calls to
-- the corresponding initialization subprogram.
null;
elsif not Resolve_Aggr_Expr (Expression (Assoc),
Single_Elmt => False)
then
return Failure;
end if;
end if;
-- STEP 3 (B): Compute the aggregate bounds
if Others_Present then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
else
if Others_Allowed then
Get_Index_Bounds (Index_Constr, Aggr_Low, Who_Cares);
else
Aggr_Low := Index_Typ_Low;
end if;
Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
Check_Bound (Index_Base_High, Aggr_High);
end if;
end if;
-- STEP 4: Perform static aggregate checks and save the bounds
-- Check (A)
Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
-- Check (B)
if Others_Present and then Nb_Discrete_Choices > 0 then
Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
Check_Bounds (Index_Typ_Low, Index_Typ_High,
Choices_Low, Choices_High);
Check_Bounds (Index_Base_Low, Index_Base_High,
Choices_Low, Choices_High);
-- Check (C)
elsif Others_Present and then Nb_Elements > 0 then
Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
end if;
if Raises_Constraint_Error (Aggr_Low)
or else Raises_Constraint_Error (Aggr_High)
then
Set_Raises_Constraint_Error (N);
end if;
Aggr_Low := Duplicate_Subexpr (Aggr_Low);
-- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
-- since the addition node returned by Add is not yet analyzed. Attach
-- to tree and analyze first. Reset analyzed flag to insure it will get
-- analyzed when it is a literal bound whose type must be properly
-- set.
if Others_Present or else Nb_Discrete_Choices > 0 then
Aggr_High := Duplicate_Subexpr (Aggr_High);
if Etype (Aggr_High) = Universal_Integer then
Set_Analyzed (Aggr_High, False);
end if;
end if;
Set_Aggregate_Bounds
(N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
-- The bounds may contain expressions that must be inserted upwards.
-- Attach them fully to the tree. After analysis, remove side effects
-- from upper bound, if still needed.
Set_Parent (Aggregate_Bounds (N), N);
Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
Check_Unset_Reference (Aggregate_Bounds (N));
if not Others_Present and then Nb_Discrete_Choices = 0 then
Set_High_Bound (Aggregate_Bounds (N),
Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
end if;
return Success;
end Resolve_Array_Aggregate;
---------------------------------
-- Resolve_Extension_Aggregate --
---------------------------------
-- There are two cases to consider:
-- a) If the ancestor part is a type mark, the components needed are
-- the difference between the components of the expected type and the
-- components of the given type mark.
-- b) If the ancestor part is an expression, it must be unambiguous,
-- and once we have its type we can also compute the needed components
-- as in the previous case. In both cases, if the ancestor type is not
-- the immediate ancestor, we have to build this ancestor recursively.
-- In both cases discriminants of the ancestor type do not play a
-- role in the resolution of the needed components, because inherited
-- discriminants cannot be used in a type extension. As a result we can
-- compute independently the list of components of the ancestor type and
-- of the expected type.
procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
A : constant Node_Id := Ancestor_Part (N);
A_Type : Entity_Id;
I : Interp_Index;
It : Interp;
function Valid_Ancestor_Type return Boolean;
-- Verify that the type of the ancestor part is a non-private ancestor
-- of the expected type.
-------------------------
-- Valid_Ancestor_Type --
-------------------------
function Valid_Ancestor_Type return Boolean is
Imm_Type : Entity_Id;
begin
Imm_Type := Base_Type (Typ);
while Is_Derived_Type (Imm_Type)
and then Etype (Imm_Type) /= Base_Type (A_Type)
loop
Imm_Type := Etype (Base_Type (Imm_Type));
end loop;
if Etype (Imm_Type) /= Base_Type (A_Type) then
Error_Msg_NE ("expect ancestor type of &", A, Typ);
return False;
else
return True;
end if;
end Valid_Ancestor_Type;
-- Start of processing for Resolve_Extension_Aggregate
begin
Analyze (A);
if not Is_Tagged_Type (Typ) then
Error_Msg_N ("type of extension aggregate must be tagged", N);
return;
elsif Is_Limited_Type (Typ) then
-- Ada 2005 (AI-287): Limited aggregates are allowed
if Ada_Version < Ada_05 then
Error_Msg_N ("aggregate type cannot be limited", N);
Explain_Limited_Type (Typ, N);
return;
end if;
elsif Is_Class_Wide_Type (Typ) then
Error_Msg_N ("aggregate cannot be of a class-wide type", N);
return;
end if;
if Is_Entity_Name (A)
and then Is_Type (Entity (A))
then
A_Type := Get_Full_View (Entity (A));
if Valid_Ancestor_Type then
Set_Entity (A, A_Type);
Set_Etype (A, A_Type);
Validate_Ancestor_Part (N);
Resolve_Record_Aggregate (N, Typ);
end if;
elsif Nkind (A) /= N_Aggregate then
if Is_Overloaded (A) then
A_Type := Any_Type;
Get_First_Interp (A, I, It);
while Present (It.Typ) loop
if Is_Tagged_Type (It.Typ)
and then not Is_Limited_Type (It.Typ)
then
if A_Type /= Any_Type then
Error_Msg_N ("cannot resolve expression", A);
return;
else
A_Type := It.Typ;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
if A_Type = Any_Type then
Error_Msg_N
("ancestor part must be non-limited tagged type", A);
return;
end if;
else
A_Type := Etype (A);
end if;
if Valid_Ancestor_Type then
Resolve (A, A_Type);
Check_Unset_Reference (A);
Check_Non_Static_Context (A);
if Is_Class_Wide_Type (Etype (A))
and then Nkind (Original_Node (A)) = N_Function_Call
then
-- If the ancestor part is a dispatching call, it appears
-- statically to be a legal ancestor, but it yields any
-- member of the class, and it is not possible to determine
-- whether it is an ancestor of the extension aggregate (much
-- less which ancestor). It is not possible to determine the
-- required components of the extension part.
Error_Msg_N ("ancestor part must be statically tagged", A);
else
Resolve_Record_Aggregate (N, Typ);
end if;
end if;
else
Error_Msg_N (" No unique type for this aggregate", A);
end if;
end Resolve_Extension_Aggregate;
------------------------------
-- Resolve_Record_Aggregate --
------------------------------
procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
New_Assoc_List : constant List_Id := New_List;
New_Assoc : Node_Id;
-- New_Assoc_List is the newly built list of N_Component_Association
-- nodes. New_Assoc is one such N_Component_Association node in it.
-- Please note that while Assoc and New_Assoc contain the same
-- kind of nodes, they are used to iterate over two different
-- N_Component_Association lists.
Others_Etype : Entity_Id := Empty;
-- This variable is used to save the Etype of the last record component
-- that takes its value from the others choice. Its purpose is:
--
-- (a) make sure the others choice is useful
--
-- (b) make sure the type of all the components whose value is
-- subsumed by the others choice are the same.
--
-- This variable is updated as a side effect of function Get_Value
Mbox_Present : Boolean := False;
Others_Mbox : Boolean := False;
-- Ada 2005 (AI-287): Variables used in case of default initialization
-- to provide a functionality similar to Others_Etype. Mbox_Present
-- indicates that the component takes its default initialization;
-- Others_Mbox indicates that at least one component takes its default
-- initialization. Similar to Others_Etype, they are also updated as a
-- side effect of function Get_Value.
procedure Add_Association
(Component : Entity_Id;
Expr : Node_Id;
Box_Present : Boolean := False);
-- Builds a new N_Component_Association node which associates
-- Component to expression Expr and adds it to the new association
-- list New_Assoc_List being built.
function Discr_Present (Discr : Entity_Id) return Boolean;
-- If aggregate N is a regular aggregate this routine will return True.
-- Otherwise, if N is an extension aggregate, Discr is a discriminant
-- whose value may already have been specified by N's ancestor part,
-- this routine checks whether this is indeed the case and if so
-- returns False, signaling that no value for Discr should appear in the
-- N's aggregate part. Also, in this case, the routine appends to
-- New_Assoc_List Discr the discriminant value specified in the ancestor
-- part.
function Get_Value
(Compon : Node_Id;
From : List_Id;
Consider_Others_Choice : Boolean := False)
return Node_Id;
-- Given a record component stored in parameter Compon, the
-- following function returns its value as it appears in the list
-- From, which is a list of N_Component_Association nodes. If no
-- component association has a choice for the searched component,
-- the value provided by the others choice is returned, if there
-- is one and Consider_Others_Choice is set to true. Otherwise
-- Empty is returned. If there is more than one component association
-- giving a value for the searched record component, an error message
-- is emitted and the first found value is returned.
--
-- If Consider_Others_Choice is set and the returned expression comes
-- from the others choice, then Others_Etype is set as a side effect.
-- An error message is emitted if the components taking their value
-- from the others choice do not have same type.
procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
-- Analyzes and resolves expression Expr against the Etype of the
-- Component. This routine also applies all appropriate checks to Expr.
-- It finally saves a Expr in the newly created association list that
-- will be attached to the final record aggregate. Note that if the
-- Parent pointer of Expr is not set then Expr was produced with a
-- New_Copy_Tree or some such.
---------------------
-- Add_Association --
---------------------
procedure Add_Association
(Component : Entity_Id;
Expr : Node_Id;
Box_Present : Boolean := False)
is
Choice_List : constant List_Id := New_List;
New_Assoc : Node_Id;
begin
Append (New_Occurrence_Of (Component, Sloc (Expr)), Choice_List);
New_Assoc :=
Make_Component_Association (Sloc (Expr),
Choices => Choice_List,
Expression => Expr,
Box_Present => Box_Present);
Append (New_Assoc, New_Assoc_List);
end Add_Association;
-------------------
-- Discr_Present --
-------------------
function Discr_Present (Discr : Entity_Id) return Boolean is
Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
Loc : Source_Ptr;
Ancestor : Node_Id;
Discr_Expr : Node_Id;
Ancestor_Typ : Entity_Id;
Orig_Discr : Entity_Id;
D : Entity_Id;
D_Val : Elmt_Id := No_Elmt; -- stop junk warning
Ancestor_Is_Subtyp : Boolean;
begin
if Regular_Aggr then
return True;
end if;
Ancestor := Ancestor_Part (N);
Ancestor_Typ := Etype (Ancestor);
Loc := Sloc (Ancestor);
Ancestor_Is_Subtyp :=
Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
-- If the ancestor part has no discriminants clearly N's aggregate
-- part must provide a value for Discr.
if not Has_Discriminants (Ancestor_Typ) then
return True;
-- If the ancestor part is an unconstrained subtype mark then the
-- Discr must be present in N's aggregate part.
elsif Ancestor_Is_Subtyp
and then not Is_Constrained (Entity (Ancestor))
then
return True;
end if;
-- Now look to see if Discr was specified in the ancestor part.
Orig_Discr := Original_Record_Component (Discr);
D := First_Discriminant (Ancestor_Typ);
if Ancestor_Is_Subtyp then
D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
end if;
while Present (D) loop
-- If Ancestor has already specified Disc value than
-- insert its value in the final aggregate.
if Original_Record_Component (D) = Orig_Discr then
if Ancestor_Is_Subtyp then
Discr_Expr := New_Copy_Tree (Node (D_Val));
else
Discr_Expr :=
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr (Ancestor),
Selector_Name => New_Occurrence_Of (Discr, Loc));
end if;
Resolve_Aggr_Expr (Discr_Expr, Discr);
return False;
end if;
Next_Discriminant (D);
if Ancestor_Is_Subtyp then
Next_Elmt (D_Val);
end if;
end loop;
return True;
end Discr_Present;
---------------
-- Get_Value --
---------------
function Get_Value
(Compon : Node_Id;
From : List_Id;
Consider_Others_Choice : Boolean := False)
return Node_Id
is
Assoc : Node_Id;
Expr : Node_Id := Empty;
Selector_Name : Node_Id;
procedure Check_Non_Limited_Type;
-- Relax check to allow the default initialization of limited types.
-- For example:
-- record
-- C : Lim := (..., others => <>);
-- end record;
----------------------------
-- Check_Non_Limited_Type --
----------------------------
procedure Check_Non_Limited_Type is
begin
if Is_Limited_Type (Etype (Compon))
and then Comes_From_Source (Compon)
and then not In_Instance_Body
then
-- Ada 2005 (AI-287): Limited aggregates are allowed
if Ada_Version >= Ada_05
and then Present (Expression (Assoc))
and then Nkind (Expression (Assoc)) = N_Aggregate
then
null;
else
Error_Msg_N
("initialization not allowed for limited types", N);
Explain_Limited_Type (Etype (Compon), Compon);
end if;
end if;
end Check_Non_Limited_Type;
-- Start of processing for Get_Value
begin
Mbox_Present := False;
if Present (From) then
Assoc := First (From);
else
return Empty;
end if;
while Present (Assoc) loop
Selector_Name := First (Choices (Assoc));
while Present (Selector_Name) loop
if Nkind (Selector_Name) = N_Others_Choice then
if Consider_Others_Choice and then No (Expr) then
-- We need to duplicate the expression for each
-- successive component covered by the others choice.
-- This is redundant if the others_choice covers only
-- one component (small optimization possible???), but
-- indispensable otherwise, because each one must be
-- expanded individually to preserve side-effects.
-- Ada 2005 (AI-287): In case of default initialization
-- of components, we duplicate the corresponding default
-- expression (from the record type declaration).
if Box_Present (Assoc) then
Others_Mbox := True;
Mbox_Present := True;
if Expander_Active then
return New_Copy_Tree (Expression (Parent (Compon)));
else
return Expression (Parent (Compon));
end if;
else
Check_Non_Limited_Type;
if Present (Others_Etype) and then
Base_Type (Others_Etype) /= Base_Type (Etype
(Compon))
then
Error_Msg_N ("components in OTHERS choice must " &
"have same type", Selector_Name);
end if;
Others_Etype := Etype (Compon);
if Expander_Active then
return New_Copy_Tree (Expression (Assoc));
else
return Expression (Assoc);
end if;
end if;
end if;
elsif Chars (Compon) = Chars (Selector_Name) then
if No (Expr) then
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_05
and then Present (Expression (Assoc))
and then Nkind (Expression (Assoc)) = N_Null
and then Can_Never_Be_Null (Compon)
then
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding " &
"components", Expression (Assoc));
end if;
-- We need to duplicate the expression when several
-- components are grouped together with a "|" choice.
-- For instance "filed1 | filed2 => Expr"
-- Ada 2005 (AI-287)
if Box_Present (Assoc) then
Mbox_Present := True;
-- Duplicate the default expression of the component
-- from the record type declaration
if Present (Next (Selector_Name)) then
Expr :=
New_Copy_Tree (Expression (Parent (Compon)));
else
Expr := Expression (Parent (Compon));
end if;
else
Check_Non_Limited_Type;
if Present (Next (Selector_Name)) then
Expr := New_Copy_Tree (Expression (Assoc));
else
Expr := Expression (Assoc);
end if;
end if;
Generate_Reference (Compon, Selector_Name);
else
Error_Msg_NE
("more than one value supplied for &",
Selector_Name, Compon);
end if;
end if;
Next (Selector_Name);
end loop;
Next (Assoc);
end loop;
return Expr;
end Get_Value;
-----------------------
-- Resolve_Aggr_Expr --
-----------------------
procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
New_C : Entity_Id := Component;
Expr_Type : Entity_Id := Empty;
function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
-- If the expression is an aggregate (possibly qualified) then its
-- expansion is delayed until the enclosing aggregate is expanded
-- into assignments. In that case, do not generate checks on the
-- expression, because they will be generated later, and will other-
-- wise force a copy (to remove side-effects) that would leave a
-- dynamic-sized aggregate in the code, something that gigi cannot
-- handle.
Relocate : Boolean;
-- Set to True if the resolved Expr node needs to be relocated
-- when attached to the newly created association list. This node
-- need not be relocated if its parent pointer is not set.
-- In fact in this case Expr is the output of a New_Copy_Tree call.
-- if Relocate is True then we have analyzed the expression node
-- in the original aggregate and hence it needs to be relocated
-- when moved over the new association list.
function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
Kind : constant Node_Kind := Nkind (Expr);
begin
return ((Kind = N_Aggregate
or else Kind = N_Extension_Aggregate)
and then Present (Etype (Expr))
and then Is_Record_Type (Etype (Expr))
and then Expansion_Delayed (Expr))
or else (Kind = N_Qualified_Expression
and then Has_Expansion_Delayed (Expression (Expr)));
end Has_Expansion_Delayed;
-- Start of processing for Resolve_Aggr_Expr
begin
-- If the type of the component is elementary or the type of the
-- aggregate does not contain discriminants, use the type of the
-- component to resolve Expr.
if Is_Elementary_Type (Etype (Component))
or else not Has_Discriminants (Etype (N))
then
Expr_Type := Etype (Component);
-- Otherwise we have to pick up the new type of the component from
-- the new costrained subtype of the aggregate. In fact components
-- which are of a composite type might be constrained by a
-- discriminant, and we want to resolve Expr against the subtype were
-- all discriminant occurrences are replaced with their actual value.
else
New_C := First_Component (Etype (N));
while Present (New_C) loop
if Chars (New_C) = Chars (Component) then
Expr_Type := Etype (New_C);
exit;
end if;
Next_Component (New_C);
end loop;
pragma Assert (Present (Expr_Type));
-- For each range in an array type where a discriminant has been
-- replaced with the constraint, check that this range is within
-- the range of the base type. This checks is done in the
-- init proc for regular objects, but has to be done here for
-- aggregates since no init proc is called for them.
if Is_Array_Type (Expr_Type) then
declare
Index : Node_Id := First_Index (Expr_Type);
-- Range of the current constrained index in the array.
Orig_Index : Node_Id := First_Index (Etype (Component));
-- Range corresponding to the range Index above in the
-- original unconstrained record type. The bounds of this
-- range may be governed by discriminants.
Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
-- Range corresponding to the range Index above for the
-- unconstrained array type. This range is needed to apply
-- range checks.
begin
while Present (Index) loop
if Depends_On_Discriminant (Orig_Index) then
Apply_Range_Check (Index, Etype (Unconstr_Index));
end if;
Next_Index (Index);
Next_Index (Orig_Index);
Next_Index (Unconstr_Index);
end loop;
end;
end if;
end if;
-- If the Parent pointer of Expr is not set, Expr is an expression
-- duplicated by New_Tree_Copy (this happens for record aggregates
-- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
-- Such a duplicated expression must be attached to the tree
-- before analysis and resolution to enforce the rule that a tree
-- fragment should never be analyzed or resolved unless it is
-- attached to the current compilation unit.
if No (Parent (Expr)) then
Set_Parent (Expr, N);
Relocate := False;
else
Relocate := True;
end if;
Analyze_And_Resolve (Expr, Expr_Type);
Check_Non_Static_Context (Expr);
Check_Unset_Reference (Expr);
if not Has_Expansion_Delayed (Expr) then
Aggregate_Constraint_Checks (Expr, Expr_Type);
end if;
if Raises_Constraint_Error (Expr) then
Set_Raises_Constraint_Error (N);
end if;
if Relocate then
Add_Association (New_C, Relocate_Node (Expr));
else
Add_Association (New_C, Expr);
end if;
end Resolve_Aggr_Expr;
-- Resolve_Record_Aggregate local variables
Assoc : Node_Id;
-- N_Component_Association node belonging to the input aggregate N
Expr : Node_Id;
Positional_Expr : Node_Id;
Component : Entity_Id;
Component_Elmt : Elmt_Id;
Components : constant Elist_Id := New_Elmt_List;
-- Components is the list of the record components whose value must
-- be provided in the aggregate. This list does include discriminants.
-- Start of processing for Resolve_Record_Aggregate
begin
-- We may end up calling Duplicate_Subexpr on expressions that are
-- attached to New_Assoc_List. For this reason we need to attach it
-- to the tree by setting its parent pointer to N. This parent point
-- will change in STEP 8 below.
Set_Parent (New_Assoc_List, N);
-- STEP 1: abstract type and null record verification
if Is_Abstract (Typ) then
Error_Msg_N ("type of aggregate cannot be abstract", N);
end if;
if No (First_Entity (Typ)) and then Null_Record_Present (N) then
Set_Etype (N, Typ);
return;
elsif Present (First_Entity (Typ))
and then Null_Record_Present (N)
and then not Is_Tagged_Type (Typ)
then
Error_Msg_N ("record aggregate cannot be null", N);
return;
elsif No (First_Entity (Typ)) then
Error_Msg_N ("record aggregate must be null", N);
return;
end if;
-- STEP 2: Verify aggregate structure
Step_2 : declare
Selector_Name : Node_Id;
Bad_Aggregate : Boolean := False;
begin
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
else
Assoc := Empty;
end if;
while Present (Assoc) loop
Selector_Name := First (Choices (Assoc));
while Present (Selector_Name) loop
if Nkind (Selector_Name) = N_Identifier then
null;
elsif Nkind (Selector_Name) = N_Others_Choice then
if Selector_Name /= First (Choices (Assoc))
or else Present (Next (Selector_Name))
then
Error_Msg_N ("OTHERS must appear alone in a choice list",
Selector_Name);
return;
elsif Present (Next (Assoc)) then
Error_Msg_N ("OTHERS must appear last in an aggregate",
Selector_Name);
return;
end if;
else
Error_Msg_N
("selector name should be identifier or OTHERS",
Selector_Name);
Bad_Aggregate := True;
end if;
Next (Selector_Name);
end loop;
Next (Assoc);
end loop;
if Bad_Aggregate then
return;
end if;
end Step_2;
-- STEP 3: Find discriminant Values
Step_3 : declare
Discrim : Entity_Id;
Missing_Discriminants : Boolean := False;
begin
if Present (Expressions (N)) then
Positional_Expr := First (Expressions (N));
else
Positional_Expr := Empty;
end if;
if Has_Discriminants (Typ) then
Discrim := First_Discriminant (Typ);
else
Discrim := Empty;
end if;
-- First find the discriminant values in the positional components
while Present (Discrim) and then Present (Positional_Expr) loop
if Discr_Present (Discrim) then
Resolve_Aggr_Expr (Positional_Expr, Discrim);
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_05
and then Nkind (Positional_Expr) = N_Null
and then Can_Never_Be_Null (Discrim)
then
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding " &
"components", Positional_Expr);
end if;
Next (Positional_Expr);
end if;
if Present (Get_Value (Discrim, Component_Associations (N))) then
Error_Msg_NE
("more than one value supplied for discriminant&",
N, Discrim);
end if;
Next_Discriminant (Discrim);
end loop;
-- Find remaining discriminant values, if any, among named components
while Present (Discrim) loop
Expr := Get_Value (Discrim, Component_Associations (N), True);
if not Discr_Present (Discrim) then
if Present (Expr) then
Error_Msg_NE
("more than one value supplied for discriminant&",
N, Discrim);
end if;
elsif No (Expr) then
Error_Msg_NE
("no value supplied for discriminant &", N, Discrim);
Missing_Discriminants := True;
else
Resolve_Aggr_Expr (Expr, Discrim);
end if;
Next_Discriminant (Discrim);
end loop;
if Missing_Discriminants then
return;
end if;
-- At this point and until the beginning of STEP 6, New_Assoc_List
-- contains only the discriminants and their values.
end Step_3;
-- STEP 4: Set the Etype of the record aggregate
-- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
-- routine should really be exported in sem_util or some such and used
-- in sem_ch3 and here rather than have a copy of the code which is a
-- maintenance nightmare.
-- ??? Performace WARNING. The current implementation creates a new
-- itype for all aggregates whose base type is discriminated.
-- This means that for record aggregates nested inside an array
-- aggregate we will create a new itype for each record aggregate
-- if the array cmponent type has discriminants. For large aggregates
-- this may be a problem. What should be done in this case is
-- to reuse itypes as much as possible.
if Has_Discriminants (Typ) then
Build_Constrained_Itype : declare
Loc : constant Source_Ptr := Sloc (N);
Indic : Node_Id;
Subtyp_Decl : Node_Id;
Def_Id : Entity_Id;
C : constant List_Id := New_List;
begin
New_Assoc := First (New_Assoc_List);
while Present (New_Assoc) loop
Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
Next (New_Assoc);
end loop;
Indic :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Base_Type (Typ), Loc),
Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
Def_Id := Create_Itype (Ekind (Typ), N);
Subtyp_Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Indication => Indic);
Set_Parent (Subtyp_Decl, Parent (N));
-- Itypes must be analyzed with checks off (see itypes.ads).
Analyze (Subtyp_Decl, Suppress => All_Checks);
Set_Etype (N, Def_Id);
Check_Static_Discriminated_Subtype
(Def_Id, Expression (First (New_Assoc_List)));
end Build_Constrained_Itype;
else
Set_Etype (N, Typ);
end if;
-- STEP 5: Get remaining components according to discriminant values
Step_5 : declare
Record_Def : Node_Id;
Parent_Typ : Entity_Id;
Root_Typ : Entity_Id;
Parent_Typ_List : Elist_Id;
Parent_Elmt : Elmt_Id;
Errors_Found : Boolean := False;
Dnode : Node_Id;
begin
if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
Parent_Typ_List := New_Elmt_List;
-- If this is an extension aggregate, the component list must
-- include all components that are not in the given ancestor
-- type. Otherwise, the component list must include components
-- of all ancestors, starting with the root.
if Nkind (N) = N_Extension_Aggregate then
Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
else
Root_Typ := Root_Type (Typ);
if Nkind (Parent (Base_Type (Root_Typ)))
= N_Private_Type_Declaration
then
Error_Msg_NE
("type of aggregate has private ancestor&!",
N, Root_Typ);
Error_Msg_N ("must use extension aggregate!", N);
return;
end if;
Dnode := Declaration_Node (Base_Type (Root_Typ));
-- If we don't get a full declaration, then we have some
-- error which will get signalled later so skip this part.
-- Otherwise, gather components of root that apply to the
-- aggregate type. We use the base type in case there is an
-- applicable stored constraint that renames the discriminants
-- of the root.
if Nkind (Dnode) = N_Full_Type_Declaration then
Record_Def := Type_Definition (Dnode);
Gather_Components (Base_Type (Typ),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
end if;
end if;
Parent_Typ := Base_Type (Typ);
while Parent_Typ /= Root_Typ loop
Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
Parent_Typ := Etype (Parent_Typ);
if Nkind (Parent (Base_Type (Parent_Typ))) =
N_Private_Type_Declaration
or else Nkind (Parent (Base_Type (Parent_Typ))) =
N_Private_Extension_Declaration
then
if Nkind (N) /= N_Extension_Aggregate then
Error_Msg_NE
("type of aggregate has private ancestor&!",
N, Parent_Typ);
Error_Msg_N ("must use extension aggregate!", N);
return;
elsif Parent_Typ /= Root_Typ then
Error_Msg_NE
("ancestor part of aggregate must be private type&",
Ancestor_Part (N), Parent_Typ);
return;
end if;
end if;
end loop;
-- Now collect components from all other ancestors.
Parent_Elmt := First_Elmt (Parent_Typ_List);
while Present (Parent_Elmt) loop
Parent_Typ := Node (Parent_Elmt);
Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
Gather_Components (Empty,
Component_List (Record_Extension_Part (Record_Def)),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
Next_Elmt (Parent_Elmt);
end loop;
else
Record_Def := Type_Definition (Parent (Base_Type (Typ)));
if Null_Present (Record_Def) then
null;
else
Gather_Components (Base_Type (Typ),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
end if;
end if;
if Errors_Found then
return;
end if;
end Step_5;
-- STEP 6: Find component Values
Component := Empty;
Component_Elmt := First_Elmt (Components);
-- First scan the remaining positional associations in the aggregate.
-- Remember that at this point Positional_Expr contains the current
-- positional association if any is left after looking for discriminant
-- values in step 3.
while Present (Positional_Expr) and then Present (Component_Elmt) loop
Component := Node (Component_Elmt);
Resolve_Aggr_Expr (Positional_Expr, Component);
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_05
and then Nkind (Positional_Expr) = N_Null
and then Can_Never_Be_Null (Component)
then
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding components",
Positional_Expr);
end if;
if Present (Get_Value (Component, Component_Associations (N))) then
Error_Msg_NE
("more than one value supplied for Component &", N, Component);
end if;
Next (Positional_Expr);
Next_Elmt (Component_Elmt);
end loop;
if Present (Positional_Expr) then
Error_Msg_N
("too many components for record aggregate", Positional_Expr);
end if;
-- Now scan for the named arguments of the aggregate
while Present (Component_Elmt) loop
Component := Node (Component_Elmt);
Expr := Get_Value (Component, Component_Associations (N), True);
-- Ada 2005 (AI-287): Default initialized limited component are
-- passed to the expander, that will generate calls to the
-- corresponding IP.
if Mbox_Present and then Is_Limited_Type (Etype (Component)) then
Add_Association
(Component => Component,
Expr => Empty,
Box_Present => True);
-- Ada 2005 (AI-287): No value supplied for component
elsif Mbox_Present and No (Expr) then
null;
elsif No (Expr) then
Error_Msg_NE ("no value supplied for component &!", N, Component);
else
Resolve_Aggr_Expr (Expr, Component);
end if;
Next_Elmt (Component_Elmt);
end loop;
-- STEP 7: check for invalid components + check type in choice list
Step_7 : declare
Selectr : Node_Id;
-- Selector name
Typech : Entity_Id;
-- Type of first component in choice list
begin
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
else
Assoc := Empty;
end if;
Verification : while Present (Assoc) loop
Selectr := First (Choices (Assoc));
Typech := Empty;
if Nkind (Selectr) = N_Others_Choice then
-- Ada 2005 (AI-287): others choice may have expression or mbox
if No (Others_Etype)
and then not Others_Mbox
then
Error_Msg_N
("OTHERS must represent at least one component", Selectr);
end if;
exit Verification;
end if;
while Present (Selectr) loop
New_Assoc := First (New_Assoc_List);
while Present (New_Assoc) loop
Component := First (Choices (New_Assoc));
exit when Chars (Selectr) = Chars (Component);
Next (New_Assoc);
end loop;
-- If no association, this is not a legal component of
-- of the type in question, except if this is an internal
-- component supplied by a previous expansion.
if No (New_Assoc) then
if Box_Present (Parent (Selectr)) then
null;
elsif Chars (Selectr) /= Name_uTag
and then Chars (Selectr) /= Name_uParent
and then Chars (Selectr) /= Name_uController
then
if not Has_Discriminants (Typ) then
Error_Msg_Node_2 := Typ;
Error_Msg_N
("& is not a component of}",
Selectr);
else
Error_Msg_N
("& is not a component of the aggregate subtype",
Selectr);
end if;
Check_Misspelled_Component (Components, Selectr);
end if;
elsif No (Typech) then
Typech := Base_Type (Etype (Component));
elsif Typech /= Base_Type (Etype (Component)) then
if not Box_Present (Parent (Selectr)) then
Error_Msg_N
("components in choice list must have same type",
Selectr);
end if;
end if;
Next (Selectr);
end loop;
Next (Assoc);
end loop Verification;
end Step_7;
-- STEP 8: replace the original aggregate
Step_8 : declare
New_Aggregate : constant Node_Id := New_Copy (N);
begin
Set_Expressions (New_Aggregate, No_List);
Set_Etype (New_Aggregate, Etype (N));
Set_Component_Associations (New_Aggregate, New_Assoc_List);
Rewrite (N, New_Aggregate);
end Step_8;
end Resolve_Record_Aggregate;
-----------------------------
-- Check_Can_Never_Be_Null --
-----------------------------
procedure Check_Can_Never_Be_Null (N : Node_Id; Expr : Node_Id) is
begin
if Ada_Version >= Ada_05
and then Nkind (Expr) = N_Null
and then Can_Never_Be_Null (Etype (N))
then
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding components", Expr);
end if;
end Check_Can_Never_Be_Null;
---------------------
-- Sort_Case_Table --
---------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
L : constant Int := Case_Table'First;
U : constant Int := Case_Table'Last;
K : Int;
J : Int;
T : Case_Bounds;
begin
K := L;
while K /= U loop
T := Case_Table (K + 1);
J := K + 1;
while J /= L
and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
Expr_Value (T.Choice_Lo)
loop
Case_Table (J) := Case_Table (J - 1);
J := J - 1;
end loop;
Case_Table (J) := T;
K := K + 1;
end loop;
end Sort_Case_Table;
end Sem_Aggr;
|