1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 6 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Dbug; use Exp_Dbug;
with Exp_Disp; use Exp_Disp;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Freeze; use Freeze;
with Itypes; use Itypes;
with Lib.Xref; use Lib.Xref;
with Layout; use Layout;
with Namet; use Namet;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch4; use Sem_Ch4;
with Sem_Ch5; use Sem_Ch5;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim; use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinput; use Sinput;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Snames; use Snames;
with Stringt; use Stringt;
with Style;
with Stylesw; use Stylesw;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Validsw; use Validsw;
package body Sem_Ch6 is
May_Hide_Profile : Boolean := False;
-- This flag is used to indicate that two formals in two subprograms being
-- checked for conformance differ only in that one is an access parameter
-- while the other is of a general access type with the same designated
-- type. In this case, if the rest of the signatures match, a call to
-- either subprogram may be ambiguous, which is worth a warning. The flag
-- is set in Compatible_Types, and the warning emitted in
-- New_Overloaded_Entity.
-----------------------
-- Local Subprograms --
-----------------------
procedure Analyze_Null_Procedure
(N : Node_Id;
Is_Completion : out Boolean);
-- A null procedure can be a declaration or (Ada 2012) a completion.
procedure Analyze_Return_Statement (N : Node_Id);
-- Common processing for simple and extended return statements
procedure Analyze_Function_Return (N : Node_Id);
-- Subsidiary to Analyze_Return_Statement. Called when the return statement
-- applies to a [generic] function.
procedure Analyze_Return_Type (N : Node_Id);
-- Subsidiary to Process_Formals: analyze subtype mark in function
-- specification in a context where the formals are visible and hide
-- outer homographs.
procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
-- Does all the real work of Analyze_Subprogram_Body. This is split out so
-- that we can use RETURN but not skip the debug output at the end.
procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
-- Analyze a generic subprogram body. N is the body to be analyzed, and
-- Gen_Id is the defining entity Id for the corresponding spec.
procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
-- If a subprogram has pragma Inline and inlining is active, use generic
-- machinery to build an unexpanded body for the subprogram. This body is
-- subsequently used for inline expansions at call sites. If subprogram can
-- be inlined (depending on size and nature of local declarations) this
-- function returns true. Otherwise subprogram body is treated normally.
-- If proper warnings are enabled and the subprogram contains a construct
-- that cannot be inlined, the offending construct is flagged accordingly.
function Can_Override_Operator (Subp : Entity_Id) return Boolean;
-- Returns true if Subp can override a predefined operator.
procedure Check_And_Build_Body_To_Inline
(N : Node_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id);
-- Spec_Id and Body_Id are the entities of the specification and body of
-- the subprogram body N. If N can be inlined by the frontend (supported
-- cases documented in Check_Body_To_Inline) then build the body-to-inline
-- associated with N and attach it to the declaration node of Spec_Id.
procedure Check_Conformance
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Ctype : Conformance_Type;
Errmsg : Boolean;
Conforms : out Boolean;
Err_Loc : Node_Id := Empty;
Get_Inst : Boolean := False;
Skip_Controlling_Formals : Boolean := False);
-- Given two entities, this procedure checks that the profiles associated
-- with these entities meet the conformance criterion given by the third
-- parameter. If they conform, Conforms is set True and control returns
-- to the caller. If they do not conform, Conforms is set to False, and
-- in addition, if Errmsg is True on the call, proper messages are output
-- to complain about the conformance failure. If Err_Loc is non_Empty
-- the error messages are placed on Err_Loc, if Err_Loc is empty, then
-- error messages are placed on the appropriate part of the construct
-- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
-- against a formal access-to-subprogram type so Get_Instance_Of must
-- be called.
procedure Check_Subprogram_Order (N : Node_Id);
-- N is the N_Subprogram_Body node for a subprogram. This routine applies
-- the alpha ordering rule for N if this ordering requirement applicable.
procedure Check_Returns
(HSS : Node_Id;
Mode : Character;
Err : out Boolean;
Proc : Entity_Id := Empty);
-- Called to check for missing return statements in a function body, or for
-- returns present in a procedure body which has No_Return set. HSS is the
-- handled statement sequence for the subprogram body. This procedure
-- checks all flow paths to make sure they either have return (Mode = 'F',
-- used for functions) or do not have a return (Mode = 'P', used for
-- No_Return procedures). The flag Err is set if there are any control
-- paths not explicitly terminated by a return in the function case, and is
-- True otherwise. Proc is the entity for the procedure case and is used
-- in posting the warning message.
procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
-- In Ada 2012, a primitive equality operator on an untagged record type
-- must appear before the type is frozen, and have the same visibility as
-- that of the type. This procedure checks that this rule is met, and
-- otherwise emits an error on the subprogram declaration and a warning
-- on the earlier freeze point if it is easy to locate.
procedure Enter_Overloaded_Entity (S : Entity_Id);
-- This procedure makes S, a new overloaded entity, into the first visible
-- entity with that name.
function Is_Non_Overriding_Operation
(Prev_E : Entity_Id;
New_E : Entity_Id) return Boolean;
-- Enforce the rule given in 12.3(18): a private operation in an instance
-- overrides an inherited operation only if the corresponding operation
-- was overriding in the generic. This needs to be checked for primitive
-- operations of types derived (in the generic unit) from formal private
-- or formal derived types.
procedure Make_Inequality_Operator (S : Entity_Id);
-- Create the declaration for an inequality operator that is implicitly
-- created by a user-defined equality operator that yields a boolean.
procedure May_Need_Actuals (Fun : Entity_Id);
-- Flag functions that can be called without parameters, i.e. those that
-- have no parameters, or those for which defaults exist for all parameters
procedure Process_PPCs
(N : Node_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id);
-- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
-- conditions for the body and assembling and inserting the _postconditions
-- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
-- the entities for the body and separate spec (if there is no separate
-- spec, Spec_Id is Empty). Note that invariants and predicates may also
-- provide postconditions, and are also handled in this procedure.
procedure Set_Formal_Validity (Formal_Id : Entity_Id);
-- Formal_Id is an formal parameter entity. This procedure deals with
-- setting the proper validity status for this entity, which depends on
-- the kind of parameter and the validity checking mode.
---------------------------------------------
-- Analyze_Abstract_Subprogram_Declaration --
---------------------------------------------
procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
Designator : constant Entity_Id :=
Analyze_Subprogram_Specification (Specification (N));
Scop : constant Entity_Id := Current_Scope;
begin
Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
Generate_Definition (Designator);
Set_Contract (Designator, Make_Contract (Sloc (Designator)));
Set_Is_Abstract_Subprogram (Designator);
New_Overloaded_Entity (Designator);
Check_Delayed_Subprogram (Designator);
Set_Categorization_From_Scope (Designator, Scop);
if Ekind (Scope (Designator)) = E_Protected_Type then
Error_Msg_N
("abstract subprogram not allowed in protected type", N);
-- Issue a warning if the abstract subprogram is neither a dispatching
-- operation nor an operation that overrides an inherited subprogram or
-- predefined operator, since this most likely indicates a mistake.
elsif Warn_On_Redundant_Constructs
and then not Is_Dispatching_Operation (Designator)
and then not Present (Overridden_Operation (Designator))
and then (not Is_Operator_Symbol_Name (Chars (Designator))
or else Scop /= Scope (Etype (First_Formal (Designator))))
then
Error_Msg_N
("abstract subprogram is not dispatching or overriding?r?", N);
end if;
Generate_Reference_To_Formals (Designator);
Check_Eliminated (Designator);
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Designator);
end if;
end Analyze_Abstract_Subprogram_Declaration;
---------------------------------
-- Analyze_Expression_Function --
---------------------------------
procedure Analyze_Expression_Function (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
LocX : constant Source_Ptr := Sloc (Expression (N));
Expr : constant Node_Id := Expression (N);
Spec : constant Node_Id := Specification (N);
Def_Id : Entity_Id;
Prev : Entity_Id;
-- If the expression is a completion, Prev is the entity whose
-- declaration is completed. Def_Id is needed to analyze the spec.
New_Body : Node_Id;
New_Decl : Node_Id;
New_Spec : Node_Id;
Ret : Node_Id;
begin
-- This is one of the occasions on which we transform the tree during
-- semantic analysis. If this is a completion, transform the expression
-- function into an equivalent subprogram body, and analyze it.
-- Expression functions are inlined unconditionally. The back-end will
-- determine whether this is possible.
Inline_Processing_Required := True;
-- Create a specification for the generated body. Types and defauts in
-- the profile are copies of the spec, but new entities must be created
-- for the unit name and the formals.
New_Spec := New_Copy_Tree (Spec);
Set_Defining_Unit_Name (New_Spec,
Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
Chars (Defining_Unit_Name (Spec))));
if Present (Parameter_Specifications (New_Spec)) then
declare
Formal_Spec : Node_Id;
begin
Formal_Spec := First (Parameter_Specifications (New_Spec));
while Present (Formal_Spec) loop
Set_Defining_Identifier
(Formal_Spec,
Make_Defining_Identifier (Sloc (Formal_Spec),
Chars => Chars (Defining_Identifier (Formal_Spec))));
Next (Formal_Spec);
end loop;
end;
end if;
Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
-- If there are previous overloadable entities with the same name,
-- check whether any of them is completed by the expression function.
if Present (Prev) and then Is_Overloadable (Prev) then
Def_Id := Analyze_Subprogram_Specification (Spec);
Prev := Find_Corresponding_Spec (N);
end if;
Ret := Make_Simple_Return_Statement (LocX, Expression (N));
New_Body :=
Make_Subprogram_Body (Loc,
Specification => New_Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (LocX,
Statements => New_List (Ret)));
if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
-- If the expression completes a generic subprogram, we must create a
-- separate node for the body, because at instantiation the original
-- node of the generic copy must be a generic subprogram body, and
-- cannot be a expression function. Otherwise we just rewrite the
-- expression with the non-generic body.
Insert_After (N, New_Body);
Rewrite (N, Make_Null_Statement (Loc));
Set_Has_Completion (Prev, False);
Analyze (N);
Analyze (New_Body);
Set_Is_Inlined (Prev);
elsif Present (Prev) and then Comes_From_Source (Prev) then
Set_Has_Completion (Prev, False);
-- For navigation purposes, indicate that the function is a body
Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
Rewrite (N, New_Body);
Analyze (N);
-- Prev is the previous entity with the same name, but it is can
-- be an unrelated spec that is not completed by the expression
-- function. In that case the relevant entity is the one in the body.
-- Not clear that the backend can inline it in this case ???
if Has_Completion (Prev) then
Set_Is_Inlined (Prev);
-- The formals of the expression function are body formals,
-- and do not appear in the ali file, which will only contain
-- references to the formals of the original subprogram spec.
declare
F1 : Entity_Id;
F2 : Entity_Id;
begin
F1 := First_Formal (Def_Id);
F2 := First_Formal (Prev);
while Present (F1) loop
Set_Spec_Entity (F1, F2);
Next_Formal (F1);
Next_Formal (F2);
end loop;
end;
else
Set_Is_Inlined (Defining_Entity (New_Body));
end if;
-- If this is not a completion, create both a declaration and a body, so
-- that the expression can be inlined whenever possible.
else
-- An expression function that is not a completion is not a
-- subprogram declaration, and thus cannot appear in a protected
-- definition.
if Nkind (Parent (N)) = N_Protected_Definition then
Error_Msg_N
("an expression function is not a legal protected operation", N);
end if;
New_Decl :=
Make_Subprogram_Declaration (Loc, Specification => Spec);
Rewrite (N, New_Decl);
Analyze (N);
Set_Is_Inlined (Defining_Entity (New_Decl));
-- To prevent premature freeze action, insert the new body at the end
-- of the current declarations, or at the end of the package spec.
-- However, resolve usage names now, to prevent spurious visibility
-- on later entities.
declare
Decls : List_Id := List_Containing (N);
Par : constant Node_Id := Parent (Decls);
Id : constant Entity_Id := Defining_Entity (New_Decl);
begin
if Nkind (Par) = N_Package_Specification
and then Decls = Visible_Declarations (Par)
and then Present (Private_Declarations (Par))
and then not Is_Empty_List (Private_Declarations (Par))
then
Decls := Private_Declarations (Par);
end if;
Insert_After (Last (Decls), New_Body);
Push_Scope (Id);
Install_Formals (Id);
-- Do a preanalysis of the expression on a separate copy, to
-- prevent visibility issues later with operators in instances.
-- Attach copy to tree so that parent links are available.
declare
Expr : constant Node_Id := New_Copy_Tree (Expression (Ret));
begin
Set_Parent (Expr, Ret);
Preanalyze_Spec_Expression (Expr, Etype (Id));
end;
End_Scope;
end;
end if;
-- If the return expression is a static constant, we suppress warning
-- messages on unused formals, which in most cases will be noise.
Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
Is_OK_Static_Expression (Expr));
end Analyze_Expression_Function;
----------------------------------------
-- Analyze_Extended_Return_Statement --
----------------------------------------
procedure Analyze_Extended_Return_Statement (N : Node_Id) is
begin
Analyze_Return_Statement (N);
end Analyze_Extended_Return_Statement;
----------------------------
-- Analyze_Function_Call --
----------------------------
procedure Analyze_Function_Call (N : Node_Id) is
Actuals : constant List_Id := Parameter_Associations (N);
Func_Nam : constant Node_Id := Name (N);
Actual : Node_Id;
begin
Analyze (Func_Nam);
-- A call of the form A.B (X) may be an Ada 2005 call, which is
-- rewritten as B (A, X). If the rewriting is successful, the call
-- has been analyzed and we just return.
if Nkind (Func_Nam) = N_Selected_Component
and then Name (N) /= Func_Nam
and then Is_Rewrite_Substitution (N)
and then Present (Etype (N))
then
return;
end if;
-- If error analyzing name, then set Any_Type as result type and return
if Etype (Func_Nam) = Any_Type then
Set_Etype (N, Any_Type);
return;
end if;
-- Otherwise analyze the parameters
if Present (Actuals) then
Actual := First (Actuals);
while Present (Actual) loop
Analyze (Actual);
Check_Parameterless_Call (Actual);
Next (Actual);
end loop;
end if;
Analyze_Call (N);
end Analyze_Function_Call;
-----------------------------
-- Analyze_Function_Return --
-----------------------------
procedure Analyze_Function_Return (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
R_Type : constant Entity_Id := Etype (Scope_Id);
-- Function result subtype
procedure Check_Limited_Return (Expr : Node_Id);
-- Check the appropriate (Ada 95 or Ada 2005) rules for returning
-- limited types. Used only for simple return statements.
-- Expr is the expression returned.
procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
-- Check that the return_subtype_indication properly matches the result
-- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
--------------------------
-- Check_Limited_Return --
--------------------------
procedure Check_Limited_Return (Expr : Node_Id) is
begin
-- Ada 2005 (AI-318-02): Return-by-reference types have been
-- removed and replaced by anonymous access results. This is an
-- incompatibility with Ada 95. Not clear whether this should be
-- enforced yet or perhaps controllable with special switch. ???
-- A limited interface that is not immutably limited is OK.
if Is_Limited_Interface (R_Type)
and then
not (Is_Task_Interface (R_Type)
or else Is_Protected_Interface (R_Type)
or else Is_Synchronized_Interface (R_Type))
then
null;
elsif Is_Limited_Type (R_Type)
and then not Is_Interface (R_Type)
and then Comes_From_Source (N)
and then not In_Instance_Body
and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
then
-- Error in Ada 2005
if Ada_Version >= Ada_2005
and then not Debug_Flag_Dot_L
and then not GNAT_Mode
then
Error_Msg_N
("(Ada 2005) cannot copy object of a limited type " &
"(RM-2005 6.5(5.5/2))", Expr);
if Is_Immutably_Limited_Type (R_Type) then
Error_Msg_N
("\return by reference not permitted in Ada 2005", Expr);
end if;
-- Warn in Ada 95 mode, to give folks a heads up about this
-- incompatibility.
-- In GNAT mode, this is just a warning, to allow it to be
-- evilly turned off. Otherwise it is a real error.
-- In a generic context, simplify the warning because it makes
-- no sense to discuss pass-by-reference or copy.
elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
if Inside_A_Generic then
Error_Msg_N
("return of limited object not permitted in Ada 2005 "
& "(RM-2005 6.5(5.5/2))?y?", Expr);
elsif Is_Immutably_Limited_Type (R_Type) then
Error_Msg_N
("return by reference not permitted in Ada 2005 "
& "(RM-2005 6.5(5.5/2))?y?", Expr);
else
Error_Msg_N
("cannot copy object of a limited type in Ada 2005 "
& "(RM-2005 6.5(5.5/2))?y?", Expr);
end if;
-- Ada 95 mode, compatibility warnings disabled
else
return; -- skip continuation messages below
end if;
if not Inside_A_Generic then
Error_Msg_N
("\consider switching to return of access type", Expr);
Explain_Limited_Type (R_Type, Expr);
end if;
end if;
end Check_Limited_Return;
-------------------------------------
-- Check_Return_Subtype_Indication --
-------------------------------------
procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
-- Subtype given in the extended return statement (must match R_Type)
Subtype_Ind : constant Node_Id :=
Object_Definition (Original_Node (Obj_Decl));
R_Type_Is_Anon_Access :
constant Boolean :=
Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
or else
Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
or else
Ekind (R_Type) = E_Anonymous_Access_Type;
-- True if return type of the function is an anonymous access type
-- Can't we make Is_Anonymous_Access_Type in einfo ???
R_Stm_Type_Is_Anon_Access :
constant Boolean :=
Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
or else
Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
or else
Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
-- True if type of the return object is an anonymous access type
begin
-- First, avoid cascaded errors
if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
return;
end if;
-- "return access T" case; check that the return statement also has
-- "access T", and that the subtypes statically match:
-- if this is an access to subprogram the signatures must match.
if R_Type_Is_Anon_Access then
if R_Stm_Type_Is_Anon_Access then
if
Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
then
if Base_Type (Designated_Type (R_Stm_Type)) /=
Base_Type (Designated_Type (R_Type))
or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
then
Error_Msg_N
("subtype must statically match function result subtype",
Subtype_Mark (Subtype_Ind));
end if;
else
-- For two anonymous access to subprogram types, the
-- types themselves must be type conformant.
if not Conforming_Types
(R_Stm_Type, R_Type, Fully_Conformant)
then
Error_Msg_N
("subtype must statically match function result subtype",
Subtype_Ind);
end if;
end if;
else
Error_Msg_N ("must use anonymous access type", Subtype_Ind);
end if;
-- If the return object is of an anonymous access type, then report
-- an error if the function's result type is not also anonymous.
elsif R_Stm_Type_Is_Anon_Access
and then not R_Type_Is_Anon_Access
then
Error_Msg_N ("anonymous access not allowed for function with " &
"named access result", Subtype_Ind);
-- Subtype indication case: check that the return object's type is
-- covered by the result type, and that the subtypes statically match
-- when the result subtype is constrained. Also handle record types
-- with unknown discriminants for which we have built the underlying
-- record view. Coverage is needed to allow specific-type return
-- objects when the result type is class-wide (see AI05-32).
elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
and then
Covers
(Base_Type (R_Type),
Underlying_Record_View (Base_Type (R_Stm_Type))))
then
-- A null exclusion may be present on the return type, on the
-- function specification, on the object declaration or on the
-- subtype itself.
if Is_Access_Type (R_Type)
and then
(Can_Never_Be_Null (R_Type)
or else Null_Exclusion_Present (Parent (Scope_Id))) /=
Can_Never_Be_Null (R_Stm_Type)
then
Error_Msg_N
("subtype must statically match function result subtype",
Subtype_Ind);
end if;
-- AI05-103: for elementary types, subtypes must statically match
if Is_Constrained (R_Type)
or else Is_Access_Type (R_Type)
then
if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
Error_Msg_N
("subtype must statically match function result subtype",
Subtype_Ind);
end if;
end if;
elsif Etype (Base_Type (R_Type)) = R_Stm_Type
and then Is_Null_Extension (Base_Type (R_Type))
then
null;
else
Error_Msg_N
("wrong type for return_subtype_indication", Subtype_Ind);
end if;
end Check_Return_Subtype_Indication;
---------------------
-- Local Variables --
---------------------
Expr : Node_Id;
-- Start of processing for Analyze_Function_Return
begin
Set_Return_Present (Scope_Id);
if Nkind (N) = N_Simple_Return_Statement then
Expr := Expression (N);
-- Guard against a malformed expression. The parser may have tried to
-- recover but the node is not analyzable.
if Nkind (Expr) = N_Error then
Set_Etype (Expr, Any_Type);
Expander_Mode_Save_And_Set (False);
return;
else
-- The resolution of a controlled [extension] aggregate associated
-- with a return statement creates a temporary which needs to be
-- finalized on function exit. Wrap the return statement inside a
-- block so that the finalization machinery can detect this case.
-- This early expansion is done only when the return statement is
-- not part of a handled sequence of statements.
if Nkind_In (Expr, N_Aggregate,
N_Extension_Aggregate)
and then Needs_Finalization (R_Type)
and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
then
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Relocate_Node (N)))));
Analyze (N);
return;
end if;
Analyze_And_Resolve (Expr, R_Type);
Check_Limited_Return (Expr);
end if;
-- RETURN only allowed in SPARK as the last statement in function
if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
and then
(Nkind (Parent (Parent (N))) /= N_Subprogram_Body
or else Present (Next (N)))
then
Check_SPARK_Restriction
("RETURN should be the last statement in function", N);
end if;
else
Check_SPARK_Restriction ("extended RETURN is not allowed", N);
-- Analyze parts specific to extended_return_statement:
declare
Obj_Decl : constant Node_Id :=
Last (Return_Object_Declarations (N));
Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
HSS : constant Node_Id := Handled_Statement_Sequence (N);
begin
Expr := Expression (Obj_Decl);
-- Note: The check for OK_For_Limited_Init will happen in
-- Analyze_Object_Declaration; we treat it as a normal
-- object declaration.
Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
Analyze (Obj_Decl);
Check_Return_Subtype_Indication (Obj_Decl);
if Present (HSS) then
Analyze (HSS);
if Present (Exception_Handlers (HSS)) then
-- ???Has_Nested_Block_With_Handler needs to be set.
-- Probably by creating an actual N_Block_Statement.
-- Probably in Expand.
null;
end if;
end if;
-- Mark the return object as referenced, since the return is an
-- implicit reference of the object.
Set_Referenced (Defining_Identifier (Obj_Decl));
Check_References (Stm_Entity);
-- Check RM 6.5 (5.9/3)
if Has_Aliased then
if Ada_Version < Ada_2012 then
-- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
-- Can it really happen (extended return???)
Error_Msg_N
("aliased only allowed for limited"
& " return objects in Ada 2012?", N);
elsif not Is_Immutably_Limited_Type (R_Type) then
Error_Msg_N ("aliased only allowed for limited"
& " return objects", N);
end if;
end if;
end;
end if;
-- Case of Expr present
if Present (Expr)
-- Defend against previous errors
and then Nkind (Expr) /= N_Empty
and then Present (Etype (Expr))
then
-- Apply constraint check. Note that this is done before the implicit
-- conversion of the expression done for anonymous access types to
-- ensure correct generation of the null-excluding check associated
-- with null-excluding expressions found in return statements.
Apply_Constraint_Check (Expr, R_Type);
-- Ada 2005 (AI-318-02): When the result type is an anonymous access
-- type, apply an implicit conversion of the expression to that type
-- to force appropriate static and run-time accessibility checks.
if Ada_Version >= Ada_2005
and then Ekind (R_Type) = E_Anonymous_Access_Type
then
Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
Analyze_And_Resolve (Expr, R_Type);
-- If this is a local anonymous access to subprogram, the
-- accessibility check can be applied statically. The return is
-- illegal if the access type of the return expression is declared
-- inside of the subprogram (except if it is the subtype indication
-- of an extended return statement).
elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
if not Comes_From_Source (Current_Scope)
or else Ekind (Current_Scope) = E_Return_Statement
then
null;
elsif
Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
then
Error_Msg_N ("cannot return local access to subprogram", N);
end if;
end if;
-- If the result type is class-wide, then check that the return
-- expression's type is not declared at a deeper level than the
-- function (RM05-6.5(5.6/2)).
if Ada_Version >= Ada_2005
and then Is_Class_Wide_Type (R_Type)
then
if Type_Access_Level (Etype (Expr)) >
Subprogram_Access_Level (Scope_Id)
then
Error_Msg_N
("level of return expression type is deeper than " &
"class-wide function!", Expr);
end if;
end if;
-- Check incorrect use of dynamically tagged expression
if Is_Tagged_Type (R_Type) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => R_Type,
Related_Nod => N);
end if;
-- ??? A real run-time accessibility check is needed in cases
-- involving dereferences of access parameters. For now we just
-- check the static cases.
if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
and then Is_Immutably_Limited_Type (Etype (Scope_Id))
and then Object_Access_Level (Expr) >
Subprogram_Access_Level (Scope_Id)
then
-- Suppress the message in a generic, where the rewriting
-- is irrelevant.
if Inside_A_Generic then
null;
else
Rewrite (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Accessibility_Check_Failed));
Analyze (N);
Error_Msg_N
("cannot return a local value by reference??", N);
Error_Msg_NE
("\& will be raised at run time??",
N, Standard_Program_Error);
end if;
end if;
if Known_Null (Expr)
and then Nkind (Parent (Scope_Id)) = N_Function_Specification
and then Null_Exclusion_Present (Parent (Scope_Id))
then
Apply_Compile_Time_Constraint_Error
(N => Expr,
Msg => "(Ada 2005) null not allowed for "
& "null-excluding return??",
Reason => CE_Null_Not_Allowed);
end if;
end if;
end Analyze_Function_Return;
-------------------------------------
-- Analyze_Generic_Subprogram_Body --
-------------------------------------
procedure Analyze_Generic_Subprogram_Body
(N : Node_Id;
Gen_Id : Entity_Id)
is
Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
Kind : constant Entity_Kind := Ekind (Gen_Id);
Body_Id : Entity_Id;
New_N : Node_Id;
Spec : Node_Id;
begin
-- Copy body and disable expansion while analyzing the generic For a
-- stub, do not copy the stub (which would load the proper body), this
-- will be done when the proper body is analyzed.
if Nkind (N) /= N_Subprogram_Body_Stub then
New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
Rewrite (N, New_N);
Start_Generic;
end if;
Spec := Specification (N);
-- Within the body of the generic, the subprogram is callable, and
-- behaves like the corresponding non-generic unit.
Body_Id := Defining_Entity (Spec);
if Kind = E_Generic_Procedure
and then Nkind (Spec) /= N_Procedure_Specification
then
Error_Msg_N ("invalid body for generic procedure ", Body_Id);
return;
elsif Kind = E_Generic_Function
and then Nkind (Spec) /= N_Function_Specification
then
Error_Msg_N ("invalid body for generic function ", Body_Id);
return;
end if;
Set_Corresponding_Body (Gen_Decl, Body_Id);
if Has_Completion (Gen_Id)
and then Nkind (Parent (N)) /= N_Subunit
then
Error_Msg_N ("duplicate generic body", N);
return;
else
Set_Has_Completion (Gen_Id);
end if;
if Nkind (N) = N_Subprogram_Body_Stub then
Set_Ekind (Defining_Entity (Specification (N)), Kind);
else
Set_Corresponding_Spec (N, Gen_Id);
end if;
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
end if;
-- Make generic parameters immediately visible in the body. They are
-- needed to process the formals declarations. Then make the formals
-- visible in a separate step.
Push_Scope (Gen_Id);
declare
E : Entity_Id;
First_Ent : Entity_Id;
begin
First_Ent := First_Entity (Gen_Id);
E := First_Ent;
while Present (E) and then not Is_Formal (E) loop
Install_Entity (E);
Next_Entity (E);
end loop;
Set_Use (Generic_Formal_Declarations (Gen_Decl));
-- Now generic formals are visible, and the specification can be
-- analyzed, for subsequent conformance check.
Body_Id := Analyze_Subprogram_Specification (Spec);
-- Make formal parameters visible
if Present (E) then
-- E is the first formal parameter, we loop through the formals
-- installing them so that they will be visible.
Set_First_Entity (Gen_Id, E);
while Present (E) loop
Install_Entity (E);
Next_Formal (E);
end loop;
end if;
-- Visible generic entity is callable within its own body
Set_Ekind (Gen_Id, Ekind (Body_Id));
Set_Contract (Body_Id, Empty);
Set_Ekind (Body_Id, E_Subprogram_Body);
Set_Convention (Body_Id, Convention (Gen_Id));
Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
Set_Scope (Body_Id, Scope (Gen_Id));
Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
if Nkind (N) = N_Subprogram_Body_Stub then
-- No body to analyze, so restore state of generic unit
Set_Ekind (Gen_Id, Kind);
Set_Ekind (Body_Id, Kind);
if Present (First_Ent) then
Set_First_Entity (Gen_Id, First_Ent);
end if;
End_Scope;
return;
end if;
-- If this is a compilation unit, it must be made visible explicitly,
-- because the compilation of the declaration, unlike other library
-- unit declarations, does not. If it is not a unit, the following
-- is redundant but harmless.
Set_Is_Immediately_Visible (Gen_Id);
Reference_Body_Formals (Gen_Id, Body_Id);
if Is_Child_Unit (Gen_Id) then
Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
end if;
Set_Actual_Subtypes (N, Current_Scope);
-- Deal with preconditions and postconditions. In formal verification
-- mode, we keep pre- and postconditions attached to entities rather
-- than inserted in the code, in order to facilitate a distinct
-- treatment for them.
if not SPARK_Mode then
Process_PPCs (N, Gen_Id, Body_Id);
end if;
-- If the generic unit carries pre- or post-conditions, copy them
-- to the original generic tree, so that they are properly added
-- to any instantiation.
declare
Orig : constant Node_Id := Original_Node (N);
Cond : Node_Id;
begin
Cond := First (Declarations (N));
while Present (Cond) loop
if Nkind (Cond) = N_Pragma
and then Pragma_Name (Cond) = Name_Check
then
Prepend (New_Copy_Tree (Cond), Declarations (Orig));
elsif Nkind (Cond) = N_Pragma
and then Pragma_Name (Cond) = Name_Postcondition
then
Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
Prepend (New_Copy_Tree (Cond), Declarations (Orig));
else
exit;
end if;
Next (Cond);
end loop;
end;
Analyze_Declarations (Declarations (N));
Check_Completion;
Analyze (Handled_Statement_Sequence (N));
Save_Global_References (Original_Node (N));
-- Prior to exiting the scope, include generic formals again (if any
-- are present) in the set of local entities.
if Present (First_Ent) then
Set_First_Entity (Gen_Id, First_Ent);
end if;
Check_References (Gen_Id);
end;
Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
End_Scope;
Check_Subprogram_Order (N);
-- Outside of its body, unit is generic again
Set_Ekind (Gen_Id, Kind);
Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
if Style_Check then
Style.Check_Identifier (Body_Id, Gen_Id);
end if;
End_Generic;
end Analyze_Generic_Subprogram_Body;
----------------------------
-- Analyze_Null_Procedure --
----------------------------
procedure Analyze_Null_Procedure
(N : Node_Id;
Is_Completion : out Boolean)
is
Loc : constant Source_Ptr := Sloc (N);
Spec : constant Node_Id := Specification (N);
Designator : Entity_Id;
Form : Node_Id;
Null_Body : Node_Id := Empty;
Prev : Entity_Id;
begin
-- Capture the profile of the null procedure before analysis, for
-- expansion at the freeze point and at each point of call. The body is
-- used if the procedure has preconditions, or if it is a completion. In
-- the first case the body is analyzed at the freeze point, in the other
-- it replaces the null procedure declaration.
Null_Body :=
Make_Subprogram_Body (Loc,
Specification => New_Copy_Tree (Spec),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Make_Null_Statement (Loc))));
-- Create new entities for body and formals
Set_Defining_Unit_Name (Specification (Null_Body),
Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
Form := First (Parameter_Specifications (Specification (Null_Body)));
while Present (Form) loop
Set_Defining_Identifier (Form,
Make_Defining_Identifier (Loc, Chars (Defining_Identifier (Form))));
Next (Form);
end loop;
-- Determine whether the null procedure may be a completion of a generic
-- suprogram, in which case we use the new null body as the completion
-- and set minimal semantic information on the original declaration,
-- which is rewritten as a null statement.
Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
if Present (Prev) and then Is_Generic_Subprogram (Prev) then
Insert_Before (N, Null_Body);
Set_Ekind (Defining_Entity (N), Ekind (Prev));
Set_Contract (Defining_Entity (N), Make_Contract (Loc));
Rewrite (N, Make_Null_Statement (Loc));
Analyze_Generic_Subprogram_Body (Null_Body, Prev);
Is_Completion := True;
return;
else
-- Resolve the types of the formals now, because the freeze point
-- may appear in a different context, e.g. an instantiation.
Form := First (Parameter_Specifications (Specification (Null_Body)));
while Present (Form) loop
if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
Find_Type (Parameter_Type (Form));
elsif
No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
then
Find_Type (Subtype_Mark (Parameter_Type (Form)));
else
-- The case of a null procedure with a formal that is an
-- access_to_subprogram type, and that is used as an actual
-- in an instantiation is left to the enthusiastic reader.
null;
end if;
Next (Form);
end loop;
end if;
-- If there are previous overloadable entities with the same name,
-- check whether any of them is completed by the null procedure.
if Present (Prev) and then Is_Overloadable (Prev) then
Designator := Analyze_Subprogram_Specification (Spec);
Prev := Find_Corresponding_Spec (N);
end if;
if No (Prev) or else not Comes_From_Source (Prev) then
Designator := Analyze_Subprogram_Specification (Spec);
Set_Has_Completion (Designator);
-- Signal to caller that this is a procedure declaration
Is_Completion := False;
-- Null procedures are always inlined, but generic formal subprograms
-- which appear as such in the internal instance of formal packages,
-- need no completion and are not marked Inline.
if Expander_Active
and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
then
Set_Corresponding_Body (N, Defining_Entity (Null_Body));
Set_Body_To_Inline (N, Null_Body);
Set_Is_Inlined (Designator);
end if;
else
-- The null procedure is a completion
Is_Completion := True;
if Expander_Active then
Rewrite (N, Null_Body);
Analyze (N);
else
Designator := Analyze_Subprogram_Specification (Spec);
Set_Has_Completion (Designator);
Set_Has_Completion (Prev);
end if;
end if;
end Analyze_Null_Procedure;
-----------------------------
-- Analyze_Operator_Symbol --
-----------------------------
-- An operator symbol such as "+" or "and" may appear in context where the
-- literal denotes an entity name, such as "+"(x, y) or in context when it
-- is just a string, as in (conjunction = "or"). In these cases the parser
-- generates this node, and the semantics does the disambiguation. Other
-- such case are actuals in an instantiation, the generic unit in an
-- instantiation, and pragma arguments.
procedure Analyze_Operator_Symbol (N : Node_Id) is
Par : constant Node_Id := Parent (N);
begin
if (Nkind (Par) = N_Function_Call
and then N = Name (Par))
or else Nkind (Par) = N_Function_Instantiation
or else (Nkind (Par) = N_Indexed_Component
and then N = Prefix (Par))
or else (Nkind (Par) = N_Pragma_Argument_Association
and then not Is_Pragma_String_Literal (Par))
or else Nkind (Par) = N_Subprogram_Renaming_Declaration
or else (Nkind (Par) = N_Attribute_Reference
and then Attribute_Name (Par) /= Name_Value)
then
Find_Direct_Name (N);
else
Change_Operator_Symbol_To_String_Literal (N);
Analyze (N);
end if;
end Analyze_Operator_Symbol;
-----------------------------------
-- Analyze_Parameter_Association --
-----------------------------------
procedure Analyze_Parameter_Association (N : Node_Id) is
begin
Analyze (Explicit_Actual_Parameter (N));
end Analyze_Parameter_Association;
----------------------------
-- Analyze_Procedure_Call --
----------------------------
procedure Analyze_Procedure_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Name (N);
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id;
New_N : Node_Id;
procedure Analyze_Call_And_Resolve;
-- Do Analyze and Resolve calls for procedure call
-- At end, check illegal order dependence.
------------------------------
-- Analyze_Call_And_Resolve --
------------------------------
procedure Analyze_Call_And_Resolve is
begin
if Nkind (N) = N_Procedure_Call_Statement then
Analyze_Call (N);
Resolve (N, Standard_Void_Type);
else
Analyze (N);
end if;
end Analyze_Call_And_Resolve;
-- Start of processing for Analyze_Procedure_Call
begin
-- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
-- a procedure call or an entry call. The prefix may denote an access
-- to subprogram type, in which case an implicit dereference applies.
-- If the prefix is an indexed component (without implicit dereference)
-- then the construct denotes a call to a member of an entire family.
-- If the prefix is a simple name, it may still denote a call to a
-- parameterless member of an entry family. Resolution of these various
-- interpretations is delicate.
Analyze (P);
-- If this is a call of the form Obj.Op, the call may have been
-- analyzed and possibly rewritten into a block, in which case
-- we are done.
if Analyzed (N) then
return;
end if;
-- If there is an error analyzing the name (which may have been
-- rewritten if the original call was in prefix notation) then error
-- has been emitted already, mark node and return.
if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
Set_Etype (N, Any_Type);
return;
end if;
-- Otherwise analyze the parameters
if Present (Actuals) then
Actual := First (Actuals);
while Present (Actual) loop
Analyze (Actual);
Check_Parameterless_Call (Actual);
Next (Actual);
end loop;
end if;
-- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
if Nkind (P) = N_Attribute_Reference
and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
Name_Elab_Body,
Name_Elab_Subp_Body)
then
if Present (Actuals) then
Error_Msg_N
("no parameters allowed for this call", First (Actuals));
return;
end if;
Set_Etype (N, Standard_Void_Type);
Set_Analyzed (N);
elsif Is_Entity_Name (P)
and then Is_Record_Type (Etype (Entity (P)))
and then Remote_AST_I_Dereference (P)
then
return;
elsif Is_Entity_Name (P)
and then Ekind (Entity (P)) /= E_Entry_Family
then
if Is_Access_Type (Etype (P))
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
and then No (Actuals)
and then Comes_From_Source (N)
then
Error_Msg_N ("missing explicit dereference in call", N);
end if;
Analyze_Call_And_Resolve;
-- If the prefix is the simple name of an entry family, this is
-- a parameterless call from within the task body itself.
elsif Is_Entity_Name (P)
and then Nkind (P) = N_Identifier
and then Ekind (Entity (P)) = E_Entry_Family
and then Present (Actuals)
and then No (Next (First (Actuals)))
then
-- Can be call to parameterless entry family. What appears to be the
-- sole argument is in fact the entry index. Rewrite prefix of node
-- accordingly. Source representation is unchanged by this
-- transformation.
New_N :=
Make_Indexed_Component (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
Expressions => Actuals);
Set_Name (N, New_N);
Set_Etype (New_N, Standard_Void_Type);
Set_Parameter_Associations (N, No_List);
Analyze_Call_And_Resolve;
elsif Nkind (P) = N_Explicit_Dereference then
if Ekind (Etype (P)) = E_Subprogram_Type then
Analyze_Call_And_Resolve;
else
Error_Msg_N ("expect access to procedure in call", P);
end if;
-- The name can be a selected component or an indexed component that
-- yields an access to subprogram. Such a prefix is legal if the call
-- has parameter associations.
elsif Is_Access_Type (Etype (P))
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
then
if Present (Actuals) then
Analyze_Call_And_Resolve;
else
Error_Msg_N ("missing explicit dereference in call ", N);
end if;
-- If not an access to subprogram, then the prefix must resolve to the
-- name of an entry, entry family, or protected operation.
-- For the case of a simple entry call, P is a selected component where
-- the prefix is the task and the selector name is the entry. A call to
-- a protected procedure will have the same syntax. If the protected
-- object contains overloaded operations, the entity may appear as a
-- function, the context will select the operation whose type is Void.
elsif Nkind (P) = N_Selected_Component
and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
E_Procedure,
E_Function)
then
Analyze_Call_And_Resolve;
elsif Nkind (P) = N_Selected_Component
and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
and then Present (Actuals)
and then No (Next (First (Actuals)))
then
-- Can be call to parameterless entry family. What appears to be the
-- sole argument is in fact the entry index. Rewrite prefix of node
-- accordingly. Source representation is unchanged by this
-- transformation.
New_N :=
Make_Indexed_Component (Loc,
Prefix => New_Copy (P),
Expressions => Actuals);
Set_Name (N, New_N);
Set_Etype (New_N, Standard_Void_Type);
Set_Parameter_Associations (N, No_List);
Analyze_Call_And_Resolve;
-- For the case of a reference to an element of an entry family, P is
-- an indexed component whose prefix is a selected component (task and
-- entry family), and whose index is the entry family index.
elsif Nkind (P) = N_Indexed_Component
and then Nkind (Prefix (P)) = N_Selected_Component
and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
then
Analyze_Call_And_Resolve;
-- If the prefix is the name of an entry family, it is a call from
-- within the task body itself.
elsif Nkind (P) = N_Indexed_Component
and then Nkind (Prefix (P)) = N_Identifier
and then Ekind (Entity (Prefix (P))) = E_Entry_Family
then
New_N :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
Rewrite (Prefix (P), New_N);
Analyze (P);
Analyze_Call_And_Resolve;
-- In Ada 2012. a qualified expression is a name, but it cannot be a
-- procedure name, so the construct can only be a qualified expression.
elsif Nkind (P) = N_Qualified_Expression
and then Ada_Version >= Ada_2012
then
Rewrite (N, Make_Code_Statement (Loc, Expression => P));
Analyze (N);
-- Anything else is an error
else
Error_Msg_N ("invalid procedure or entry call", N);
end if;
end Analyze_Procedure_Call;
------------------------------
-- Analyze_Return_Statement --
------------------------------
procedure Analyze_Return_Statement (N : Node_Id) is
pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
N_Extended_Return_Statement));
Returns_Object : constant Boolean :=
Nkind (N) = N_Extended_Return_Statement
or else
(Nkind (N) = N_Simple_Return_Statement
and then Present (Expression (N)));
-- True if we're returning something; that is, "return <expression>;"
-- or "return Result : T [:= ...]". False for "return;". Used for error
-- checking: If Returns_Object is True, N should apply to a function
-- body; otherwise N should apply to a procedure body, entry body,
-- accept statement, or extended return statement.
function Find_What_It_Applies_To return Entity_Id;
-- Find the entity representing the innermost enclosing body, accept
-- statement, or extended return statement. If the result is a callable
-- construct or extended return statement, then this will be the value
-- of the Return_Applies_To attribute. Otherwise, the program is
-- illegal. See RM-6.5(4/2).
-----------------------------
-- Find_What_It_Applies_To --
-----------------------------
function Find_What_It_Applies_To return Entity_Id is
Result : Entity_Id := Empty;
begin
-- Loop outward through the Scope_Stack, skipping blocks, loops,
-- and postconditions.
for J in reverse 0 .. Scope_Stack.Last loop
Result := Scope_Stack.Table (J).Entity;
exit when not Ekind_In (Result, E_Block, E_Loop)
and then Chars (Result) /= Name_uPostconditions;
end loop;
pragma Assert (Present (Result));
return Result;
end Find_What_It_Applies_To;
-- Local declarations
Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
Kind : constant Entity_Kind := Ekind (Scope_Id);
Loc : constant Source_Ptr := Sloc (N);
Stm_Entity : constant Entity_Id :=
New_Internal_Entity
(E_Return_Statement, Current_Scope, Loc, 'R');
-- Start of processing for Analyze_Return_Statement
begin
Set_Return_Statement_Entity (N, Stm_Entity);
Set_Etype (Stm_Entity, Standard_Void_Type);
Set_Return_Applies_To (Stm_Entity, Scope_Id);
-- Place Return entity on scope stack, to simplify enforcement of 6.5
-- (4/2): an inner return statement will apply to this extended return.
if Nkind (N) = N_Extended_Return_Statement then
Push_Scope (Stm_Entity);
end if;
-- Check that pragma No_Return is obeyed. Don't complain about the
-- implicitly-generated return that is placed at the end.
if No_Return (Scope_Id) and then Comes_From_Source (N) then
Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
end if;
-- Warn on any unassigned OUT parameters if in procedure
if Ekind (Scope_Id) = E_Procedure then
Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
end if;
-- Check that functions return objects, and other things do not
if Kind = E_Function or else Kind = E_Generic_Function then
if not Returns_Object then
Error_Msg_N ("missing expression in return from function", N);
end if;
elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
if Returns_Object then
Error_Msg_N ("procedure cannot return value (use function)", N);
end if;
elsif Kind = E_Entry or else Kind = E_Entry_Family then
if Returns_Object then
if Is_Protected_Type (Scope (Scope_Id)) then
Error_Msg_N ("entry body cannot return value", N);
else
Error_Msg_N ("accept statement cannot return value", N);
end if;
end if;
elsif Kind = E_Return_Statement then
-- We are nested within another return statement, which must be an
-- extended_return_statement.
if Returns_Object then
if Nkind (N) = N_Extended_Return_Statement then
Error_Msg_N
("extended return statement cannot be nested (use `RETURN;`)",
N);
-- Case of a simple return statement with a value inside extended
-- return statement.
else
Error_Msg_N
("return nested in extended return statement cannot return " &
"value (use `RETURN;`)", N);
end if;
end if;
else
Error_Msg_N ("illegal context for return statement", N);
end if;
if Ekind_In (Kind, E_Function, E_Generic_Function) then
Analyze_Function_Return (N);
elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
Set_Return_Present (Scope_Id);
end if;
if Nkind (N) = N_Extended_Return_Statement then
End_Scope;
end if;
Kill_Current_Values (Last_Assignment_Only => True);
Check_Unreachable_Code (N);
Analyze_Dimension (N);
end Analyze_Return_Statement;
-------------------------------------
-- Analyze_Simple_Return_Statement --
-------------------------------------
procedure Analyze_Simple_Return_Statement (N : Node_Id) is
begin
if Present (Expression (N)) then
Mark_Coextensions (N, Expression (N));
end if;
Analyze_Return_Statement (N);
end Analyze_Simple_Return_Statement;
-------------------------
-- Analyze_Return_Type --
-------------------------
procedure Analyze_Return_Type (N : Node_Id) is
Designator : constant Entity_Id := Defining_Entity (N);
Typ : Entity_Id := Empty;
begin
-- Normal case where result definition does not indicate an error
if Result_Definition (N) /= Error then
if Nkind (Result_Definition (N)) = N_Access_Definition then
Check_SPARK_Restriction
("access result is not allowed", Result_Definition (N));
-- Ada 2005 (AI-254): Handle anonymous access to subprograms
declare
AD : constant Node_Id :=
Access_To_Subprogram_Definition (Result_Definition (N));
begin
if Present (AD) and then Protected_Present (AD) then
Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
else
Typ := Access_Definition (N, Result_Definition (N));
end if;
end;
Set_Parent (Typ, Result_Definition (N));
Set_Is_Local_Anonymous_Access (Typ);
Set_Etype (Designator, Typ);
-- Ada 2005 (AI-231): Ensure proper usage of null exclusion
Null_Exclusion_Static_Checks (N);
-- Subtype_Mark case
else
Find_Type (Result_Definition (N));
Typ := Entity (Result_Definition (N));
Set_Etype (Designator, Typ);
-- Unconstrained array as result is not allowed in SPARK
if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
Check_SPARK_Restriction
("returning an unconstrained array is not allowed",
Result_Definition (N));
end if;
-- Ada 2005 (AI-231): Ensure proper usage of null exclusion
Null_Exclusion_Static_Checks (N);
-- If a null exclusion is imposed on the result type, then create
-- a null-excluding itype (an access subtype) and use it as the
-- function's Etype. Note that the null exclusion checks are done
-- right before this, because they don't get applied to types that
-- do not come from source.
if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
Set_Etype (Designator,
Create_Null_Excluding_Itype
(T => Typ,
Related_Nod => N,
Scope_Id => Scope (Current_Scope)));
-- The new subtype must be elaborated before use because
-- it is visible outside of the function. However its base
-- type may not be frozen yet, so the reference that will
-- force elaboration must be attached to the freezing of
-- the base type.
-- If the return specification appears on a proper body,
-- the subtype will have been created already on the spec.
if Is_Frozen (Typ) then
if Nkind (Parent (N)) = N_Subprogram_Body
and then Nkind (Parent (Parent (N))) = N_Subunit
then
null;
else
Build_Itype_Reference (Etype (Designator), Parent (N));
end if;
else
Ensure_Freeze_Node (Typ);
declare
IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
begin
Set_Itype (IR, Etype (Designator));
Append_Freeze_Actions (Typ, New_List (IR));
end;
end if;
else
Set_Etype (Designator, Typ);
end if;
if Ekind (Typ) = E_Incomplete_Type
and then Is_Value_Type (Typ)
then
null;
elsif Ekind (Typ) = E_Incomplete_Type
or else (Is_Class_Wide_Type (Typ)
and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
then
-- AI05-0151: Tagged incomplete types are allowed in all formal
-- parts. Untagged incomplete types are not allowed in bodies.
if Ada_Version >= Ada_2012 then
if Is_Tagged_Type (Typ) then
null;
elsif Nkind_In (Parent (Parent (N)),
N_Accept_Statement,
N_Entry_Body,
N_Subprogram_Body)
then
Error_Msg_NE
("invalid use of untagged incomplete type&",
Designator, Typ);
end if;
-- The type must be completed in the current package. This
-- is checked at the end of the package declaraton, when
-- Taft-amendment types are identified. If the return type
-- is class-wide, there is no required check, the type can
-- be a bona fide TAT.
if Ekind (Scope (Current_Scope)) = E_Package
and then In_Private_Part (Scope (Current_Scope))
and then not Is_Class_Wide_Type (Typ)
then
Append_Elmt (Designator, Private_Dependents (Typ));
end if;
else
Error_Msg_NE
("invalid use of incomplete type&", Designator, Typ);
end if;
end if;
end if;
-- Case where result definition does indicate an error
else
Set_Etype (Designator, Any_Type);
end if;
end Analyze_Return_Type;
-----------------------------
-- Analyze_Subprogram_Body --
-----------------------------
procedure Analyze_Subprogram_Body (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Body_Spec : constant Node_Id := Specification (N);
Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
begin
if Debug_Flag_C then
Write_Str ("==> subprogram body ");
Write_Name (Chars (Body_Id));
Write_Str (" from ");
Write_Location (Loc);
Write_Eol;
Indent;
end if;
Trace_Scope (N, Body_Id, " Analyze subprogram: ");
-- The real work is split out into the helper, so it can do "return;"
-- without skipping the debug output:
Analyze_Subprogram_Body_Helper (N);
if Debug_Flag_C then
Outdent;
Write_Str ("<== subprogram body ");
Write_Name (Chars (Body_Id));
Write_Str (" from ");
Write_Location (Loc);
Write_Eol;
end if;
end Analyze_Subprogram_Body;
------------------------------------
-- Analyze_Subprogram_Body_Helper --
------------------------------------
-- This procedure is called for regular subprogram bodies, generic bodies,
-- and for subprogram stubs of both kinds. In the case of stubs, only the
-- specification matters, and is used to create a proper declaration for
-- the subprogram, or to perform conformance checks.
procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Body_Spec : constant Node_Id := Specification (N);
Body_Id : Entity_Id := Defining_Entity (Body_Spec);
Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
Conformant : Boolean;
HSS : Node_Id;
Prot_Typ : Entity_Id := Empty;
Spec_Id : Entity_Id;
Spec_Decl : Node_Id := Empty;
Last_Real_Spec_Entity : Entity_Id := Empty;
-- When we analyze a separate spec, the entity chain ends up containing
-- the formals, as well as any itypes generated during analysis of the
-- default expressions for parameters, or the arguments of associated
-- precondition/postcondition pragmas (which are analyzed in the context
-- of the spec since they have visibility on formals).
--
-- These entities belong with the spec and not the body. However we do
-- the analysis of the body in the context of the spec (again to obtain
-- visibility to the formals), and all the entities generated during
-- this analysis end up also chained to the entity chain of the spec.
-- But they really belong to the body, and there is circuitry to move
-- them from the spec to the body.
--
-- However, when we do this move, we don't want to move the real spec
-- entities (first para above) to the body. The Last_Real_Spec_Entity
-- variable points to the last real spec entity, so we only move those
-- chained beyond that point. It is initialized to Empty to deal with
-- the case where there is no separate spec.
procedure Check_Anonymous_Return;
-- Ada 2005: if a function returns an access type that denotes a task,
-- or a type that contains tasks, we must create a master entity for
-- the anonymous type, which typically will be used in an allocator
-- in the body of the function.
procedure Check_Inline_Pragma (Spec : in out Node_Id);
-- Look ahead to recognize a pragma that may appear after the body.
-- If there is a previous spec, check that it appears in the same
-- declarative part. If the pragma is Inline_Always, perform inlining
-- unconditionally, otherwise only if Front_End_Inlining is requested.
-- If the body acts as a spec, and inlining is required, we create a
-- subprogram declaration for it, in order to attach the body to inline.
-- If pragma does not appear after the body, check whether there is
-- an inline pragma before any local declarations.
procedure Check_Missing_Return;
-- Checks for a function with a no return statements, and also performs
-- the warning checks implemented by Check_Returns. In formal mode, also
-- verify that a function ends with a RETURN and that a procedure does
-- not contain any RETURN.
function Disambiguate_Spec return Entity_Id;
-- When a primitive is declared between the private view and the full
-- view of a concurrent type which implements an interface, a special
-- mechanism is used to find the corresponding spec of the primitive
-- body.
procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
-- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
-- incomplete types coming from a limited context and swap their limited
-- views with the non-limited ones.
function Is_Private_Concurrent_Primitive
(Subp_Id : Entity_Id) return Boolean;
-- Determine whether subprogram Subp_Id is a primitive of a concurrent
-- type that implements an interface and has a private view.
procedure Set_Trivial_Subprogram (N : Node_Id);
-- Sets the Is_Trivial_Subprogram flag in both spec and body of the
-- subprogram whose body is being analyzed. N is the statement node
-- causing the flag to be set, if the following statement is a return
-- of an entity, we mark the entity as set in source to suppress any
-- warning on the stylized use of function stubs with a dummy return.
procedure Verify_Overriding_Indicator;
-- If there was a previous spec, the entity has been entered in the
-- current scope previously. If the body itself carries an overriding
-- indicator, check that it is consistent with the known status of the
-- entity.
----------------------------
-- Check_Anonymous_Return --
----------------------------
procedure Check_Anonymous_Return is
Decl : Node_Id;
Par : Node_Id;
Scop : Entity_Id;
begin
if Present (Spec_Id) then
Scop := Spec_Id;
else
Scop := Body_Id;
end if;
if Ekind (Scop) = E_Function
and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
and then not Is_Thunk (Scop)
and then (Has_Task (Designated_Type (Etype (Scop)))
or else
(Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
and then
Is_Limited_Record (Designated_Type (Etype (Scop)))))
and then Expander_Active
-- Avoid cases with no tasking support
and then RTE_Available (RE_Current_Master)
and then not Restriction_Active (No_Task_Hierarchy)
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Constant_Present => True,
Object_Definition =>
New_Reference_To (RTE (RE_Master_Id), Loc),
Expression =>
Make_Explicit_Dereference (Loc,
New_Reference_To (RTE (RE_Current_Master), Loc)));
if Present (Declarations (N)) then
Prepend (Decl, Declarations (N));
else
Set_Declarations (N, New_List (Decl));
end if;
Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
Set_Has_Master_Entity (Scop);
-- Now mark the containing scope as a task master
Par := N;
while Nkind (Par) /= N_Compilation_Unit loop
Par := Parent (Par);
pragma Assert (Present (Par));
-- If we fall off the top, we are at the outer level, and
-- the environment task is our effective master, so nothing
-- to mark.
if Nkind_In
(Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
then
Set_Is_Task_Master (Par, True);
exit;
end if;
end loop;
end if;
end Check_Anonymous_Return;
-------------------------
-- Check_Inline_Pragma --
-------------------------
procedure Check_Inline_Pragma (Spec : in out Node_Id) is
Prag : Node_Id;
Plist : List_Id;
function Is_Inline_Pragma (N : Node_Id) return Boolean;
-- True when N is a pragma Inline or Inline_Always that applies
-- to this subprogram.
-----------------------
-- Is_Inline_Pragma --
-----------------------
function Is_Inline_Pragma (N : Node_Id) return Boolean is
begin
return
Nkind (N) = N_Pragma
and then
(Pragma_Name (N) = Name_Inline_Always
or else
(Front_End_Inlining
and then Pragma_Name (N) = Name_Inline))
and then
Chars
(Expression (First (Pragma_Argument_Associations (N)))) =
Chars (Body_Id);
end Is_Inline_Pragma;
-- Start of processing for Check_Inline_Pragma
begin
if not Expander_Active then
return;
end if;
if Is_List_Member (N)
and then Present (Next (N))
and then Is_Inline_Pragma (Next (N))
then
Prag := Next (N);
elsif Nkind (N) /= N_Subprogram_Body_Stub
and then Present (Declarations (N))
and then Is_Inline_Pragma (First (Declarations (N)))
then
Prag := First (Declarations (N));
else
Prag := Empty;
end if;
if Present (Prag) then
if Present (Spec_Id) then
if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
Analyze (Prag);
end if;
else
-- Create a subprogram declaration, to make treatment uniform
declare
Subp : constant Entity_Id :=
Make_Defining_Identifier (Loc, Chars (Body_Id));
Decl : constant Node_Id :=
Make_Subprogram_Declaration (Loc,
Specification =>
New_Copy_Tree (Specification (N)));
begin
Set_Defining_Unit_Name (Specification (Decl), Subp);
if Present (First_Formal (Body_Id)) then
Plist := Copy_Parameter_List (Body_Id);
Set_Parameter_Specifications
(Specification (Decl), Plist);
end if;
Insert_Before (N, Decl);
Analyze (Decl);
Analyze (Prag);
Set_Has_Pragma_Inline (Subp);
if Pragma_Name (Prag) = Name_Inline_Always then
Set_Is_Inlined (Subp);
Set_Has_Pragma_Inline_Always (Subp);
end if;
Spec := Subp;
end;
end if;
end if;
end Check_Inline_Pragma;
--------------------------
-- Check_Missing_Return --
--------------------------
procedure Check_Missing_Return is
Id : Entity_Id;
Missing_Ret : Boolean;
begin
if Nkind (Body_Spec) = N_Function_Specification then
if Present (Spec_Id) then
Id := Spec_Id;
else
Id := Body_Id;
end if;
if Return_Present (Id) then
Check_Returns (HSS, 'F', Missing_Ret);
if Missing_Ret then
Set_Has_Missing_Return (Id);
end if;
elsif Is_Generic_Subprogram (Id)
or else not Is_Machine_Code_Subprogram (Id)
then
Error_Msg_N ("missing RETURN statement in function body", N);
end if;
-- If procedure with No_Return, check returns
elsif Nkind (Body_Spec) = N_Procedure_Specification
and then Present (Spec_Id)
and then No_Return (Spec_Id)
then
Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
end if;
-- Special checks in SPARK mode
if Nkind (Body_Spec) = N_Function_Specification then
-- In SPARK mode, last statement of a function should be a return
declare
Stat : constant Node_Id := Last_Source_Statement (HSS);
begin
if Present (Stat)
and then not Nkind_In (Stat, N_Simple_Return_Statement,
N_Extended_Return_Statement)
then
Check_SPARK_Restriction
("last statement in function should be RETURN", Stat);
end if;
end;
-- In SPARK mode, verify that a procedure has no return
elsif Nkind (Body_Spec) = N_Procedure_Specification then
if Present (Spec_Id) then
Id := Spec_Id;
else
Id := Body_Id;
end if;
-- Would be nice to point to return statement here, can we
-- borrow the Check_Returns procedure here ???
if Return_Present (Id) then
Check_SPARK_Restriction
("procedure should not have RETURN", N);
end if;
end if;
end Check_Missing_Return;
-----------------------
-- Disambiguate_Spec --
-----------------------
function Disambiguate_Spec return Entity_Id is
Priv_Spec : Entity_Id;
Spec_N : Entity_Id;
procedure Replace_Types (To_Corresponding : Boolean);
-- Depending on the flag, replace the type of formal parameters of
-- Body_Id if it is a concurrent type implementing interfaces with
-- the corresponding record type or the other way around.
procedure Replace_Types (To_Corresponding : Boolean) is
Formal : Entity_Id;
Formal_Typ : Entity_Id;
begin
Formal := First_Formal (Body_Id);
while Present (Formal) loop
Formal_Typ := Etype (Formal);
if Is_Class_Wide_Type (Formal_Typ) then
Formal_Typ := Root_Type (Formal_Typ);
end if;
-- From concurrent type to corresponding record
if To_Corresponding then
if Is_Concurrent_Type (Formal_Typ)
and then Present (Corresponding_Record_Type (Formal_Typ))
and then Present (Interfaces (
Corresponding_Record_Type (Formal_Typ)))
then
Set_Etype (Formal,
Corresponding_Record_Type (Formal_Typ));
end if;
-- From corresponding record to concurrent type
else
if Is_Concurrent_Record_Type (Formal_Typ)
and then Present (Interfaces (Formal_Typ))
then
Set_Etype (Formal,
Corresponding_Concurrent_Type (Formal_Typ));
end if;
end if;
Next_Formal (Formal);
end loop;
end Replace_Types;
-- Start of processing for Disambiguate_Spec
begin
-- Try to retrieve the specification of the body as is. All error
-- messages are suppressed because the body may not have a spec in
-- its current state.
Spec_N := Find_Corresponding_Spec (N, False);
-- It is possible that this is the body of a primitive declared
-- between a private and a full view of a concurrent type. The
-- controlling parameter of the spec carries the concurrent type,
-- not the corresponding record type as transformed by Analyze_
-- Subprogram_Specification. In such cases, we undo the change
-- made by the analysis of the specification and try to find the
-- spec again.
-- Note that wrappers already have their corresponding specs and
-- bodies set during their creation, so if the candidate spec is
-- a wrapper, then we definitely need to swap all types to their
-- original concurrent status.
if No (Spec_N)
or else Is_Primitive_Wrapper (Spec_N)
then
-- Restore all references of corresponding record types to the
-- original concurrent types.
Replace_Types (To_Corresponding => False);
Priv_Spec := Find_Corresponding_Spec (N, False);
-- The current body truly belongs to a primitive declared between
-- a private and a full view. We leave the modified body as is,
-- and return the true spec.
if Present (Priv_Spec)
and then Is_Private_Primitive (Priv_Spec)
then
return Priv_Spec;
end if;
-- In case that this is some sort of error, restore the original
-- state of the body.
Replace_Types (To_Corresponding => True);
end if;
return Spec_N;
end Disambiguate_Spec;
----------------------------
-- Exchange_Limited_Views --
----------------------------
procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
procedure Detect_And_Exchange (Id : Entity_Id);
-- Determine whether Id's type denotes an incomplete type associated
-- with a limited with clause and exchange the limited view with the
-- non-limited one.
-------------------------
-- Detect_And_Exchange --
-------------------------
procedure Detect_And_Exchange (Id : Entity_Id) is
Typ : constant Entity_Id := Etype (Id);
begin
if Ekind (Typ) = E_Incomplete_Type
and then From_With_Type (Typ)
and then Present (Non_Limited_View (Typ))
then
Set_Etype (Id, Non_Limited_View (Typ));
end if;
end Detect_And_Exchange;
-- Local variables
Formal : Entity_Id;
-- Start of processing for Exchange_Limited_Views
begin
if No (Subp_Id) then
return;
-- Do not process subprogram bodies as they already use the non-
-- limited view of types.
elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
return;
end if;
-- Examine all formals and swap views when applicable
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Detect_And_Exchange (Formal);
Next_Formal (Formal);
end loop;
-- Process the return type of a function
if Ekind (Subp_Id) = E_Function then
Detect_And_Exchange (Subp_Id);
end if;
end Exchange_Limited_Views;
-------------------------------------
-- Is_Private_Concurrent_Primitive --
-------------------------------------
function Is_Private_Concurrent_Primitive
(Subp_Id : Entity_Id) return Boolean
is
Formal_Typ : Entity_Id;
begin
if Present (First_Formal (Subp_Id)) then
Formal_Typ := Etype (First_Formal (Subp_Id));
if Is_Concurrent_Record_Type (Formal_Typ) then
if Is_Class_Wide_Type (Formal_Typ) then
Formal_Typ := Root_Type (Formal_Typ);
end if;
Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
end if;
-- The type of the first formal is a concurrent tagged type with
-- a private view.
return
Is_Concurrent_Type (Formal_Typ)
and then Is_Tagged_Type (Formal_Typ)
and then Has_Private_Declaration (Formal_Typ);
end if;
return False;
end Is_Private_Concurrent_Primitive;
----------------------------
-- Set_Trivial_Subprogram --
----------------------------
procedure Set_Trivial_Subprogram (N : Node_Id) is
Nxt : constant Node_Id := Next (N);
begin
Set_Is_Trivial_Subprogram (Body_Id);
if Present (Spec_Id) then
Set_Is_Trivial_Subprogram (Spec_Id);
end if;
if Present (Nxt)
and then Nkind (Nxt) = N_Simple_Return_Statement
and then No (Next (Nxt))
and then Present (Expression (Nxt))
and then Is_Entity_Name (Expression (Nxt))
then
Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
end if;
end Set_Trivial_Subprogram;
---------------------------------
-- Verify_Overriding_Indicator --
---------------------------------
procedure Verify_Overriding_Indicator is
begin
if Must_Override (Body_Spec) then
if Nkind (Spec_Id) = N_Defining_Operator_Symbol
and then Operator_Matches_Spec (Spec_Id, Spec_Id)
then
null;
elsif not Present (Overridden_Operation (Spec_Id)) then
Error_Msg_NE
("subprogram& is not overriding", Body_Spec, Spec_Id);
end if;
elsif Must_Not_Override (Body_Spec) then
if Present (Overridden_Operation (Spec_Id)) then
Error_Msg_NE
("subprogram& overrides inherited operation",
Body_Spec, Spec_Id);
elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
and then Operator_Matches_Spec (Spec_Id, Spec_Id)
then
Error_Msg_NE
("subprogram & overrides predefined operator ",
Body_Spec, Spec_Id);
-- If this is not a primitive operation or protected subprogram,
-- then the overriding indicator is altogether illegal.
elsif not Is_Primitive (Spec_Id)
and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
then
Error_Msg_N
("overriding indicator only allowed " &
"if subprogram is primitive",
Body_Spec);
end if;
elsif Style_Check
and then Present (Overridden_Operation (Spec_Id))
then
pragma Assert (Unit_Declaration_Node (Body_Id) = N);
Style.Missing_Overriding (N, Body_Id);
elsif Style_Check
and then Can_Override_Operator (Spec_Id)
and then not Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Spec_Id)))
then
pragma Assert (Unit_Declaration_Node (Body_Id) = N);
Style.Missing_Overriding (N, Body_Id);
end if;
end Verify_Overriding_Indicator;
-- Start of processing for Analyze_Subprogram_Body_Helper
begin
-- Generic subprograms are handled separately. They always have a
-- generic specification. Determine whether current scope has a
-- previous declaration.
-- If the subprogram body is defined within an instance of the same
-- name, the instance appears as a package renaming, and will be hidden
-- within the subprogram.
if Present (Prev_Id)
and then not Is_Overloadable (Prev_Id)
and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
or else Comes_From_Source (Prev_Id))
then
if Is_Generic_Subprogram (Prev_Id) then
Spec_Id := Prev_Id;
Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
Analyze_Generic_Subprogram_Body (N, Spec_Id);
if Nkind (N) = N_Subprogram_Body then
HSS := Handled_Statement_Sequence (N);
Check_Missing_Return;
end if;
return;
else
-- Previous entity conflicts with subprogram name. Attempting to
-- enter name will post error.
Enter_Name (Body_Id);
return;
end if;
-- Non-generic case, find the subprogram declaration, if one was seen,
-- or enter new overloaded entity in the current scope. If the
-- Current_Entity is the Body_Id itself, the unit is being analyzed as
-- part of the context of one of its subunits. No need to redo the
-- analysis.
elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
return;
else
Body_Id := Analyze_Subprogram_Specification (Body_Spec);
if Nkind (N) = N_Subprogram_Body_Stub
or else No (Corresponding_Spec (N))
then
if Is_Private_Concurrent_Primitive (Body_Id) then
Spec_Id := Disambiguate_Spec;
else
Spec_Id := Find_Corresponding_Spec (N);
end if;
-- If this is a duplicate body, no point in analyzing it
if Error_Posted (N) then
return;
end if;
-- A subprogram body should cause freezing of its own declaration,
-- but if there was no previous explicit declaration, then the
-- subprogram will get frozen too late (there may be code within
-- the body that depends on the subprogram having been frozen,
-- such as uses of extra formals), so we force it to be frozen
-- here. Same holds if the body and spec are compilation units.
-- Finally, if the return type is an anonymous access to protected
-- subprogram, it must be frozen before the body because its
-- expansion has generated an equivalent type that is used when
-- elaborating the body.
-- An exception in the case of Ada 2012, AI05-177: The bodies
-- created for expression functions do not freeze.
if No (Spec_Id)
and then Nkind (Original_Node (N)) /= N_Expression_Function
then
Freeze_Before (N, Body_Id);
elsif Nkind (Parent (N)) = N_Compilation_Unit then
Freeze_Before (N, Spec_Id);
elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
Freeze_Before (N, Etype (Body_Id));
end if;
else
Spec_Id := Corresponding_Spec (N);
end if;
end if;
-- Ada 2012 aspects may appear in a subprogram body, but only if there
-- is no previous spec. Ditto for a subprogram stub that does not have
-- a corresponding spec, but for which there may also be a spec_id.
if Has_Aspects (N) then
-- Aspects that apply to a body stub are relocated to the proper
-- body. Do not emit an error in this case.
if Present (Spec_Id)
and then Nkind (N) not in N_Body_Stub
and then Nkind (Parent (N)) /= N_Subunit
then
Error_Msg_N
("aspect specifications must appear in subprogram declaration",
N);
else
Analyze_Aspect_Specifications (N, Body_Id);
end if;
end if;
-- Previously we scanned the body to look for nested subprograms, and
-- rejected an inline directive if nested subprograms were present,
-- because the back-end would generate conflicting symbols for the
-- nested bodies. This is now unnecessary.
-- Look ahead to recognize a pragma Inline that appears after the body
Check_Inline_Pragma (Spec_Id);
-- Deal with special case of a fully private operation in the body of
-- the protected type. We must create a declaration for the subprogram,
-- in order to attach the protected subprogram that will be used in
-- internal calls. We exclude compiler generated bodies from the
-- expander since the issue does not arise for those cases.
if No (Spec_Id)
and then Comes_From_Source (N)
and then Is_Protected_Type (Current_Scope)
then
Spec_Id := Build_Private_Protected_Declaration (N);
end if;
-- If a separate spec is present, then deal with freezing issues
if Present (Spec_Id) then
Spec_Decl := Unit_Declaration_Node (Spec_Id);
Verify_Overriding_Indicator;
-- In general, the spec will be frozen when we start analyzing the
-- body. However, for internally generated operations, such as
-- wrapper functions for inherited operations with controlling
-- results, the spec may not have been frozen by the time we expand
-- the freeze actions that include the bodies. In particular, extra
-- formals for accessibility or for return-in-place may need to be
-- generated. Freeze nodes, if any, are inserted before the current
-- body. These freeze actions are also needed in ASIS mode to enable
-- the proper back-annotations.
if not Is_Frozen (Spec_Id)
and then (Expander_Active or ASIS_Mode)
then
-- Force the generation of its freezing node to ensure proper
-- management of access types in the backend.
-- This is definitely needed for some cases, but it is not clear
-- why, to be investigated further???
Set_Has_Delayed_Freeze (Spec_Id);
Freeze_Before (N, Spec_Id);
end if;
end if;
-- Mark presence of postcondition procedure in current scope and mark
-- the procedure itself as needing debug info. The latter is important
-- when analyzing decision coverage (for example, for MC/DC coverage).
if Chars (Body_Id) = Name_uPostconditions then
Set_Has_Postconditions (Current_Scope);
Set_Debug_Info_Needed (Body_Id);
end if;
-- Place subprogram on scope stack, and make formals visible. If there
-- is a spec, the visible entity remains that of the spec.
if Present (Spec_Id) then
Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
if Is_Child_Unit (Spec_Id) then
Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
end if;
if Style_Check then
Style.Check_Identifier (Body_Id, Spec_Id);
end if;
Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
if Is_Abstract_Subprogram (Spec_Id) then
Error_Msg_N ("an abstract subprogram cannot have a body", N);
return;
else
Set_Convention (Body_Id, Convention (Spec_Id));
Set_Has_Completion (Spec_Id);
if Is_Protected_Type (Scope (Spec_Id)) then
Prot_Typ := Scope (Spec_Id);
end if;
-- If this is a body generated for a renaming, do not check for
-- full conformance. The check is redundant, because the spec of
-- the body is a copy of the spec in the renaming declaration,
-- and the test can lead to spurious errors on nested defaults.
if Present (Spec_Decl)
and then not Comes_From_Source (N)
and then
(Nkind (Original_Node (Spec_Decl)) =
N_Subprogram_Renaming_Declaration
or else (Present (Corresponding_Body (Spec_Decl))
and then
Nkind (Unit_Declaration_Node
(Corresponding_Body (Spec_Decl))) =
N_Subprogram_Renaming_Declaration))
then
Conformant := True;
-- Conversely, the spec may have been generated for specless body
-- with an inline pragma.
elsif Comes_From_Source (N)
and then not Comes_From_Source (Spec_Id)
and then Has_Pragma_Inline (Spec_Id)
then
Conformant := True;
else
Check_Conformance
(Body_Id, Spec_Id,
Fully_Conformant, True, Conformant, Body_Id);
end if;
-- If the body is not fully conformant, we have to decide if we
-- should analyze it or not. If it has a really messed up profile
-- then we probably should not analyze it, since we will get too
-- many bogus messages.
-- Our decision is to go ahead in the non-fully conformant case
-- only if it is at least mode conformant with the spec. Note
-- that the call to Check_Fully_Conformant has issued the proper
-- error messages to complain about the lack of conformance.
if not Conformant
and then not Mode_Conformant (Body_Id, Spec_Id)
then
return;
end if;
end if;
if Spec_Id /= Body_Id then
Reference_Body_Formals (Spec_Id, Body_Id);
end if;
if Nkind (N) /= N_Subprogram_Body_Stub then
Set_Corresponding_Spec (N, Spec_Id);
-- Ada 2005 (AI-345): If the operation is a primitive operation
-- of a concurrent type, the type of the first parameter has been
-- replaced with the corresponding record, which is the proper
-- run-time structure to use. However, within the body there may
-- be uses of the formals that depend on primitive operations
-- of the type (in particular calls in prefixed form) for which
-- we need the original concurrent type. The operation may have
-- several controlling formals, so the replacement must be done
-- for all of them.
if Comes_From_Source (Spec_Id)
and then Present (First_Entity (Spec_Id))
and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
and then
Present (Interfaces (Etype (First_Entity (Spec_Id))))
and then
Present
(Corresponding_Concurrent_Type
(Etype (First_Entity (Spec_Id))))
then
declare
Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
Form : Entity_Id;
begin
Form := First_Formal (Spec_Id);
while Present (Form) loop
if Etype (Form) = Typ then
Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
end if;
Next_Formal (Form);
end loop;
end;
end if;
-- Make the formals visible, and place subprogram on scope stack.
-- This is also the point at which we set Last_Real_Spec_Entity
-- to mark the entities which will not be moved to the body.
Install_Formals (Spec_Id);
Last_Real_Spec_Entity := Last_Entity (Spec_Id);
-- Within an instance, add local renaming declarations so that
-- gdb can retrieve the values of actuals more easily. This is
-- only relevant if generating code (and indeed we definitely
-- do not want these definitions -gnatc mode, because that would
-- confuse ASIS).
if Is_Generic_Instance (Spec_Id)
and then Is_Wrapper_Package (Current_Scope)
and then Expander_Active
then
Build_Subprogram_Instance_Renamings (N, Current_Scope);
end if;
Push_Scope (Spec_Id);
-- Make sure that the subprogram is immediately visible. For
-- child units that have no separate spec this is indispensable.
-- Otherwise it is safe albeit redundant.
Set_Is_Immediately_Visible (Spec_Id);
end if;
Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
Set_Contract (Body_Id, Empty);
Set_Ekind (Body_Id, E_Subprogram_Body);
Set_Scope (Body_Id, Scope (Spec_Id));
Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
-- Case of subprogram body with no previous spec
else
-- Check for style warning required
if Style_Check
-- Only apply check for source level subprograms for which checks
-- have not been suppressed.
and then Comes_From_Source (Body_Id)
and then not Suppress_Style_Checks (Body_Id)
-- No warnings within an instance
and then not In_Instance
-- No warnings for expression functions
and then Nkind (Original_Node (N)) /= N_Expression_Function
then
Style.Body_With_No_Spec (N);
end if;
New_Overloaded_Entity (Body_Id);
if Nkind (N) /= N_Subprogram_Body_Stub then
Set_Acts_As_Spec (N);
Generate_Definition (Body_Id);
Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
Generate_Reference
(Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
Install_Formals (Body_Id);
Push_Scope (Body_Id);
end if;
-- For stubs and bodies with no previous spec, generate references to
-- formals.
Generate_Reference_To_Formals (Body_Id);
end if;
-- If the return type is an anonymous access type whose designated type
-- is the limited view of a class-wide type and the non-limited view is
-- available, update the return type accordingly.
if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
declare
Etyp : Entity_Id;
Rtyp : Entity_Id;
begin
Rtyp := Etype (Current_Scope);
if Ekind (Rtyp) = E_Anonymous_Access_Type then
Etyp := Directly_Designated_Type (Rtyp);
if Is_Class_Wide_Type (Etyp) and then From_With_Type (Etyp) then
Set_Directly_Designated_Type
(Etype (Current_Scope), Available_View (Etyp));
end if;
end if;
end;
end if;
-- If this is the proper body of a stub, we must verify that the stub
-- conforms to the body, and to the previous spec if one was present.
-- We know already that the body conforms to that spec. This test is
-- only required for subprograms that come from source.
if Nkind (Parent (N)) = N_Subunit
and then Comes_From_Source (N)
and then not Error_Posted (Body_Id)
and then Nkind (Corresponding_Stub (Parent (N))) =
N_Subprogram_Body_Stub
then
declare
Old_Id : constant Entity_Id :=
Defining_Entity
(Specification (Corresponding_Stub (Parent (N))));
Conformant : Boolean := False;
begin
if No (Spec_Id) then
Check_Fully_Conformant (Body_Id, Old_Id);
else
Check_Conformance
(Body_Id, Old_Id, Fully_Conformant, False, Conformant);
if not Conformant then
-- The stub was taken to be a new declaration. Indicate that
-- it lacks a body.
Set_Has_Completion (Old_Id, False);
end if;
end if;
end;
end if;
Set_Has_Completion (Body_Id);
Check_Eliminated (Body_Id);
if Nkind (N) = N_Subprogram_Body_Stub then
return;
end if;
-- Handle frontend inlining. There is no need to prepare us for inlining
-- if we will not generate the code.
-- Old semantics
if not Debug_Flag_Dot_K then
if Present (Spec_Id)
and then Expander_Active
and then
(Has_Pragma_Inline_Always (Spec_Id)
or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
then
Build_Body_To_Inline (N, Spec_Id);
end if;
-- New semantics
elsif Expander_Active
and then Serious_Errors_Detected = 0
and then Present (Spec_Id)
and then Has_Pragma_Inline (Spec_Id)
then
Check_And_Build_Body_To_Inline (N, Spec_Id, Body_Id);
end if;
-- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
-- of the specification we have to install the private withed units.
-- This holds for child units as well.
if Is_Compilation_Unit (Body_Id)
or else Nkind (Parent (N)) = N_Compilation_Unit
then
Install_Private_With_Clauses (Body_Id);
end if;
Check_Anonymous_Return;
-- Set the Protected_Formal field of each extra formal of the protected
-- subprogram to reference the corresponding extra formal of the
-- subprogram that implements it. For regular formals this occurs when
-- the protected subprogram's declaration is expanded, but the extra
-- formals don't get created until the subprogram is frozen. We need to
-- do this before analyzing the protected subprogram's body so that any
-- references to the original subprogram's extra formals will be changed
-- refer to the implementing subprogram's formals (see Expand_Formal).
if Present (Spec_Id)
and then Is_Protected_Type (Scope (Spec_Id))
and then Present (Protected_Body_Subprogram (Spec_Id))
then
declare
Impl_Subp : constant Entity_Id :=
Protected_Body_Subprogram (Spec_Id);
Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
begin
while Present (Prot_Ext_Formal) loop
pragma Assert (Present (Impl_Ext_Formal));
Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
Next_Formal_With_Extras (Prot_Ext_Formal);
Next_Formal_With_Extras (Impl_Ext_Formal);
end loop;
end;
end if;
-- Now we can go on to analyze the body
HSS := Handled_Statement_Sequence (N);
Set_Actual_Subtypes (N, Current_Scope);
-- Deal with preconditions and postconditions. In formal verification
-- mode, we keep pre- and postconditions attached to entities rather
-- than inserted in the code, in order to facilitate a distinct
-- treatment for them.
if not SPARK_Mode then
Process_PPCs (N, Spec_Id, Body_Id);
end if;
-- Add a declaration for the Protection object, renaming declarations
-- for discriminals and privals and finally a declaration for the entry
-- family index (if applicable). This form of early expansion is done
-- when the Expander is active because Install_Private_Data_Declarations
-- references entities which were created during regular expansion. The
-- body may be the rewritting of an expression function, and we need to
-- verify that the original node is in the source.
if Full_Expander_Active
and then Comes_From_Source (Original_Node (N))
and then Present (Prot_Typ)
and then Present (Spec_Id)
and then not Is_Eliminated (Spec_Id)
then
Install_Private_Data_Declarations
(Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
end if;
-- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
-- may now appear in parameter and result profiles. Since the analysis
-- of a subprogram body may use the parameter and result profile of the
-- spec, swap any limited views with their non-limited counterpart.
if Ada_Version >= Ada_2012 then
Exchange_Limited_Views (Spec_Id);
end if;
-- Analyze the declarations (this call will analyze the precondition
-- Check pragmas we prepended to the list, as well as the declaration
-- of the _Postconditions procedure).
Analyze_Declarations (Declarations (N));
-- Check completion, and analyze the statements
Check_Completion;
Inspect_Deferred_Constant_Completion (Declarations (N));
Analyze (HSS);
-- Deal with end of scope processing for the body
Process_End_Label (HSS, 't', Current_Scope);
End_Scope;
Check_Subprogram_Order (N);
Set_Analyzed (Body_Id);
-- If we have a separate spec, then the analysis of the declarations
-- caused the entities in the body to be chained to the spec id, but
-- we want them chained to the body id. Only the formal parameters
-- end up chained to the spec id in this case.
if Present (Spec_Id) then
-- We must conform to the categorization of our spec
Validate_Categorization_Dependency (N, Spec_Id);
-- And if this is a child unit, the parent units must conform
if Is_Child_Unit (Spec_Id) then
Validate_Categorization_Dependency
(Unit_Declaration_Node (Spec_Id), Spec_Id);
end if;
-- Here is where we move entities from the spec to the body
-- Case where there are entities that stay with the spec
if Present (Last_Real_Spec_Entity) then
-- No body entities (happens when the only real spec entities come
-- from precondition and postcondition pragmas).
if No (Last_Entity (Body_Id)) then
Set_First_Entity
(Body_Id, Next_Entity (Last_Real_Spec_Entity));
-- Body entities present (formals), so chain stuff past them
else
Set_Next_Entity
(Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
end if;
Set_Next_Entity (Last_Real_Spec_Entity, Empty);
Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
-- Case where there are no spec entities, in this case there can be
-- no body entities either, so just move everything.
else
pragma Assert (No (Last_Entity (Body_Id)));
Set_First_Entity (Body_Id, First_Entity (Spec_Id));
Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
Set_First_Entity (Spec_Id, Empty);
Set_Last_Entity (Spec_Id, Empty);
end if;
end if;
Check_Missing_Return;
-- Now we are going to check for variables that are never modified in
-- the body of the procedure. But first we deal with a special case
-- where we want to modify this check. If the body of the subprogram
-- starts with a raise statement or its equivalent, or if the body
-- consists entirely of a null statement, then it is pretty obvious
-- that it is OK to not reference the parameters. For example, this
-- might be the following common idiom for a stubbed function:
-- statement of the procedure raises an exception. In particular this
-- deals with the common idiom of a stubbed function, which might
-- appear as something like:
-- function F (A : Integer) return Some_Type;
-- X : Some_Type;
-- begin
-- raise Program_Error;
-- return X;
-- end F;
-- Here the purpose of X is simply to satisfy the annoying requirement
-- in Ada that there be at least one return, and we certainly do not
-- want to go posting warnings on X that it is not initialized! On
-- the other hand, if X is entirely unreferenced that should still
-- get a warning.
-- What we do is to detect these cases, and if we find them, flag the
-- subprogram as being Is_Trivial_Subprogram and then use that flag to
-- suppress unwanted warnings. For the case of the function stub above
-- we have a special test to set X as apparently assigned to suppress
-- the warning.
declare
Stm : Node_Id;
begin
-- Skip initial labels (for one thing this occurs when we are in
-- front end ZCX mode, but in any case it is irrelevant), and also
-- initial Push_xxx_Error_Label nodes, which are also irrelevant.
Stm := First (Statements (HSS));
while Nkind (Stm) = N_Label
or else Nkind (Stm) in N_Push_xxx_Label
loop
Next (Stm);
end loop;
-- Do the test on the original statement before expansion
declare
Ostm : constant Node_Id := Original_Node (Stm);
begin
-- If explicit raise statement, turn on flag
if Nkind (Ostm) = N_Raise_Statement then
Set_Trivial_Subprogram (Stm);
-- If null statement, and no following statements, turn on flag
elsif Nkind (Stm) = N_Null_Statement
and then Comes_From_Source (Stm)
and then No (Next (Stm))
then
Set_Trivial_Subprogram (Stm);
-- Check for explicit call cases which likely raise an exception
elsif Nkind (Ostm) = N_Procedure_Call_Statement then
if Is_Entity_Name (Name (Ostm)) then
declare
Ent : constant Entity_Id := Entity (Name (Ostm));
begin
-- If the procedure is marked No_Return, then likely it
-- raises an exception, but in any case it is not coming
-- back here, so turn on the flag.
if Present (Ent)
and then Ekind (Ent) = E_Procedure
and then No_Return (Ent)
then
Set_Trivial_Subprogram (Stm);
end if;
end;
end if;
end if;
end;
end;
-- Check for variables that are never modified
declare
E1, E2 : Entity_Id;
begin
-- If there is a separate spec, then transfer Never_Set_In_Source
-- flags from out parameters to the corresponding entities in the
-- body. The reason we do that is we want to post error flags on
-- the body entities, not the spec entities.
if Present (Spec_Id) then
E1 := First_Entity (Spec_Id);
while Present (E1) loop
if Ekind (E1) = E_Out_Parameter then
E2 := First_Entity (Body_Id);
while Present (E2) loop
exit when Chars (E1) = Chars (E2);
Next_Entity (E2);
end loop;
if Present (E2) then
Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
end if;
end if;
Next_Entity (E1);
end loop;
end if;
-- Check references in body
Check_References (Body_Id);
end;
end Analyze_Subprogram_Body_Helper;
---------------------------------
-- Analyze_Subprogram_Contract --
---------------------------------
procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
Result_Seen : Boolean := False;
-- A flag which keeps track of whether at least one postcondition or
-- contract-case mentions attribute 'Result (set True if so).
procedure Check_Result_And_Post_State
(Prag : Node_Id;
Error_Nod : in out Node_Id);
-- Determine whether pragma Prag mentions attribute 'Result and whether
-- the pragma contains an expression that evaluates differently in pre-
-- and post-state. Prag is a postcondition or a contract-cases pragma.
-- Error_Nod denotes the proper error node.
---------------------------------
-- Check_Result_And_Post_State --
---------------------------------
procedure Check_Result_And_Post_State
(Prag : Node_Id;
Error_Nod : in out Node_Id)
is
procedure Check_Expression (Expr : Node_Id);
-- Perform the 'Result and post-state checks on a given expression
function Is_Function_Result (N : Node_Id) return Traverse_Result;
-- Attempt to find attribute 'Result in a subtree denoted by N
function Is_Trivial_Boolean (N : Node_Id) return Boolean;
-- Determine whether source node N denotes "True" or "False"
function Mentions_Post_State (N : Node_Id) return Boolean;
-- Determine whether a subtree denoted by N mentions any construct
-- that denotes a post-state.
procedure Check_Function_Result is
new Traverse_Proc (Is_Function_Result);
----------------------
-- Check_Expression --
----------------------
procedure Check_Expression (Expr : Node_Id) is
begin
if not Is_Trivial_Boolean (Expr) then
Check_Function_Result (Expr);
if not Mentions_Post_State (Expr) then
if Pragma_Name (Prag) = Name_Contract_Cases then
Error_Msg_N
("contract case refers only to pre-state?T?", Expr);
else
Error_Msg_N
("postcondition refers only to pre-state?T?", Prag);
end if;
end if;
end if;
end Check_Expression;
------------------------
-- Is_Function_Result --
------------------------
function Is_Function_Result (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Result
then
Result_Seen := True;
return Abandon;
-- Continue the traversal
else
return OK;
end if;
end Is_Function_Result;
------------------------
-- Is_Trivial_Boolean --
------------------------
function Is_Trivial_Boolean (N : Node_Id) return Boolean is
begin
return
Comes_From_Source (N)
and then Is_Entity_Name (N)
and then (Entity (N) = Standard_True
or else Entity (N) = Standard_False);
end Is_Trivial_Boolean;
-------------------------
-- Mentions_Post_State --
-------------------------
function Mentions_Post_State (N : Node_Id) return Boolean is
Post_State_Seen : Boolean := False;
function Is_Post_State (N : Node_Id) return Traverse_Result;
-- Attempt to find a construct that denotes a post-state. If this
-- is the case, set flag Post_State_Seen.
-------------------
-- Is_Post_State --
-------------------
function Is_Post_State (N : Node_Id) return Traverse_Result is
Ent : Entity_Id;
begin
if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
Post_State_Seen := True;
return Abandon;
elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
Ent := Entity (N);
if No (Ent) or else Ekind (Ent) in Assignable_Kind then
Post_State_Seen := True;
return Abandon;
end if;
elsif Nkind (N) = N_Attribute_Reference then
if Attribute_Name (N) = Name_Old then
return Skip;
elsif Attribute_Name (N) = Name_Result then
Post_State_Seen := True;
return Abandon;
end if;
end if;
return OK;
end Is_Post_State;
procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
-- Start of processing for Mentions_Post_State
begin
Find_Post_State (N);
return Post_State_Seen;
end Mentions_Post_State;
-- Local variables
Expr : constant Node_Id :=
Expression (First (Pragma_Argument_Associations (Prag)));
Nam : constant Name_Id := Pragma_Name (Prag);
CCase : Node_Id;
-- Start of processing for Check_Result_And_Post_State
begin
if No (Error_Nod) then
Error_Nod := Prag;
end if;
-- Examine all consequences
if Nam = Name_Contract_Cases then
CCase := First (Component_Associations (Expr));
while Present (CCase) loop
Check_Expression (Expression (CCase));
Next (CCase);
end loop;
-- Examine the expression of a postcondition
else
pragma Assert (Nam = Name_Postcondition);
Check_Expression (Expr);
end if;
end Check_Result_And_Post_State;
-- Local variables
Items : constant Node_Id := Contract (Subp);
Error_CCase : Node_Id;
Error_Post : Node_Id;
Prag : Node_Id;
-- Start of processing for Analyze_Subprogram_Contract
begin
Error_CCase := Empty;
Error_Post := Empty;
if Present (Items) then
-- Analyze pre- and postconditions
Prag := Pre_Post_Conditions (Items);
while Present (Prag) loop
Analyze_PPC_In_Decl_Part (Prag, Subp);
-- Verify whether a postcondition mentions attribute 'Result and
-- its expression introduces a post-state.
if Warn_On_Suspicious_Contract
and then Pragma_Name (Prag) = Name_Postcondition
then
Check_Result_And_Post_State (Prag, Error_Post);
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Analyze contract-cases and test-cases
Prag := Contract_Test_Cases (Items);
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Contract_Cases then
Analyze_Contract_Cases_In_Decl_Part (Prag);
-- Verify whether contract-cases mention attribute 'Result and
-- its expression introduces a post-state. Perform the check
-- only when the pragma is legal.
if Warn_On_Suspicious_Contract
and then not Error_Posted (Prag)
then
Check_Result_And_Post_State (Prag, Error_CCase);
end if;
else
pragma Assert (Pragma_Name (Prag) = Name_Test_Case);
Analyze_Test_Case_In_Decl_Part (Prag, Subp);
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Analyze classification pragmas
Prag := Classifications (Contract (Subp));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Depends then
Analyze_Depends_In_Decl_Part (Prag);
else
pragma Assert (Pragma_Name (Prag) = Name_Global);
Analyze_Global_In_Decl_Part (Prag);
end if;
Prag := Next_Pragma (Prag);
end loop;
end if;
-- Emit an error when none of the postconditions or contract-cases
-- mention attribute 'Result in the context of a function.
if Warn_On_Suspicious_Contract
and then Ekind_In (Subp, E_Function, E_Generic_Function)
and then not Result_Seen
then
if Present (Error_Post) and then Present (Error_CCase) then
Error_Msg_N
("neither function postcondition nor contract cases mention "
& "result?T?", Error_Post);
elsif Present (Error_Post) then
Error_Msg_N
("function postcondition does not mention result?T?",
Error_Post);
elsif Present (Error_CCase) then
Error_Msg_N
("contract cases do not mention result?T?", Error_CCase);
end if;
end if;
end Analyze_Subprogram_Contract;
------------------------------------
-- Analyze_Subprogram_Declaration --
------------------------------------
procedure Analyze_Subprogram_Declaration (N : Node_Id) is
Scop : constant Entity_Id := Current_Scope;
Designator : Entity_Id;
Is_Completion : Boolean;
-- Indicates whether a null procedure declaration is a completion
begin
-- Null procedures are not allowed in SPARK
if Nkind (Specification (N)) = N_Procedure_Specification
and then Null_Present (Specification (N))
then
Check_SPARK_Restriction ("null procedure is not allowed", N);
if Is_Protected_Type (Current_Scope) then
Error_Msg_N ("protected operation cannot be a null procedure", N);
end if;
Analyze_Null_Procedure (N, Is_Completion);
if Is_Completion then
-- The null procedure acts as a body, nothing further is needed.
return;
end if;
end if;
Designator := Analyze_Subprogram_Specification (Specification (N));
-- A reference may already have been generated for the unit name, in
-- which case the following call is redundant. However it is needed for
-- declarations that are the rewriting of an expression function.
Generate_Definition (Designator);
if Debug_Flag_C then
Write_Str ("==> subprogram spec ");
Write_Name (Chars (Designator));
Write_Str (" from ");
Write_Location (Sloc (N));
Write_Eol;
Indent;
end if;
Validate_RCI_Subprogram_Declaration (N);
New_Overloaded_Entity (Designator);
Check_Delayed_Subprogram (Designator);
-- If the type of the first formal of the current subprogram is a
-- non-generic tagged private type, mark the subprogram as being a
-- private primitive. Ditto if this is a function with controlling
-- result, and the return type is currently private. In both cases,
-- the type of the controlling argument or result must be in the
-- current scope for the operation to be primitive.
if Has_Controlling_Result (Designator)
and then Is_Private_Type (Etype (Designator))
and then Scope (Etype (Designator)) = Current_Scope
and then not Is_Generic_Actual_Type (Etype (Designator))
then
Set_Is_Private_Primitive (Designator);
elsif Present (First_Formal (Designator)) then
declare
Formal_Typ : constant Entity_Id :=
Etype (First_Formal (Designator));
begin
Set_Is_Private_Primitive (Designator,
Is_Tagged_Type (Formal_Typ)
and then Scope (Formal_Typ) = Current_Scope
and then Is_Private_Type (Formal_Typ)
and then not Is_Generic_Actual_Type (Formal_Typ));
end;
end if;
-- Ada 2005 (AI-251): Abstract interface primitives must be abstract
-- or null.
if Ada_Version >= Ada_2005
and then Comes_From_Source (N)
and then Is_Dispatching_Operation (Designator)
then
declare
E : Entity_Id;
Etyp : Entity_Id;
begin
if Has_Controlling_Result (Designator) then
Etyp := Etype (Designator);
else
E := First_Entity (Designator);
while Present (E)
and then Is_Formal (E)
and then not Is_Controlling_Formal (E)
loop
Next_Entity (E);
end loop;
Etyp := Etype (E);
end if;
if Is_Access_Type (Etyp) then
Etyp := Directly_Designated_Type (Etyp);
end if;
if Is_Interface (Etyp)
and then not Is_Abstract_Subprogram (Designator)
and then not (Ekind (Designator) = E_Procedure
and then Null_Present (Specification (N)))
then
Error_Msg_Name_1 := Chars (Defining_Entity (N));
-- Specialize error message based on procedures vs. functions,
-- since functions can't be null subprograms.
if Ekind (Designator) = E_Procedure then
Error_Msg_N
("interface procedure % must be abstract or null", N);
else
Error_Msg_N ("interface function % must be abstract", N);
end if;
end if;
end;
end if;
-- What is the following code for, it used to be
-- ??? Set_Suppress_Elaboration_Checks
-- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
-- The following seems equivalent, but a bit dubious
if Elaboration_Checks_Suppressed (Designator) then
Set_Kill_Elaboration_Checks (Designator);
end if;
if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
Set_Categorization_From_Scope (Designator, Scop);
else
-- For a compilation unit, check for library-unit pragmas
Push_Scope (Designator);
Set_Categorization_From_Pragmas (N);
Validate_Categorization_Dependency (N, Designator);
Pop_Scope;
end if;
-- For a compilation unit, set body required. This flag will only be
-- reset if a valid Import or Interface pragma is processed later on.
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Body_Required (Parent (N), True);
if Ada_Version >= Ada_2005
and then Nkind (Specification (N)) = N_Procedure_Specification
and then Null_Present (Specification (N))
then
Error_Msg_N
("null procedure cannot be declared at library level", N);
end if;
end if;
Generate_Reference_To_Formals (Designator);
Check_Eliminated (Designator);
if Debug_Flag_C then
Outdent;
Write_Str ("<== subprogram spec ");
Write_Name (Chars (Designator));
Write_Str (" from ");
Write_Location (Sloc (N));
Write_Eol;
end if;
if Is_Protected_Type (Current_Scope) then
-- Indicate that this is a protected operation, because it may be
-- used in subsequent declarations within the protected type.
Set_Convention (Designator, Convention_Protected);
end if;
List_Inherited_Pre_Post_Aspects (Designator);
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Designator);
end if;
end Analyze_Subprogram_Declaration;
--------------------------------------
-- Analyze_Subprogram_Specification --
--------------------------------------
-- Reminder: N here really is a subprogram specification (not a subprogram
-- declaration). This procedure is called to analyze the specification in
-- both subprogram bodies and subprogram declarations (specs).
function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
Designator : constant Entity_Id := Defining_Entity (N);
Formals : constant List_Id := Parameter_Specifications (N);
-- Start of processing for Analyze_Subprogram_Specification
begin
-- User-defined operator is not allowed in SPARK, except as a renaming
if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
then
Check_SPARK_Restriction ("user-defined operator is not allowed", N);
end if;
-- Proceed with analysis. Do not emit a cross-reference entry if the
-- specification comes from an expression function, because it may be
-- the completion of a previous declaration. It is is not, the cross-
-- reference entry will be emitted for the new subprogram declaration.
if Nkind (Parent (N)) /= N_Expression_Function then
Generate_Definition (Designator);
end if;
Set_Contract (Designator, Make_Contract (Sloc (Designator)));
if Nkind (N) = N_Function_Specification then
Set_Ekind (Designator, E_Function);
Set_Mechanism (Designator, Default_Mechanism);
else
Set_Ekind (Designator, E_Procedure);
Set_Etype (Designator, Standard_Void_Type);
end if;
-- Introduce new scope for analysis of the formals and the return type
Set_Scope (Designator, Current_Scope);
if Present (Formals) then
Push_Scope (Designator);
Process_Formals (Formals, N);
-- Check dimensions in N for formals with default expression
Analyze_Dimension_Formals (N, Formals);
-- Ada 2005 (AI-345): If this is an overriding operation of an
-- inherited interface operation, and the controlling type is
-- a synchronized type, replace the type with its corresponding
-- record, to match the proper signature of an overriding operation.
-- Same processing for an access parameter whose designated type is
-- derived from a synchronized interface.
if Ada_Version >= Ada_2005 then
declare
Formal : Entity_Id;
Formal_Typ : Entity_Id;
Rec_Typ : Entity_Id;
Desig_Typ : Entity_Id;
begin
Formal := First_Formal (Designator);
while Present (Formal) loop
Formal_Typ := Etype (Formal);
if Is_Concurrent_Type (Formal_Typ)
and then Present (Corresponding_Record_Type (Formal_Typ))
then
Rec_Typ := Corresponding_Record_Type (Formal_Typ);
if Present (Interfaces (Rec_Typ)) then
Set_Etype (Formal, Rec_Typ);
end if;
elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
Desig_Typ := Designated_Type (Formal_Typ);
if Is_Concurrent_Type (Desig_Typ)
and then Present (Corresponding_Record_Type (Desig_Typ))
then
Rec_Typ := Corresponding_Record_Type (Desig_Typ);
if Present (Interfaces (Rec_Typ)) then
Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
end if;
end if;
end if;
Next_Formal (Formal);
end loop;
end;
end if;
End_Scope;
-- The subprogram scope is pushed and popped around the processing of
-- the return type for consistency with call above to Process_Formals
-- (which itself can call Analyze_Return_Type), and to ensure that any
-- itype created for the return type will be associated with the proper
-- scope.
elsif Nkind (N) = N_Function_Specification then
Push_Scope (Designator);
Analyze_Return_Type (N);
End_Scope;
end if;
-- Function case
if Nkind (N) = N_Function_Specification then
-- Deal with operator symbol case
if Nkind (Designator) = N_Defining_Operator_Symbol then
Valid_Operator_Definition (Designator);
end if;
May_Need_Actuals (Designator);
-- Ada 2005 (AI-251): If the return type is abstract, verify that
-- the subprogram is abstract also. This does not apply to renaming
-- declarations, where abstractness is inherited, and to subprogram
-- bodies generated for stream operations, which become renamings as
-- bodies.
-- In case of primitives associated with abstract interface types
-- the check is applied later (see Analyze_Subprogram_Declaration).
if not Nkind_In (Original_Node (Parent (N)),
N_Subprogram_Renaming_Declaration,
N_Abstract_Subprogram_Declaration,
N_Formal_Abstract_Subprogram_Declaration)
then
if Is_Abstract_Type (Etype (Designator))
and then not Is_Interface (Etype (Designator))
then
Error_Msg_N
("function that returns abstract type must be abstract", N);
-- Ada 2012 (AI-0073): Extend this test to subprograms with an
-- access result whose designated type is abstract.
elsif Nkind (Result_Definition (N)) = N_Access_Definition
and then
not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
and then Ada_Version >= Ada_2012
then
Error_Msg_N ("function whose access result designates "
& "abstract type must be abstract", N);
end if;
end if;
end if;
return Designator;
end Analyze_Subprogram_Specification;
--------------------------
-- Build_Body_To_Inline --
--------------------------
procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
Original_Body : Node_Id;
Body_To_Analyze : Node_Id;
Max_Size : constant := 10;
Stat_Count : Integer := 0;
function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
-- Check for declarations that make inlining not worthwhile
function Has_Excluded_Statement (Stats : List_Id) return Boolean;
-- Check for statements that make inlining not worthwhile: any tasking
-- statement, nested at any level. Keep track of total number of
-- elementary statements, as a measure of acceptable size.
function Has_Pending_Instantiation return Boolean;
-- If some enclosing body contains instantiations that appear before the
-- corresponding generic body, the enclosing body has a freeze node so
-- that it can be elaborated after the generic itself. This might
-- conflict with subsequent inlinings, so that it is unsafe to try to
-- inline in such a case.
function Has_Single_Return return Boolean;
-- In general we cannot inline functions that return unconstrained type.
-- However, we can handle such functions if all return statements return
-- a local variable that is the only declaration in the body of the
-- function. In that case the call can be replaced by that local
-- variable as is done for other inlined calls.
procedure Remove_Pragmas;
-- A pragma Unreferenced or pragma Unmodified that mentions a formal
-- parameter has no meaning when the body is inlined and the formals
-- are rewritten. Remove it from body to inline. The analysis of the
-- non-inlined body will handle the pragma properly.
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
-- If the body of the subprogram includes a call that returns an
-- unconstrained type, the secondary stack is involved, and it
-- is not worth inlining.
------------------------------
-- Has_Excluded_Declaration --
------------------------------
function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
D : Node_Id;
function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
-- Nested subprograms make a given body ineligible for inlining, but
-- we make an exception for instantiations of unchecked conversion.
-- The body has not been analyzed yet, so check the name, and verify
-- that the visible entity with that name is the predefined unit.
-----------------------------
-- Is_Unchecked_Conversion --
-----------------------------
function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
Id : constant Node_Id := Name (D);
Conv : Entity_Id;
begin
if Nkind (Id) = N_Identifier
and then Chars (Id) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Id);
elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Selector_Name (Id));
else
return False;
end if;
return Present (Conv)
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Conv)))
and then Is_Intrinsic_Subprogram (Conv);
end Is_Unchecked_Conversion;
-- Start of processing for Has_Excluded_Declaration
begin
D := First (Decls);
while Present (D) loop
if (Nkind (D) = N_Function_Instantiation
and then not Is_Unchecked_Conversion (D))
or else Nkind_In (D, N_Protected_Type_Declaration,
N_Package_Declaration,
N_Package_Instantiation,
N_Subprogram_Body,
N_Procedure_Instantiation,
N_Task_Type_Declaration)
then
Cannot_Inline
("cannot inline & (non-allowed declaration)?", D, Subp);
return True;
end if;
Next (D);
end loop;
return False;
end Has_Excluded_Declaration;
----------------------------
-- Has_Excluded_Statement --
----------------------------
function Has_Excluded_Statement (Stats : List_Id) return Boolean is
S : Node_Id;
E : Node_Id;
begin
S := First (Stats);
while Present (S) loop
Stat_Count := Stat_Count + 1;
if Nkind_In (S, N_Abort_Statement,
N_Asynchronous_Select,
N_Conditional_Entry_Call,
N_Delay_Relative_Statement,
N_Delay_Until_Statement,
N_Selective_Accept,
N_Timed_Entry_Call)
then
Cannot_Inline
("cannot inline & (non-allowed statement)?", S, Subp);
return True;
elsif Nkind (S) = N_Block_Statement then
if Present (Declarations (S))
and then Has_Excluded_Declaration (Declarations (S))
then
return True;
elsif Present (Handled_Statement_Sequence (S))
and then
(Present
(Exception_Handlers (Handled_Statement_Sequence (S)))
or else
Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (S))))
then
return True;
end if;
elsif Nkind (S) = N_Case_Statement then
E := First (Alternatives (S));
while Present (E) loop
if Has_Excluded_Statement (Statements (E)) then
return True;
end if;
Next (E);
end loop;
elsif Nkind (S) = N_If_Statement then
if Has_Excluded_Statement (Then_Statements (S)) then
return True;
end if;
if Present (Elsif_Parts (S)) then
E := First (Elsif_Parts (S));
while Present (E) loop
if Has_Excluded_Statement (Then_Statements (E)) then
return True;
end if;
Next (E);
end loop;
end if;
if Present (Else_Statements (S))
and then Has_Excluded_Statement (Else_Statements (S))
then
return True;
end if;
elsif Nkind (S) = N_Loop_Statement
and then Has_Excluded_Statement (Statements (S))
then
return True;
elsif Nkind (S) = N_Extended_Return_Statement then
if Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (S)))
or else Present
(Exception_Handlers (Handled_Statement_Sequence (S)))
then
return True;
end if;
end if;
Next (S);
end loop;
return False;
end Has_Excluded_Statement;
-------------------------------
-- Has_Pending_Instantiation --
-------------------------------
function Has_Pending_Instantiation return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if Is_Compilation_Unit (S)
or else Is_Child_Unit (S)
then
return False;
elsif Ekind (S) = E_Package
and then Has_Forward_Instantiation (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end Has_Pending_Instantiation;
------------------------
-- Has_Single_Return --
------------------------
function Has_Single_Return return Boolean is
Return_Statement : Node_Id := Empty;
function Check_Return (N : Node_Id) return Traverse_Result;
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Simple_Return_Statement then
if Present (Expression (N))
and then Is_Entity_Name (Expression (N))
then
if No (Return_Statement) then
Return_Statement := N;
return OK;
elsif Chars (Expression (N)) =
Chars (Expression (Return_Statement))
then
return OK;
else
return Abandon;
end if;
-- A return statement within an extended return is a noop
-- after inlining.
elsif No (Expression (N))
and then Nkind (Parent (Parent (N))) =
N_Extended_Return_Statement
then
return OK;
else
-- Expression has wrong form
return Abandon;
end if;
-- We can only inline a build-in-place function if
-- it has a single extended return.
elsif Nkind (N) = N_Extended_Return_Statement then
if No (Return_Statement) then
Return_Statement := N;
return OK;
else
return Abandon;
end if;
else
return OK;
end if;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Has_Single_Return
begin
if Check_All_Returns (N) /= OK then
return False;
elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
return True;
else
return Present (Declarations (N))
and then Present (First (Declarations (N)))
and then Chars (Expression (Return_Statement)) =
Chars (Defining_Identifier (First (Declarations (N))));
end if;
end Has_Single_Return;
--------------------
-- Remove_Pragmas --
--------------------
procedure Remove_Pragmas is
Decl : Node_Id;
Nxt : Node_Id;
begin
Decl := First (Declarations (Body_To_Analyze));
while Present (Decl) loop
Nxt := Next (Decl);
if Nkind (Decl) = N_Pragma
and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
Name_Unmodified)
then
Remove (Decl);
end if;
Decl := Nxt;
end loop;
end Remove_Pragmas;
--------------------------
-- Uses_Secondary_Stack --
--------------------------
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
function Check_Call (N : Node_Id) return Traverse_Result;
-- Look for function calls that return an unconstrained type
----------------
-- Check_Call --
----------------
function Check_Call (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Function_Call
and then Is_Entity_Name (Name (N))
and then Is_Composite_Type (Etype (Entity (Name (N))))
and then not Is_Constrained (Etype (Entity (Name (N))))
then
Cannot_Inline
("cannot inline & (call returns unconstrained type)?",
N, Subp);
return Abandon;
else
return OK;
end if;
end Check_Call;
function Check_Calls is new Traverse_Func (Check_Call);
begin
return Check_Calls (Bod) = Abandon;
end Uses_Secondary_Stack;
-- Start of processing for Build_Body_To_Inline
begin
-- Return immediately if done already
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Body_To_Inline (Decl))
then
return;
-- Functions that return unconstrained composite types require
-- secondary stack handling, and cannot currently be inlined, unless
-- all return statements return a local variable that is the first
-- local declaration in the body.
elsif Ekind (Subp) = E_Function
and then not Is_Scalar_Type (Etype (Subp))
and then not Is_Access_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp))
then
if not Has_Single_Return then
Cannot_Inline
("cannot inline & (unconstrained return type)?", N, Subp);
return;
end if;
-- Ditto for functions that return controlled types, where controlled
-- actions interfere in complex ways with inlining.
elsif Ekind (Subp) = E_Function
and then Needs_Finalization (Etype (Subp))
then
Cannot_Inline
("cannot inline & (controlled return type)?", N, Subp);
return;
end if;
if Present (Declarations (N))
and then Has_Excluded_Declaration (Declarations (N))
then
return;
end if;
if Present (Handled_Statement_Sequence (N)) then
if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers (Handled_Statement_Sequence (N))),
Subp);
return;
elsif
Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (N)))
then
return;
end if;
end if;
-- We do not inline a subprogram that is too large, unless it is
-- marked Inline_Always. This pragma does not suppress the other
-- checks on inlining (forbidden declarations, handlers, etc).
if Stat_Count > Max_Size
and then not Has_Pragma_Inline_Always (Subp)
then
Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
return;
end if;
if Has_Pending_Instantiation then
Cannot_Inline
("cannot inline& (forward instance within enclosing body)?",
N, Subp);
return;
end if;
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved.
-- Note that we do not do this at the library level, because it is not
-- needed, and furthermore this causes trouble if front end inlining
-- is activated (-gnatN).
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
Original_Body := Copy_Generic_Node (N, Empty, True);
else
Original_Body := Copy_Separate_Tree (N);
end if;
-- We need to capture references to the formals in order to substitute
-- the actuals at the point of inlining, i.e. instantiation. To treat
-- the formals as globals to the body to inline, we nest it within
-- a dummy parameterless subprogram, declared within the real one.
-- To avoid generating an internal name (which is never public, and
-- which affects serial numbers of other generated names), we use
-- an internal symbol that cannot conflict with user declarations.
Set_Parameter_Specifications (Specification (Original_Body), No_List);
Set_Defining_Unit_Name
(Specification (Original_Body),
Make_Defining_Identifier (Sloc (N), Name_uParent));
Set_Corresponding_Spec (Original_Body, Empty);
Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
-- Set return type of function, which is also global and does not need
-- to be resolved.
if Ekind (Subp) = E_Function then
Set_Result_Definition (Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Subp), Sloc (N)));
end if;
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append (Body_To_Analyze, Declarations (N));
end if;
Expander_Mode_Save_And_Set (False);
Remove_Pragmas;
Analyze (Body_To_Analyze);
Push_Scope (Defining_Entity (Body_To_Analyze));
Save_Global_References (Original_Body);
End_Scope;
Remove (Body_To_Analyze);
Expander_Mode_Restore;
-- Restore environment if previously saved
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
Restore_Env;
end if;
-- If secondary stk used there is no point in inlining. We have
-- already issued the warning in this case, so nothing to do.
if Uses_Secondary_Stack (Body_To_Analyze) then
return;
end if;
Set_Body_To_Inline (Decl, Original_Body);
Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
Set_Is_Inlined (Subp);
end Build_Body_To_Inline;
-------------------
-- Cannot_Inline --
-------------------
procedure Cannot_Inline
(Msg : String;
N : Node_Id;
Subp : Entity_Id;
Is_Serious : Boolean := False)
is
begin
pragma Assert (Msg (Msg'Last) = '?');
-- Old semantics
if not Debug_Flag_Dot_K then
-- Do not emit warning if this is a predefined unit which is not
-- the main unit. With validity checks enabled, some predefined
-- subprograms may contain nested subprograms and become ineligible
-- for inlining.
if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
and then not In_Extended_Main_Source_Unit (Subp)
then
null;
elsif Has_Pragma_Inline_Always (Subp) then
-- Remove last character (question mark) to make this into an
-- error, because the Inline_Always pragma cannot be obeyed.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
elsif Ineffective_Inline_Warnings then
Error_Msg_NE (Msg & "p?", N, Subp);
end if;
return;
-- New semantics
elsif Is_Serious then
-- Remove last character (question mark) to make this into an error.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
elsif Optimization_Level = 0 then
-- Do not emit warning if this is a predefined unit which is not
-- the main unit. This behavior is currently provided for backward
-- compatibility but it will be removed when we enforce the
-- strictness of the new rules.
if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
and then not In_Extended_Main_Source_Unit (Subp)
then
null;
elsif Has_Pragma_Inline_Always (Subp) then
-- Emit a warning if this is a call to a runtime subprogram
-- which is located inside a generic. Previously this call
-- was silently skipped!
if Is_Generic_Instance (Subp) then
declare
Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
begin
if Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Gen_P)))
then
Set_Is_Inlined (Subp, False);
Error_Msg_NE (Msg & "p?", N, Subp);
return;
end if;
end;
end if;
-- Remove last character (question mark) to make this into an
-- error, because the Inline_Always pragma cannot be obeyed.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
else pragma Assert (Front_End_Inlining);
Set_Is_Inlined (Subp, False);
-- When inlining cannot take place we must issue an error.
-- For backward compatibility we still report a warning.
if Ineffective_Inline_Warnings then
Error_Msg_NE (Msg & "p?", N, Subp);
end if;
end if;
-- Compiling with optimizations enabled it is too early to report
-- problems since the backend may still perform inlining. In order
-- to report unhandled inlinings the program must be compiled with
-- -Winline and the error is reported by the backend.
else
null;
end if;
end Cannot_Inline;
------------------------------------
-- Check_And_Build_Body_To_Inline --
------------------------------------
procedure Check_And_Build_Body_To_Inline
(N : Node_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id)
is
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
-- Use generic machinery to build an unexpanded body for the subprogram.
-- This body is subsequently used for inline expansions at call sites.
function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
-- Return true if we generate code for the function body N, the function
-- body N has no local declarations and its unique statement is a single
-- extended return statement with a handled statements sequence.
function Check_Body_To_Inline
(N : Node_Id;
Subp : Entity_Id) return Boolean;
-- N is the N_Subprogram_Body of Subp. Return true if Subp can be
-- inlined by the frontend. These are the rules:
-- * At -O0 use fe inlining when inline_always is specified except if
-- the function returns a controlled type.
-- * At other optimization levels use the fe inlining for both inline
-- and inline_always in the following cases:
-- - function returning a known at compile time constant
-- - function returning a call to an intrinsic function
-- - function returning an unconstrained type (see Can_Split
-- Unconstrained_Function).
-- - function returning a call to a frontend-inlined function
-- Use the back-end mechanism otherwise
--
-- In addition, in the following cases the function cannot be inlined by
-- the frontend:
-- - functions that uses the secondary stack
-- - functions that have declarations of:
-- - Concurrent types
-- - Packages
-- - Instantiations
-- - Subprograms
-- - functions that have some of the following statements:
-- - abort
-- - asynchronous-select
-- - conditional-entry-call
-- - delay-relative
-- - delay-until
-- - selective-accept
-- - timed-entry-call
-- - functions that have exception handlers
-- - functions that have some enclosing body containing instantiations
-- that appear before the corresponding generic body.
procedure Generate_Body_To_Inline
(N : Node_Id;
Body_To_Inline : out Node_Id);
-- Generate a parameterless duplicate of subprogram body N. Occurrences
-- of pragmas referencing the formals are removed since they have no
-- meaning when the body is inlined and the formals are rewritten (the
-- analysis of the non-inlined body will handle these pragmas properly).
-- A new internal name is associated with Body_To_Inline.
procedure Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id);
-- N is an inlined function body that returns an unconstrained type and
-- has a single extended return statement. Split N in two subprograms:
-- a procedure P' and a function F'. The formals of P' duplicate the
-- formals of N plus an extra formal which is used return a value;
-- its body is composed by the declarations and list of statements
-- of the extended return statement of N.
--------------------------
-- Build_Body_To_Inline --
--------------------------
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
Original_Body : Node_Id;
Body_To_Analyze : Node_Id;
begin
pragma Assert (Current_Scope = Spec_Id);
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved. We
-- do not do this at the library level, because it is not needed, and
-- furthermore this causes trouble if front end inlining is activated
-- (-gnatN).
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
end if;
-- We need to capture references to the formals in order
-- to substitute the actuals at the point of inlining, i.e.
-- instantiation. To treat the formals as globals to the body to
-- inline, we nest it within a dummy parameterless subprogram,
-- declared within the real one.
Generate_Body_To_Inline (N, Original_Body);
Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
-- Set return type of function, which is also global and does not
-- need to be resolved.
if Ekind (Spec_Id) = E_Function then
Set_Result_Definition (Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
end if;
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append_To (Declarations (N), Body_To_Analyze);
end if;
Preanalyze (Body_To_Analyze);
Push_Scope (Defining_Entity (Body_To_Analyze));
Save_Global_References (Original_Body);
End_Scope;
Remove (Body_To_Analyze);
-- Restore environment if previously saved
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Restore_Env;
end if;
pragma Assert (No (Body_To_Inline (Decl)));
Set_Body_To_Inline (Decl, Original_Body);
Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
end Build_Body_To_Inline;
--------------------------
-- Check_Body_To_Inline --
--------------------------
function Check_Body_To_Inline
(N : Node_Id;
Subp : Entity_Id) return Boolean
is
Max_Size : constant := 10;
Stat_Count : Integer := 0;
function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
-- Check for declarations that make inlining not worthwhile
function Has_Excluded_Statement (Stats : List_Id) return Boolean;
-- Check for statements that make inlining not worthwhile: any
-- tasking statement, nested at any level. Keep track of total
-- number of elementary statements, as a measure of acceptable size.
function Has_Pending_Instantiation return Boolean;
-- Return True if some enclosing body contains instantiations that
-- appear before the corresponding generic body.
function Returns_Compile_Time_Constant (N : Node_Id) return Boolean;
-- Return True if all the return statements of the function body N
-- are simple return statements and return a compile time constant
function Returns_Intrinsic_Function_Call (N : Node_Id) return Boolean;
-- Return True if all the return statements of the function body N
-- are simple return statements and return an intrinsic function call
function Uses_Secondary_Stack (N : Node_Id) return Boolean;
-- If the body of the subprogram includes a call that returns an
-- unconstrained type, the secondary stack is involved, and it
-- is not worth inlining.
------------------------------
-- Has_Excluded_Declaration --
------------------------------
function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
D : Node_Id;
function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
-- Nested subprograms make a given body ineligible for inlining,
-- but we make an exception for instantiations of unchecked
-- conversion. The body has not been analyzed yet, so check the
-- name, and verify that the visible entity with that name is the
-- predefined unit.
-----------------------------
-- Is_Unchecked_Conversion --
-----------------------------
function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
Id : constant Node_Id := Name (D);
Conv : Entity_Id;
begin
if Nkind (Id) = N_Identifier
and then Chars (Id) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Id);
elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
and then
Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Selector_Name (Id));
else
return False;
end if;
return Present (Conv)
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Conv)))
and then Is_Intrinsic_Subprogram (Conv);
end Is_Unchecked_Conversion;
-- Start of processing for Has_Excluded_Declaration
begin
D := First (Decls);
while Present (D) loop
if (Nkind (D) = N_Function_Instantiation
and then not Is_Unchecked_Conversion (D))
or else Nkind_In (D, N_Protected_Type_Declaration,
N_Package_Declaration,
N_Package_Instantiation,
N_Subprogram_Body,
N_Procedure_Instantiation,
N_Task_Type_Declaration)
then
Cannot_Inline
("cannot inline & (non-allowed declaration)?", D, Subp);
return True;
end if;
Next (D);
end loop;
return False;
end Has_Excluded_Declaration;
----------------------------
-- Has_Excluded_Statement --
----------------------------
function Has_Excluded_Statement (Stats : List_Id) return Boolean is
S : Node_Id;
E : Node_Id;
begin
S := First (Stats);
while Present (S) loop
Stat_Count := Stat_Count + 1;
if Nkind_In (S, N_Abort_Statement,
N_Asynchronous_Select,
N_Conditional_Entry_Call,
N_Delay_Relative_Statement,
N_Delay_Until_Statement,
N_Selective_Accept,
N_Timed_Entry_Call)
then
Cannot_Inline
("cannot inline & (non-allowed statement)?", S, Subp);
return True;
elsif Nkind (S) = N_Block_Statement then
if Present (Declarations (S))
and then Has_Excluded_Declaration (Declarations (S))
then
return True;
elsif Present (Handled_Statement_Sequence (S)) then
if Present
(Exception_Handlers (Handled_Statement_Sequence (S)))
then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers
(Handled_Statement_Sequence (S))),
Subp);
return True;
elsif Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (S)))
then
return True;
end if;
end if;
elsif Nkind (S) = N_Case_Statement then
E := First (Alternatives (S));
while Present (E) loop
if Has_Excluded_Statement (Statements (E)) then
return True;
end if;
Next (E);
end loop;
elsif Nkind (S) = N_If_Statement then
if Has_Excluded_Statement (Then_Statements (S)) then
return True;
end if;
if Present (Elsif_Parts (S)) then
E := First (Elsif_Parts (S));
while Present (E) loop
if Has_Excluded_Statement (Then_Statements (E)) then
return True;
end if;
Next (E);
end loop;
end if;
if Present (Else_Statements (S))
and then Has_Excluded_Statement (Else_Statements (S))
then
return True;
end if;
elsif Nkind (S) = N_Loop_Statement
and then Has_Excluded_Statement (Statements (S))
then
return True;
elsif Nkind (S) = N_Extended_Return_Statement then
if Present (Handled_Statement_Sequence (S))
and then
Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (S)))
then
return True;
elsif Present (Handled_Statement_Sequence (S))
and then
Present (Exception_Handlers
(Handled_Statement_Sequence (S)))
then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers
(Handled_Statement_Sequence (S))),
Subp);
return True;
end if;
end if;
Next (S);
end loop;
return False;
end Has_Excluded_Statement;
-------------------------------
-- Has_Pending_Instantiation --
-------------------------------
function Has_Pending_Instantiation return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if Is_Compilation_Unit (S)
or else Is_Child_Unit (S)
then
return False;
elsif Ekind (S) = E_Package
and then Has_Forward_Instantiation (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end Has_Pending_Instantiation;
------------------------------------
-- Returns_Compile_Time_Constant --
------------------------------------
function Returns_Compile_Time_Constant (N : Node_Id) return Boolean is
function Check_Return (N : Node_Id) return Traverse_Result;
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Extended_Return_Statement then
return Abandon;
elsif Nkind (N) = N_Simple_Return_Statement then
if Present (Expression (N)) then
declare
Orig_Expr : constant Node_Id :=
Original_Node (Expression (N));
begin
if Nkind_In (Orig_Expr, N_Integer_Literal,
N_Real_Literal,
N_Character_Literal)
then
return OK;
elsif Is_Entity_Name (Orig_Expr)
and then Ekind (Entity (Orig_Expr)) = E_Constant
and then Is_Static_Expression (Orig_Expr)
then
return OK;
else
return Abandon;
end if;
end;
-- Expression has wrong form
else
return Abandon;
end if;
-- Continue analyzing statements
else
return OK;
end if;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Returns_Compile_Time_Constant
begin
return Check_All_Returns (N) = OK;
end Returns_Compile_Time_Constant;
--------------------------------------
-- Returns_Intrinsic_Function_Call --
--------------------------------------
function Returns_Intrinsic_Function_Call
(N : Node_Id) return Boolean
is
function Check_Return (N : Node_Id) return Traverse_Result;
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Extended_Return_Statement then
return Abandon;
elsif Nkind (N) = N_Simple_Return_Statement then
if Present (Expression (N)) then
declare
Orig_Expr : constant Node_Id :=
Original_Node (Expression (N));
begin
if Nkind (Orig_Expr) in N_Op
and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
then
return OK;
elsif Nkind (Orig_Expr) in N_Has_Entity
and then Present (Entity (Orig_Expr))
and then Ekind (Entity (Orig_Expr)) = E_Function
and then Is_Inlined (Entity (Orig_Expr))
then
return OK;
elsif Nkind (Orig_Expr) in N_Has_Entity
and then Present (Entity (Orig_Expr))
and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
then
return OK;
else
return Abandon;
end if;
end;
-- Expression has wrong form
else
return Abandon;
end if;
-- Continue analyzing statements
else
return OK;
end if;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Returns_Intrinsic_Function_Call
begin
return Check_All_Returns (N) = OK;
end Returns_Intrinsic_Function_Call;
--------------------------
-- Uses_Secondary_Stack --
--------------------------
function Uses_Secondary_Stack (N : Node_Id) return Boolean is
function Check_Call (N : Node_Id) return Traverse_Result;
-- Look for function calls that return an unconstrained type
----------------
-- Check_Call --
----------------
function Check_Call (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Function_Call
and then Is_Entity_Name (Name (N))
and then Is_Composite_Type (Etype (Entity (Name (N))))
and then not Is_Constrained (Etype (Entity (Name (N))))
then
Cannot_Inline
("cannot inline & (call returns unconstrained type)?",
N, Subp);
return Abandon;
else
return OK;
end if;
end Check_Call;
function Check_Calls is new Traverse_Func (Check_Call);
-- Start of processing for Uses_Secondary_Stack
begin
return Check_Calls (N) = Abandon;
end Uses_Secondary_Stack;
-- Local variables
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
May_Inline : constant Boolean :=
Has_Pragma_Inline_Always (Spec_Id)
or else (Has_Pragma_Inline (Spec_Id)
and then ((Optimization_Level > 0
and then Ekind (Spec_Id)
= E_Function)
or else Front_End_Inlining));
Body_To_Analyze : Node_Id;
-- Start of processing for Check_Body_To_Inline
begin
-- No action needed in stubs since the attribute Body_To_Inline
-- is not available
if Nkind (Decl) = N_Subprogram_Body_Stub then
return False;
-- Cannot build the body to inline if the attribute is already set.
-- This attribute may have been set if this is a subprogram renaming
-- declarations (see Freeze.Build_Renamed_Body).
elsif Present (Body_To_Inline (Decl)) then
return False;
-- No action needed if the subprogram does not fulfill the minimum
-- conditions to be inlined by the frontend
elsif not May_Inline then
return False;
end if;
-- Check excluded declarations
if Present (Declarations (N))
and then Has_Excluded_Declaration (Declarations (N))
then
return False;
end if;
-- Check excluded statements
if Present (Handled_Statement_Sequence (N)) then
if Present
(Exception_Handlers (Handled_Statement_Sequence (N)))
then
Cannot_Inline
("cannot inline& (exception handler)?",
First
(Exception_Handlers (Handled_Statement_Sequence (N))),
Subp);
return False;
elsif Has_Excluded_Statement
(Statements (Handled_Statement_Sequence (N)))
then
return False;
end if;
end if;
-- For backward compatibility, compiling under -gnatN we do not
-- inline a subprogram that is too large, unless it is marked
-- Inline_Always. This pragma does not suppress the other checks
-- on inlining (forbidden declarations, handlers, etc).
if Front_End_Inlining
and then not Has_Pragma_Inline_Always (Subp)
and then Stat_Count > Max_Size
then
Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
return False;
end if;
-- If some enclosing body contains instantiations that appear before
-- the corresponding generic body, the enclosing body has a freeze
-- node so that it can be elaborated after the generic itself. This
-- might conflict with subsequent inlinings, so that it is unsafe to
-- try to inline in such a case.
if Has_Pending_Instantiation then
Cannot_Inline
("cannot inline& (forward instance within enclosing body)?",
N, Subp);
return False;
end if;
-- Generate and preanalyze the body to inline (needed to perform
-- the rest of the checks)
Generate_Body_To_Inline (N, Body_To_Analyze);
if Ekind (Subp) = E_Function then
Set_Result_Definition (Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Subp), Sloc (N)));
end if;
-- Nest the body to analyze within the real one
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append_To (Declarations (N), Body_To_Analyze);
end if;
Preanalyze (Body_To_Analyze);
Remove (Body_To_Analyze);
-- Keep separate checks needed when compiling without optimizations
if Optimization_Level = 0
-- AAMP and VM targets have no support for inlining in the backend
-- and hence we use frontend inlining at all optimization levels.
or else AAMP_On_Target
or else VM_Target /= No_VM
then
-- Cannot inline functions whose body has a call that returns an
-- unconstrained type since the secondary stack is involved, and
-- it is not worth inlining.
if Uses_Secondary_Stack (Body_To_Analyze) then
return False;
-- Cannot inline functions that return controlled types since
-- controlled actions interfere in complex ways with inlining.
elsif Ekind (Subp) = E_Function
and then Needs_Finalization (Etype (Subp))
then
Cannot_Inline
("cannot inline & (controlled return type)?", N, Subp);
return False;
elsif Returns_Unconstrained_Type (Subp) then
Cannot_Inline
("cannot inline & (unconstrained return type)?", N, Subp);
return False;
end if;
-- Compiling with optimizations enabled
else
-- Procedures are never frontend inlined in this case!
if Ekind (Subp) /= E_Function then
return False;
-- Functions returning unconstrained types are tested
-- separately (see Can_Split_Unconstrained_Function).
elsif Returns_Unconstrained_Type (Subp) then
null;
-- Check supported cases
elsif not Returns_Compile_Time_Constant (Body_To_Analyze)
and then Convention (Subp) /= Convention_Intrinsic
and then not Returns_Intrinsic_Function_Call (Body_To_Analyze)
then
return False;
end if;
end if;
return True;
end Check_Body_To_Inline;
--------------------------------------
-- Can_Split_Unconstrained_Function --
--------------------------------------
function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
is
Ret_Node : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (N)));
D : Node_Id;
begin
-- No user defined declarations allowed in the function except inside
-- the unique return statement; implicit labels are the only allowed
-- declarations.
if not Is_Empty_List (Declarations (N)) then
D := First (Declarations (N));
while Present (D) loop
if Nkind (D) /= N_Implicit_Label_Declaration then
return False;
end if;
Next (D);
end loop;
end if;
-- We only split the inlined function when we are generating the code
-- of its body; otherwise we leave duplicated split subprograms in
-- the tree which (if referenced) generate wrong references at link
-- time.
return In_Extended_Main_Code_Unit (N)
and then Present (Ret_Node)
and then Nkind (Ret_Node) = N_Extended_Return_Statement
and then No (Next (Ret_Node))
and then Present (Handled_Statement_Sequence (Ret_Node));
end Can_Split_Unconstrained_Function;
-----------------------------
-- Generate_Body_To_Inline --
-----------------------------
procedure Generate_Body_To_Inline
(N : Node_Id;
Body_To_Inline : out Node_Id)
is
procedure Remove_Pragmas (N : Node_Id);
-- Remove occurrences of pragmas that may reference the formals of
-- N. The analysis of the non-inlined body will handle these pragmas
-- properly.
--------------------
-- Remove_Pragmas --
--------------------
procedure Remove_Pragmas (N : Node_Id) is
Decl : Node_Id;
Nxt : Node_Id;
begin
Decl := First (Declarations (N));
while Present (Decl) loop
Nxt := Next (Decl);
if Nkind (Decl) = N_Pragma
and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
Name_Unmodified)
then
Remove (Decl);
end if;
Decl := Nxt;
end loop;
end Remove_Pragmas;
-- Start of processing for Generate_Body_To_Inline
begin
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved.
-- Note that we do not do this at the library level, because it
-- is not needed, and furthermore this causes trouble if front
-- end inlining is activated (-gnatN).
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Body_To_Inline := Copy_Generic_Node (N, Empty, True);
else
Body_To_Inline := Copy_Separate_Tree (N);
end if;
-- A pragma Unreferenced or pragma Unmodified that mentions a formal
-- parameter has no meaning when the body is inlined and the formals
-- are rewritten. Remove it from body to inline. The analysis of the
-- non-inlined body will handle the pragma properly.
Remove_Pragmas (Body_To_Inline);
-- We need to capture references to the formals in order
-- to substitute the actuals at the point of inlining, i.e.
-- instantiation. To treat the formals as globals to the body to
-- inline, we nest it within a dummy parameterless subprogram,
-- declared within the real one.
Set_Parameter_Specifications
(Specification (Body_To_Inline), No_List);
-- A new internal name is associated with Body_To_Inline to avoid
-- conflicts when the non-inlined body N is analyzed.
Set_Defining_Unit_Name (Specification (Body_To_Inline),
Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
Set_Corresponding_Spec (Body_To_Inline, Empty);
end Generate_Body_To_Inline;
----------------------------------
-- Split_Unconstrained_Function --
----------------------------------
procedure Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Ret_Node : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (N)));
Ret_Obj : constant Node_Id :=
First (Return_Object_Declarations (Ret_Node));
procedure Build_Procedure
(Proc_Id : out Entity_Id;
Decl_List : out List_Id);
-- Build a procedure containing the statements found in the extended
-- return statement of the unconstrained function body N.
procedure Build_Procedure
(Proc_Id : out Entity_Id;
Decl_List : out List_Id)
is
Formal : Entity_Id;
Formal_List : constant List_Id := New_List;
Proc_Spec : Node_Id;
Proc_Body : Node_Id;
Subp_Name : constant Name_Id := New_Internal_Name ('F');
Body_Decl_List : List_Id := No_List;
Param_Type : Node_Id;
begin
if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
Param_Type := New_Copy (Object_Definition (Ret_Obj));
else
Param_Type :=
New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
end if;
Append_To (Formal_List,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Ret_Obj))),
In_Present => False,
Out_Present => True,
Null_Exclusion_Present => False,
Parameter_Type => Param_Type));
Formal := First_Formal (Spec_Id);
while Present (Formal) loop
Append_To (Formal_List,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal),
Chars => Chars (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Null_Exclusion_Present =>
Null_Exclusion_Present (Parent (Formal)),
Parameter_Type =>
New_Reference_To (Etype (Formal), Loc),
Expression =>
Copy_Separate_Tree (Expression (Parent (Formal)))));
Next_Formal (Formal);
end loop;
Proc_Id :=
Make_Defining_Identifier (Loc, Chars => Subp_Name);
Proc_Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Formal_List);
Decl_List := New_List;
Append_To (Decl_List,
Make_Subprogram_Declaration (Loc, Proc_Spec));
-- Can_Convert_Unconstrained_Function checked that the function
-- has no local declarations except implicit label declarations.
-- Copy these declarations to the built procedure.
if Present (Declarations (N)) then
Body_Decl_List := New_List;
declare
D : Node_Id;
New_D : Node_Id;
begin
D := First (Declarations (N));
while Present (D) loop
pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
New_D :=
Make_Implicit_Label_Declaration (Loc,
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (D))),
Label_Construct => Empty);
Append_To (Body_Decl_List, New_D);
Next (D);
end loop;
end;
end if;
pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification => Copy_Separate_Tree (Proc_Spec),
Declarations => Body_Decl_List,
Handled_Statement_Sequence =>
Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
Set_Defining_Unit_Name (Specification (Proc_Body),
Make_Defining_Identifier (Loc, Subp_Name));
Append_To (Decl_List, Proc_Body);
end Build_Procedure;
-- Local variables
New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
Blk_Stmt : Node_Id;
Proc_Id : Entity_Id;
Proc_Call : Node_Id;
-- Start of processing for Split_Unconstrained_Function
begin
-- Build the associated procedure, analyze it and insert it before
-- the function body N
declare
Scope : constant Entity_Id := Current_Scope;
Decl_List : List_Id;
begin
Pop_Scope;
Build_Procedure (Proc_Id, Decl_List);
Insert_Actions (N, Decl_List);
Push_Scope (Scope);
end;
-- Build the call to the generated procedure
declare
Actual_List : constant List_Id := New_List;
Formal : Entity_Id;
begin
Append_To (Actual_List,
New_Reference_To (Defining_Identifier (New_Obj), Loc));
Formal := First_Formal (Spec_Id);
while Present (Formal) loop
Append_To (Actual_List, New_Reference_To (Formal, Loc));
-- Avoid spurious warning on unreferenced formals
Set_Referenced (Formal);
Next_Formal (Formal);
end loop;
Proc_Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (Proc_Id, Loc),
Parameter_Associations => Actual_List);
end;
-- Generate
-- declare
-- New_Obj : ...
-- begin
-- main_1__F1b (New_Obj, ...);
-- return Obj;
-- end B10b;
Blk_Stmt :=
Make_Block_Statement (Loc,
Declarations => New_List (New_Obj),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Proc_Call,
Make_Simple_Return_Statement (Loc,
Expression =>
New_Reference_To
(Defining_Identifier (New_Obj), Loc)))));
Rewrite (Ret_Node, Blk_Stmt);
end Split_Unconstrained_Function;
-- Start of processing for Check_And_Build_Body_To_Inline
begin
-- Do not inline any subprogram that contains nested subprograms, since
-- the backend inlining circuit seems to generate uninitialized
-- references in this case. We know this happens in the case of front
-- end ZCX support, but it also appears it can happen in other cases as
-- well. The backend often rejects attempts to inline in the case of
-- nested procedures anyway, so little if anything is lost by this.
-- Note that this is test is for the benefit of the back-end. There is
-- a separate test for front-end inlining that also rejects nested
-- subprograms.
-- Do not do this test if errors have been detected, because in some
-- error cases, this code blows up, and we don't need it anyway if
-- there have been errors, since we won't get to the linker anyway.
if Comes_From_Source (Body_Id)
and then (Has_Pragma_Inline_Always (Spec_Id)
or else Optimization_Level > 0)
and then Serious_Errors_Detected = 0
then
declare
P_Ent : Node_Id;
begin
P_Ent := Body_Id;
loop
P_Ent := Scope (P_Ent);
exit when No (P_Ent) or else P_Ent = Standard_Standard;
if Is_Subprogram (P_Ent) then
Set_Is_Inlined (P_Ent, False);
if Comes_From_Source (P_Ent)
and then Has_Pragma_Inline (P_Ent)
then
Cannot_Inline
("cannot inline& (nested subprogram)?", N, P_Ent,
Is_Serious => True);
end if;
end if;
end loop;
end;
end if;
-- Build the body to inline only if really needed!
if Check_Body_To_Inline (N, Spec_Id)
and then Serious_Errors_Detected = 0
then
if Returns_Unconstrained_Type (Spec_Id) then
if Can_Split_Unconstrained_Function (N) then
Split_Unconstrained_Function (N, Spec_Id);
Build_Body_To_Inline (N, Spec_Id);
Set_Is_Inlined (Spec_Id);
end if;
else
Build_Body_To_Inline (N, Spec_Id);
Set_Is_Inlined (Spec_Id);
end if;
end if;
end Check_And_Build_Body_To_Inline;
-----------------------
-- Check_Conformance --
-----------------------
procedure Check_Conformance
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Ctype : Conformance_Type;
Errmsg : Boolean;
Conforms : out Boolean;
Err_Loc : Node_Id := Empty;
Get_Inst : Boolean := False;
Skip_Controlling_Formals : Boolean := False)
is
procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
-- Sets Conforms to False. If Errmsg is False, then that's all it does.
-- If Errmsg is True, then processing continues to post an error message
-- for conformance error on given node. Two messages are output. The
-- first message points to the previous declaration with a general "no
-- conformance" message. The second is the detailed reason, supplied as
-- Msg. The parameter N provide information for a possible & insertion
-- in the message, and also provides the location for posting the
-- message in the absence of a specified Err_Loc location.
-----------------------
-- Conformance_Error --
-----------------------
procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
Enode : Node_Id;
begin
Conforms := False;
if Errmsg then
if No (Err_Loc) then
Enode := N;
else
Enode := Err_Loc;
end if;
Error_Msg_Sloc := Sloc (Old_Id);
case Ctype is
when Type_Conformant =>
Error_Msg_N -- CODEFIX
("not type conformant with declaration#!", Enode);
when Mode_Conformant =>
if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
Error_Msg_N
("not mode conformant with operation inherited#!",
Enode);
else
Error_Msg_N
("not mode conformant with declaration#!", Enode);
end if;
when Subtype_Conformant =>
if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
Error_Msg_N
("not subtype conformant with operation inherited#!",
Enode);
else
Error_Msg_N
("not subtype conformant with declaration#!", Enode);
end if;
when Fully_Conformant =>
if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
Error_Msg_N -- CODEFIX
("not fully conformant with operation inherited#!",
Enode);
else
Error_Msg_N -- CODEFIX
("not fully conformant with declaration#!", Enode);
end if;
end case;
Error_Msg_NE (Msg, Enode, N);
end if;
end Conformance_Error;
-- Local Variables
Old_Type : constant Entity_Id := Etype (Old_Id);
New_Type : constant Entity_Id := Etype (New_Id);
Old_Formal : Entity_Id;
New_Formal : Entity_Id;
Access_Types_Match : Boolean;
Old_Formal_Base : Entity_Id;
New_Formal_Base : Entity_Id;
-- Start of processing for Check_Conformance
begin
Conforms := True;
-- We need a special case for operators, since they don't appear
-- explicitly.
if Ctype = Type_Conformant then
if Ekind (New_Id) = E_Operator
and then Operator_Matches_Spec (New_Id, Old_Id)
then
return;
end if;
end if;
-- If both are functions/operators, check return types conform
if Old_Type /= Standard_Void_Type
and then New_Type /= Standard_Void_Type
then
-- If we are checking interface conformance we omit controlling
-- arguments and result, because we are only checking the conformance
-- of the remaining parameters.
if Has_Controlling_Result (Old_Id)
and then Has_Controlling_Result (New_Id)
and then Skip_Controlling_Formals
then
null;
elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
Conformance_Error ("\return type does not match!", New_Id);
return;
end if;
-- Ada 2005 (AI-231): In case of anonymous access types check the
-- null-exclusion and access-to-constant attributes match.
if Ada_Version >= Ada_2005
and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
and then
(Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
or else Is_Access_Constant (Etype (Old_Type)) /=
Is_Access_Constant (Etype (New_Type)))
then
Conformance_Error ("\return type does not match!", New_Id);
return;
end if;
-- If either is a function/operator and the other isn't, error
elsif Old_Type /= Standard_Void_Type
or else New_Type /= Standard_Void_Type
then
Conformance_Error ("\functions can only match functions!", New_Id);
return;
end if;
-- In subtype conformant case, conventions must match (RM 6.3.1(16)).
-- If this is a renaming as body, refine error message to indicate that
-- the conflict is with the original declaration. If the entity is not
-- frozen, the conventions don't have to match, the one of the renamed
-- entity is inherited.
if Ctype >= Subtype_Conformant then
if Convention (Old_Id) /= Convention (New_Id) then
if not Is_Frozen (New_Id) then
null;
elsif Present (Err_Loc)
and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
and then Present (Corresponding_Spec (Err_Loc))
then
Error_Msg_Name_1 := Chars (New_Id);
Error_Msg_Name_2 :=
Name_Ada + Convention_Id'Pos (Convention (New_Id));
Conformance_Error ("\prior declaration for% has convention %!");
else
Conformance_Error ("\calling conventions do not match!");
end if;
return;
elsif Is_Formal_Subprogram (Old_Id)
or else Is_Formal_Subprogram (New_Id)
then
Conformance_Error ("\formal subprograms not allowed!");
return;
end if;
end if;
-- Deal with parameters
-- Note: we use the entity information, rather than going directly
-- to the specification in the tree. This is not only simpler, but
-- absolutely necessary for some cases of conformance tests between
-- operators, where the declaration tree simply does not exist!
Old_Formal := First_Formal (Old_Id);
New_Formal := First_Formal (New_Id);
while Present (Old_Formal) and then Present (New_Formal) loop
if Is_Controlling_Formal (Old_Formal)
and then Is_Controlling_Formal (New_Formal)
and then Skip_Controlling_Formals
then
-- The controlling formals will have different types when
-- comparing an interface operation with its match, but both
-- or neither must be access parameters.
if Is_Access_Type (Etype (Old_Formal))
=
Is_Access_Type (Etype (New_Formal))
then
goto Skip_Controlling_Formal;
else
Conformance_Error
("\access parameter does not match!", New_Formal);
end if;
end if;
-- Ada 2012: Mode conformance also requires that formal parameters
-- be both aliased, or neither.
if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
Conformance_Error
("\aliased parameter mismatch!", New_Formal);
end if;
end if;
if Ctype = Fully_Conformant then
-- Names must match. Error message is more accurate if we do
-- this before checking that the types of the formals match.
if Chars (Old_Formal) /= Chars (New_Formal) then
Conformance_Error ("\name & does not match!", New_Formal);
-- Set error posted flag on new formal as well to stop
-- junk cascaded messages in some cases.
Set_Error_Posted (New_Formal);
return;
end if;
-- Null exclusion must match
if Null_Exclusion_Present (Parent (Old_Formal))
/=
Null_Exclusion_Present (Parent (New_Formal))
then
-- Only give error if both come from source. This should be
-- investigated some time, since it should not be needed ???
if Comes_From_Source (Old_Formal)
and then
Comes_From_Source (New_Formal)
then
Conformance_Error
("\null exclusion for & does not match", New_Formal);
-- Mark error posted on the new formal to avoid duplicated
-- complaint about types not matching.
Set_Error_Posted (New_Formal);
end if;
end if;
end if;
-- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
-- case occurs whenever a subprogram is being renamed and one of its
-- parameters imposes a null exclusion. For example:
-- type T is null record;
-- type Acc_T is access T;
-- subtype Acc_T_Sub is Acc_T;
-- procedure P (Obj : not null Acc_T_Sub); -- itype
-- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
-- renames P;
Old_Formal_Base := Etype (Old_Formal);
New_Formal_Base := Etype (New_Formal);
if Get_Inst then
Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
New_Formal_Base := Get_Instance_Of (New_Formal_Base);
end if;
Access_Types_Match := Ada_Version >= Ada_2005
-- Ensure that this rule is only applied when New_Id is a
-- renaming of Old_Id.
and then Nkind (Parent (Parent (New_Id))) =
N_Subprogram_Renaming_Declaration
and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
and then Present (Entity (Name (Parent (Parent (New_Id)))))
and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
-- Now handle the allowed access-type case
and then Is_Access_Type (Old_Formal_Base)
and then Is_Access_Type (New_Formal_Base)
-- The type kinds must match. The only exception occurs with
-- multiple generics of the form:
-- generic generic
-- type F is private; type A is private;
-- type F_Ptr is access F; type A_Ptr is access A;
-- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
-- package F_Pack is ... package A_Pack is
-- package F_Inst is
-- new F_Pack (A, A_Ptr, A_P);
-- When checking for conformance between the parameters of A_P
-- and F_P, the type kinds of F_Ptr and A_Ptr will not match
-- because the compiler has transformed A_Ptr into a subtype of
-- F_Ptr. We catch this case in the code below.
and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
or else
(Is_Generic_Type (Old_Formal_Base)
and then Is_Generic_Type (New_Formal_Base)
and then Is_Internal (New_Formal_Base)
and then Etype (Etype (New_Formal_Base)) =
Old_Formal_Base))
and then Directly_Designated_Type (Old_Formal_Base) =
Directly_Designated_Type (New_Formal_Base)
and then ((Is_Itype (Old_Formal_Base)
and then Can_Never_Be_Null (Old_Formal_Base))
or else
(Is_Itype (New_Formal_Base)
and then Can_Never_Be_Null (New_Formal_Base)));
-- Types must always match. In the visible part of an instance,
-- usual overloading rules for dispatching operations apply, and
-- we check base types (not the actual subtypes).
if In_Instance_Visible_Part
and then Is_Dispatching_Operation (New_Id)
then
if not Conforming_Types
(T1 => Base_Type (Etype (Old_Formal)),
T2 => Base_Type (Etype (New_Formal)),
Ctype => Ctype,
Get_Inst => Get_Inst)
and then not Access_Types_Match
then
Conformance_Error ("\type of & does not match!", New_Formal);
return;
end if;
elsif not Conforming_Types
(T1 => Old_Formal_Base,
T2 => New_Formal_Base,
Ctype => Ctype,
Get_Inst => Get_Inst)
and then not Access_Types_Match
then
-- Don't give error message if old type is Any_Type. This test
-- avoids some cascaded errors, e.g. in case of a bad spec.
if Errmsg and then Old_Formal_Base = Any_Type then
Conforms := False;
else
Conformance_Error ("\type of & does not match!", New_Formal);
end if;
return;
end if;
-- For mode conformance, mode must match
if Ctype >= Mode_Conformant then
if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
if not Ekind_In (New_Id, E_Function, E_Procedure)
or else not Is_Primitive_Wrapper (New_Id)
then
Conformance_Error ("\mode of & does not match!", New_Formal);
else
declare
T : constant Entity_Id := Find_Dispatching_Type (New_Id);
begin
if Is_Protected_Type
(Corresponding_Concurrent_Type (T))
then
Error_Msg_PT (T, New_Id);
else
Conformance_Error
("\mode of & does not match!", New_Formal);
end if;
end;
end if;
return;
-- Part of mode conformance for access types is having the same
-- constant modifier.
elsif Access_Types_Match
and then Is_Access_Constant (Old_Formal_Base) /=
Is_Access_Constant (New_Formal_Base)
then
Conformance_Error
("\constant modifier does not match!", New_Formal);
return;
end if;
end if;
if Ctype >= Subtype_Conformant then
-- Ada 2005 (AI-231): In case of anonymous access types check
-- the null-exclusion and access-to-constant attributes must
-- match. For null exclusion, we test the types rather than the
-- formals themselves, since the attribute is only set reliably
-- on the formals in the Ada 95 case, and we exclude the case
-- where Old_Formal is marked as controlling, to avoid errors
-- when matching completing bodies with dispatching declarations
-- (access formals in the bodies aren't marked Can_Never_Be_Null).
if Ada_Version >= Ada_2005
and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
and then
((Can_Never_Be_Null (Etype (Old_Formal)) /=
Can_Never_Be_Null (Etype (New_Formal))
and then
not Is_Controlling_Formal (Old_Formal))
or else
Is_Access_Constant (Etype (Old_Formal)) /=
Is_Access_Constant (Etype (New_Formal)))
-- Do not complain if error already posted on New_Formal. This
-- avoids some redundant error messages.
and then not Error_Posted (New_Formal)
then
-- It is allowed to omit the null-exclusion in case of stream
-- attribute subprograms. We recognize stream subprograms
-- through their TSS-generated suffix.
declare
TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
begin
if TSS_Name /= TSS_Stream_Read
and then TSS_Name /= TSS_Stream_Write
and then TSS_Name /= TSS_Stream_Input
and then TSS_Name /= TSS_Stream_Output
then
-- Here we have a definite conformance error. It is worth
-- special casing the error message for the case of a
-- controlling formal (which excludes null).
if Is_Controlling_Formal (New_Formal) then
Error_Msg_Node_2 := Scope (New_Formal);
Conformance_Error
("\controlling formal& of& excludes null, "
& "declaration must exclude null as well",
New_Formal);
-- Normal case (couldn't we give more detail here???)
else
Conformance_Error
("\type of & does not match!", New_Formal);
end if;
return;
end if;
end;
end if;
end if;
-- Full conformance checks
if Ctype = Fully_Conformant then
-- We have checked already that names match
if Parameter_Mode (Old_Formal) = E_In_Parameter then
-- Check default expressions for in parameters
declare
NewD : constant Boolean :=
Present (Default_Value (New_Formal));
OldD : constant Boolean :=
Present (Default_Value (Old_Formal));
begin
if NewD or OldD then
-- The old default value has been analyzed because the
-- current full declaration will have frozen everything
-- before. The new default value has not been analyzed,
-- so analyze it now before we check for conformance.
if NewD then
Push_Scope (New_Id);
Preanalyze_Spec_Expression
(Default_Value (New_Formal), Etype (New_Formal));
End_Scope;
end if;
if not (NewD and OldD)
or else not Fully_Conformant_Expressions
(Default_Value (Old_Formal),
Default_Value (New_Formal))
then
Conformance_Error
("\default expression for & does not match!",
New_Formal);
return;
end if;
end if;
end;
end if;
end if;
-- A couple of special checks for Ada 83 mode. These checks are
-- skipped if either entity is an operator in package Standard,
-- or if either old or new instance is not from the source program.
if Ada_Version = Ada_83
and then Sloc (Old_Id) > Standard_Location
and then Sloc (New_Id) > Standard_Location
and then Comes_From_Source (Old_Id)
and then Comes_From_Source (New_Id)
then
declare
Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
New_Param : constant Node_Id := Declaration_Node (New_Formal);
begin
-- Explicit IN must be present or absent in both cases. This
-- test is required only in the full conformance case.
if In_Present (Old_Param) /= In_Present (New_Param)
and then Ctype = Fully_Conformant
then
Conformance_Error
("\(Ada 83) IN must appear in both declarations",
New_Formal);
return;
end if;
-- Grouping (use of comma in param lists) must be the same
-- This is where we catch a misconformance like:
-- A, B : Integer
-- A : Integer; B : Integer
-- which are represented identically in the tree except
-- for the setting of the flags More_Ids and Prev_Ids.
if More_Ids (Old_Param) /= More_Ids (New_Param)
or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
then
Conformance_Error
("\grouping of & does not match!", New_Formal);
return;
end if;
end;
end if;
-- This label is required when skipping controlling formals
<<Skip_Controlling_Formal>>
Next_Formal (Old_Formal);
Next_Formal (New_Formal);
end loop;
if Present (Old_Formal) then
Conformance_Error ("\too few parameters!");
return;
elsif Present (New_Formal) then
Conformance_Error ("\too many parameters!", New_Formal);
return;
end if;
end Check_Conformance;
-----------------------
-- Check_Conventions --
-----------------------
procedure Check_Conventions (Typ : Entity_Id) is
Ifaces_List : Elist_Id;
procedure Check_Convention (Op : Entity_Id);
-- Verify that the convention of inherited dispatching operation Op is
-- consistent among all subprograms it overrides. In order to minimize
-- the search, Search_From is utilized to designate a specific point in
-- the list rather than iterating over the whole list once more.
----------------------
-- Check_Convention --
----------------------
procedure Check_Convention (Op : Entity_Id) is
function Convention_Of (Id : Entity_Id) return Convention_Id;
-- Given an entity, return its convention. The function treats Ghost
-- as convention Ada because the two have the same dynamic semantics.
-------------------
-- Convention_Of --
-------------------
function Convention_Of (Id : Entity_Id) return Convention_Id is
Conv : constant Convention_Id := Convention (Id);
begin
if Conv = Convention_Ghost then
return Convention_Ada;
else
return Conv;
end if;
end Convention_Of;
-- Local variables
Op_Conv : constant Convention_Id := Convention_Of (Op);
Iface_Conv : Convention_Id;
Iface_Elmt : Elmt_Id;
Iface_Prim_Elmt : Elmt_Id;
Iface_Prim : Entity_Id;
-- Start of processing for Check_Convention
begin
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface_Prim_Elmt :=
First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
while Present (Iface_Prim_Elmt) loop
Iface_Prim := Node (Iface_Prim_Elmt);
Iface_Conv := Convention_Of (Iface_Prim);
if Is_Interface_Conformant (Typ, Iface_Prim, Op)
and then Iface_Conv /= Op_Conv
then
Error_Msg_N
("inconsistent conventions in primitive operations", Typ);
Error_Msg_Name_1 := Chars (Op);
Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
Error_Msg_Sloc := Sloc (Op);
if Comes_From_Source (Op) or else No (Alias (Op)) then
if not Present (Overridden_Operation (Op)) then
Error_Msg_N ("\\primitive % defined #", Typ);
else
Error_Msg_N
("\\overriding operation % with " &
"convention % defined #", Typ);
end if;
else pragma Assert (Present (Alias (Op)));
Error_Msg_Sloc := Sloc (Alias (Op));
Error_Msg_N
("\\inherited operation % with " &
"convention % defined #", Typ);
end if;
Error_Msg_Name_1 := Chars (Op);
Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
Error_Msg_Sloc := Sloc (Iface_Prim);
Error_Msg_N
("\\overridden operation % with " &
"convention % defined #", Typ);
-- Avoid cascading errors
return;
end if;
Next_Elmt (Iface_Prim_Elmt);
end loop;
Next_Elmt (Iface_Elmt);
end loop;
end Check_Convention;
-- Local variables
Prim_Op : Entity_Id;
Prim_Op_Elmt : Elmt_Id;
-- Start of processing for Check_Conventions
begin
if not Has_Interfaces (Typ) then
return;
end if;
Collect_Interfaces (Typ, Ifaces_List);
-- The algorithm checks every overriding dispatching operation against
-- all the corresponding overridden dispatching operations, detecting
-- differences in conventions.
Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Prim_Op_Elmt) loop
Prim_Op := Node (Prim_Op_Elmt);
-- A small optimization: skip the predefined dispatching operations
-- since they always have the same convention.
if not Is_Predefined_Dispatching_Operation (Prim_Op) then
Check_Convention (Prim_Op);
end if;
Next_Elmt (Prim_Op_Elmt);
end loop;
end Check_Conventions;
------------------------------
-- Check_Delayed_Subprogram --
------------------------------
procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
F : Entity_Id;
procedure Possible_Freeze (T : Entity_Id);
-- T is the type of either a formal parameter or of the return type.
-- If T is not yet frozen and needs a delayed freeze, then the
-- subprogram itself must be delayed. If T is the limited view of an
-- incomplete type the subprogram must be frozen as well, because
-- T may depend on local types that have not been frozen yet.
---------------------
-- Possible_Freeze --
---------------------
procedure Possible_Freeze (T : Entity_Id) is
begin
if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
Set_Has_Delayed_Freeze (Designator);
elsif Is_Access_Type (T)
and then Has_Delayed_Freeze (Designated_Type (T))
and then not Is_Frozen (Designated_Type (T))
then
Set_Has_Delayed_Freeze (Designator);
elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
Set_Has_Delayed_Freeze (Designator);
-- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
-- of a subprogram or entry declaration.
elsif Ekind (T) = E_Incomplete_Type
and then Ada_Version >= Ada_2012
then
Set_Has_Delayed_Freeze (Designator);
end if;
end Possible_Freeze;
-- Start of processing for Check_Delayed_Subprogram
begin
-- All subprograms, including abstract subprograms, may need a freeze
-- node if some formal type or the return type needs one.
Possible_Freeze (Etype (Designator));
Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
-- Need delayed freeze if any of the formal types themselves need
-- a delayed freeze and are not yet frozen.
F := First_Formal (Designator);
while Present (F) loop
Possible_Freeze (Etype (F));
Possible_Freeze (Base_Type (Etype (F))); -- needed ???
Next_Formal (F);
end loop;
-- Mark functions that return by reference. Note that it cannot be
-- done for delayed_freeze subprograms because the underlying
-- returned type may not be known yet (for private types)
if not Has_Delayed_Freeze (Designator) and then Expander_Active then
declare
Typ : constant Entity_Id := Etype (Designator);
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Is_Immutably_Limited_Type (Typ) then
Set_Returns_By_Ref (Designator);
elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
Set_Returns_By_Ref (Designator);
end if;
end;
end if;
end Check_Delayed_Subprogram;
------------------------------------
-- Check_Discriminant_Conformance --
------------------------------------
procedure Check_Discriminant_Conformance
(N : Node_Id;
Prev : Entity_Id;
Prev_Loc : Node_Id)
is
Old_Discr : Entity_Id := First_Discriminant (Prev);
New_Discr : Node_Id := First (Discriminant_Specifications (N));
New_Discr_Id : Entity_Id;
New_Discr_Type : Entity_Id;
procedure Conformance_Error (Msg : String; N : Node_Id);
-- Post error message for conformance error on given node. Two messages
-- are output. The first points to the previous declaration with a
-- general "no conformance" message. The second is the detailed reason,
-- supplied as Msg. The parameter N provide information for a possible
-- & insertion in the message.
-----------------------
-- Conformance_Error --
-----------------------
procedure Conformance_Error (Msg : String; N : Node_Id) is
begin
Error_Msg_Sloc := Sloc (Prev_Loc);
Error_Msg_N -- CODEFIX
("not fully conformant with declaration#!", N);
Error_Msg_NE (Msg, N, N);
end Conformance_Error;
-- Start of processing for Check_Discriminant_Conformance
begin
while Present (Old_Discr) and then Present (New_Discr) loop
New_Discr_Id := Defining_Identifier (New_Discr);
-- The subtype mark of the discriminant on the full type has not
-- been analyzed so we do it here. For an access discriminant a new
-- type is created.
if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
New_Discr_Type :=
Access_Definition (N, Discriminant_Type (New_Discr));
else
Analyze (Discriminant_Type (New_Discr));
New_Discr_Type := Etype (Discriminant_Type (New_Discr));
-- Ada 2005: if the discriminant definition carries a null
-- exclusion, create an itype to check properly for consistency
-- with partial declaration.
if Is_Access_Type (New_Discr_Type)
and then Null_Exclusion_Present (New_Discr)
then
New_Discr_Type :=
Create_Null_Excluding_Itype
(T => New_Discr_Type,
Related_Nod => New_Discr,
Scope_Id => Current_Scope);
end if;
end if;
if not Conforming_Types
(Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
then
Conformance_Error ("type of & does not match!", New_Discr_Id);
return;
else
-- Treat the new discriminant as an occurrence of the old one,
-- for navigation purposes, and fill in some semantic
-- information, for completeness.
Generate_Reference (Old_Discr, New_Discr_Id, 'r');
Set_Etype (New_Discr_Id, Etype (Old_Discr));
Set_Scope (New_Discr_Id, Scope (Old_Discr));
end if;
-- Names must match
if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
Conformance_Error ("name & does not match!", New_Discr_Id);
return;
end if;
-- Default expressions must match
declare
NewD : constant Boolean :=
Present (Expression (New_Discr));
OldD : constant Boolean :=
Present (Expression (Parent (Old_Discr)));
begin
if NewD or OldD then
-- The old default value has been analyzed and expanded,
-- because the current full declaration will have frozen
-- everything before. The new default values have not been
-- expanded, so expand now to check conformance.
if NewD then
Preanalyze_Spec_Expression
(Expression (New_Discr), New_Discr_Type);
end if;
if not (NewD and OldD)
or else not Fully_Conformant_Expressions
(Expression (Parent (Old_Discr)),
Expression (New_Discr))
then
Conformance_Error
("default expression for & does not match!",
New_Discr_Id);
return;
end if;
end if;
end;
-- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
if Ada_Version = Ada_83 then
declare
Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
begin
-- Grouping (use of comma in param lists) must be the same
-- This is where we catch a misconformance like:
-- A, B : Integer
-- A : Integer; B : Integer
-- which are represented identically in the tree except
-- for the setting of the flags More_Ids and Prev_Ids.
if More_Ids (Old_Disc) /= More_Ids (New_Discr)
or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
then
Conformance_Error
("grouping of & does not match!", New_Discr_Id);
return;
end if;
end;
end if;
Next_Discriminant (Old_Discr);
Next (New_Discr);
end loop;
if Present (Old_Discr) then
Conformance_Error ("too few discriminants!", Defining_Identifier (N));
return;
elsif Present (New_Discr) then
Conformance_Error
("too many discriminants!", Defining_Identifier (New_Discr));
return;
end if;
end Check_Discriminant_Conformance;
----------------------------
-- Check_Fully_Conformant --
----------------------------
procedure Check_Fully_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty)
is
Result : Boolean;
pragma Warnings (Off, Result);
begin
Check_Conformance
(New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
end Check_Fully_Conformant;
---------------------------
-- Check_Mode_Conformant --
---------------------------
procedure Check_Mode_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty;
Get_Inst : Boolean := False)
is
Result : Boolean;
pragma Warnings (Off, Result);
begin
Check_Conformance
(New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
end Check_Mode_Conformant;
--------------------------------
-- Check_Overriding_Indicator --
--------------------------------
procedure Check_Overriding_Indicator
(Subp : Entity_Id;
Overridden_Subp : Entity_Id;
Is_Primitive : Boolean)
is
Decl : Node_Id;
Spec : Node_Id;
begin
-- No overriding indicator for literals
if Ekind (Subp) = E_Enumeration_Literal then
return;
elsif Ekind (Subp) = E_Entry then
Decl := Parent (Subp);
-- No point in analyzing a malformed operator
elsif Nkind (Subp) = N_Defining_Operator_Symbol
and then Error_Posted (Subp)
then
return;
else
Decl := Unit_Declaration_Node (Subp);
end if;
if Nkind_In (Decl, N_Subprogram_Body,
N_Subprogram_Body_Stub,
N_Subprogram_Declaration,
N_Abstract_Subprogram_Declaration,
N_Subprogram_Renaming_Declaration)
then
Spec := Specification (Decl);
elsif Nkind (Decl) = N_Entry_Declaration then
Spec := Decl;
else
return;
end if;
-- The overriding operation is type conformant with the overridden one,
-- but the names of the formals are not required to match. If the names
-- appear permuted in the overriding operation, this is a possible
-- source of confusion that is worth diagnosing. Controlling formals
-- often carry names that reflect the type, and it is not worthwhile
-- requiring that their names match.
if Present (Overridden_Subp)
and then Nkind (Subp) /= N_Defining_Operator_Symbol
then
declare
Form1 : Entity_Id;
Form2 : Entity_Id;
begin
Form1 := First_Formal (Subp);
Form2 := First_Formal (Overridden_Subp);
-- If the overriding operation is a synchronized operation, skip
-- the first parameter of the overridden operation, which is
-- implicit in the new one. If the operation is declared in the
-- body it is not primitive and all formals must match.
if Is_Concurrent_Type (Scope (Subp))
and then Is_Tagged_Type (Scope (Subp))
and then not Has_Completion (Scope (Subp))
then
Form2 := Next_Formal (Form2);
end if;
if Present (Form1) then
Form1 := Next_Formal (Form1);
Form2 := Next_Formal (Form2);
end if;
while Present (Form1) loop
if not Is_Controlling_Formal (Form1)
and then Present (Next_Formal (Form2))
and then Chars (Form1) = Chars (Next_Formal (Form2))
then
Error_Msg_Node_2 := Alias (Overridden_Subp);
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
Error_Msg_NE
("& does not match corresponding formal of&#",
Form1, Form1);
exit;
end if;
Next_Formal (Form1);
Next_Formal (Form2);
end loop;
end;
end if;
-- If there is an overridden subprogram, then check that there is no
-- "not overriding" indicator, and mark the subprogram as overriding.
-- This is not done if the overridden subprogram is marked as hidden,
-- which can occur for the case of inherited controlled operations
-- (see Derive_Subprogram), unless the inherited subprogram's parent
-- subprogram is not itself hidden. (Note: This condition could probably
-- be simplified, leaving out the testing for the specific controlled
-- cases, but it seems safer and clearer this way, and echoes similar
-- special-case tests of this kind in other places.)
if Present (Overridden_Subp)
and then (not Is_Hidden (Overridden_Subp)
or else
(Nam_In (Chars (Overridden_Subp), Name_Initialize,
Name_Adjust,
Name_Finalize)
and then Present (Alias (Overridden_Subp))
and then not Is_Hidden (Alias (Overridden_Subp))))
then
if Must_Not_Override (Spec) then
Error_Msg_Sloc := Sloc (Overridden_Subp);
if Ekind (Subp) = E_Entry then
Error_Msg_NE
("entry & overrides inherited operation #", Spec, Subp);
else
Error_Msg_NE
("subprogram & overrides inherited operation #", Spec, Subp);
end if;
-- Special-case to fix a GNAT oddity: Limited_Controlled is declared
-- as an extension of Root_Controlled, and thus has a useless Adjust
-- operation. This operation should not be inherited by other limited
-- controlled types. An explicit Adjust for them is not overriding.
elsif Must_Override (Spec)
and then Chars (Overridden_Subp) = Name_Adjust
and then Is_Limited_Type (Etype (First_Formal (Subp)))
and then Present (Alias (Overridden_Subp))
and then
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
then
Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
elsif Is_Subprogram (Subp) then
if Is_Init_Proc (Subp) then
null;
elsif No (Overridden_Operation (Subp)) then
-- For entities generated by Derive_Subprograms the overridden
-- operation is the inherited primitive (which is available
-- through the attribute alias)
if (Is_Dispatching_Operation (Subp)
or else Is_Dispatching_Operation (Overridden_Subp))
and then not Comes_From_Source (Overridden_Subp)
and then Find_Dispatching_Type (Overridden_Subp) =
Find_Dispatching_Type (Subp)
and then Present (Alias (Overridden_Subp))
and then Comes_From_Source (Alias (Overridden_Subp))
then
Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
else
Set_Overridden_Operation (Subp, Overridden_Subp);
end if;
end if;
end if;
-- If primitive flag is set or this is a protected operation, then
-- the operation is overriding at the point of its declaration, so
-- warn if necessary. Otherwise it may have been declared before the
-- operation it overrides and no check is required.
if Style_Check
and then not Must_Override (Spec)
and then (Is_Primitive
or else Ekind (Scope (Subp)) = E_Protected_Type)
then
Style.Missing_Overriding (Decl, Subp);
end if;
-- If Subp is an operator, it may override a predefined operation, if
-- it is defined in the same scope as the type to which it applies.
-- In that case Overridden_Subp is empty because of our implicit
-- representation for predefined operators. We have to check whether the
-- signature of Subp matches that of a predefined operator. Note that
-- first argument provides the name of the operator, and the second
-- argument the signature that may match that of a standard operation.
-- If the indicator is overriding, then the operator must match a
-- predefined signature, because we know already that there is no
-- explicit overridden operation.
elsif Nkind (Subp) = N_Defining_Operator_Symbol then
if Must_Not_Override (Spec) then
-- If this is not a primitive or a protected subprogram, then
-- "not overriding" is illegal.
if not Is_Primitive
and then Ekind (Scope (Subp)) /= E_Protected_Type
then
Error_Msg_N
("overriding indicator only allowed "
& "if subprogram is primitive", Subp);
elsif Can_Override_Operator (Subp) then
Error_Msg_NE
("subprogram& overrides predefined operator ", Spec, Subp);
end if;
elsif Must_Override (Spec) then
if No (Overridden_Operation (Subp))
and then not Can_Override_Operator (Subp)
then
Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
end if;
elsif not Error_Posted (Subp)
and then Style_Check
and then Can_Override_Operator (Subp)
and then
not Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Subp)))
then
-- If style checks are enabled, indicate that the indicator is
-- missing. However, at the point of declaration, the type of
-- which this is a primitive operation may be private, in which
-- case the indicator would be premature.
if Has_Private_Declaration (Etype (Subp))
or else Has_Private_Declaration (Etype (First_Formal (Subp)))
then
null;
else
Style.Missing_Overriding (Decl, Subp);
end if;
end if;
elsif Must_Override (Spec) then
if Ekind (Subp) = E_Entry then
Error_Msg_NE ("entry & is not overriding", Spec, Subp);
else
Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
end if;
-- If the operation is marked "not overriding" and it's not primitive
-- then an error is issued, unless this is an operation of a task or
-- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
-- has been specified have already been checked above.
elsif Must_Not_Override (Spec)
and then not Is_Primitive
and then Ekind (Subp) /= E_Entry
and then Ekind (Scope (Subp)) /= E_Protected_Type
then
Error_Msg_N
("overriding indicator only allowed if subprogram is primitive",
Subp);
return;
end if;
end Check_Overriding_Indicator;
-------------------
-- Check_Returns --
-------------------
-- Note: this procedure needs to know far too much about how the expander
-- messes with exceptions. The use of the flag Exception_Junk and the
-- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
-- works, but is not very clean. It would be better if the expansion
-- routines would leave Original_Node working nicely, and we could use
-- Original_Node here to ignore all the peculiar expander messing ???
procedure Check_Returns
(HSS : Node_Id;
Mode : Character;
Err : out Boolean;
Proc : Entity_Id := Empty)
is
Handler : Node_Id;
procedure Check_Statement_Sequence (L : List_Id);
-- Internal recursive procedure to check a list of statements for proper
-- termination by a return statement (or a transfer of control or a
-- compound statement that is itself internally properly terminated).
------------------------------
-- Check_Statement_Sequence --
------------------------------
procedure Check_Statement_Sequence (L : List_Id) is
Last_Stm : Node_Id;
Stm : Node_Id;
Kind : Node_Kind;
Raise_Exception_Call : Boolean;
-- Set True if statement sequence terminated by Raise_Exception call
-- or a Reraise_Occurrence call.
begin
Raise_Exception_Call := False;
-- Get last real statement
Last_Stm := Last (L);
-- Deal with digging out exception handler statement sequences that
-- have been transformed by the local raise to goto optimization.
-- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
-- optimization has occurred, we are looking at something like:
-- begin
-- original stmts in block
-- exception \
-- when excep1 => |
-- goto L1; | omitted if No_Exception_Propagation
-- when excep2 => |
-- goto L2; /
-- end;
-- goto L3; -- skip handler when exception not raised
-- <<L1>> -- target label for local exception
-- begin
-- estmts1
-- end;
-- goto L3;
-- <<L2>>
-- begin
-- estmts2
-- end;
-- <<L3>>
-- and what we have to do is to dig out the estmts1 and estmts2
-- sequences (which were the original sequences of statements in
-- the exception handlers) and check them.
if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
Stm := Last_Stm;
loop
Prev (Stm);
exit when No (Stm);
exit when Nkind (Stm) /= N_Block_Statement;
exit when not Exception_Junk (Stm);
Prev (Stm);
exit when No (Stm);
exit when Nkind (Stm) /= N_Label;
exit when not Exception_Junk (Stm);
Check_Statement_Sequence
(Statements (Handled_Statement_Sequence (Next (Stm))));
Prev (Stm);
Last_Stm := Stm;
exit when No (Stm);
exit when Nkind (Stm) /= N_Goto_Statement;
exit when not Exception_Junk (Stm);
end loop;
end if;
-- Don't count pragmas
while Nkind (Last_Stm) = N_Pragma
-- Don't count call to SS_Release (can happen after Raise_Exception)
or else
(Nkind (Last_Stm) = N_Procedure_Call_Statement
and then
Nkind (Name (Last_Stm)) = N_Identifier
and then
Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
-- Don't count exception junk
or else
(Nkind_In (Last_Stm, N_Goto_Statement,
N_Label,
N_Object_Declaration)
and then Exception_Junk (Last_Stm))
or else Nkind (Last_Stm) in N_Push_xxx_Label
or else Nkind (Last_Stm) in N_Pop_xxx_Label
-- Inserted code, such as finalization calls, is irrelevant: we only
-- need to check original source.
or else Is_Rewrite_Insertion (Last_Stm)
loop
Prev (Last_Stm);
end loop;
-- Here we have the "real" last statement
Kind := Nkind (Last_Stm);
-- Transfer of control, OK. Note that in the No_Return procedure
-- case, we already diagnosed any explicit return statements, so
-- we can treat them as OK in this context.
if Is_Transfer (Last_Stm) then
return;
-- Check cases of explicit non-indirect procedure calls
elsif Kind = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Last_Stm))
then
-- Check call to Raise_Exception procedure which is treated
-- specially, as is a call to Reraise_Occurrence.
-- We suppress the warning in these cases since it is likely that
-- the programmer really does not expect to deal with the case
-- of Null_Occurrence, and thus would find a warning about a
-- missing return curious, and raising Program_Error does not
-- seem such a bad behavior if this does occur.
-- Note that in the Ada 2005 case for Raise_Exception, the actual
-- behavior will be to raise Constraint_Error (see AI-329).
if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
or else
Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
then
Raise_Exception_Call := True;
-- For Raise_Exception call, test first argument, if it is
-- an attribute reference for a 'Identity call, then we know
-- that the call cannot possibly return.
declare
Arg : constant Node_Id :=
Original_Node (First_Actual (Last_Stm));
begin
if Nkind (Arg) = N_Attribute_Reference
and then Attribute_Name (Arg) = Name_Identity
then
return;
end if;
end;
end if;
-- If statement, need to look inside if there is an else and check
-- each constituent statement sequence for proper termination.
elsif Kind = N_If_Statement
and then Present (Else_Statements (Last_Stm))
then
Check_Statement_Sequence (Then_Statements (Last_Stm));
Check_Statement_Sequence (Else_Statements (Last_Stm));
if Present (Elsif_Parts (Last_Stm)) then
declare
Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
begin
while Present (Elsif_Part) loop
Check_Statement_Sequence (Then_Statements (Elsif_Part));
Next (Elsif_Part);
end loop;
end;
end if;
return;
-- Case statement, check each case for proper termination
elsif Kind = N_Case_Statement then
declare
Case_Alt : Node_Id;
begin
Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
while Present (Case_Alt) loop
Check_Statement_Sequence (Statements (Case_Alt));
Next_Non_Pragma (Case_Alt);
end loop;
end;
return;
-- Block statement, check its handled sequence of statements
elsif Kind = N_Block_Statement then
declare
Err1 : Boolean;
begin
Check_Returns
(Handled_Statement_Sequence (Last_Stm), Mode, Err1);
if Err1 then
Err := True;
end if;
return;
end;
-- Loop statement. If there is an iteration scheme, we can definitely
-- fall out of the loop. Similarly if there is an exit statement, we
-- can fall out. In either case we need a following return.
elsif Kind = N_Loop_Statement then
if Present (Iteration_Scheme (Last_Stm))
or else Has_Exit (Entity (Identifier (Last_Stm)))
then
null;
-- A loop with no exit statement or iteration scheme is either
-- an infinite loop, or it has some other exit (raise/return).
-- In either case, no warning is required.
else
return;
end if;
-- Timed entry call, check entry call and delay alternatives
-- Note: in expanded code, the timed entry call has been converted
-- to a set of expanded statements on which the check will work
-- correctly in any case.
elsif Kind = N_Timed_Entry_Call then
declare
ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
DCA : constant Node_Id := Delay_Alternative (Last_Stm);
begin
-- If statement sequence of entry call alternative is missing,
-- then we can definitely fall through, and we post the error
-- message on the entry call alternative itself.
if No (Statements (ECA)) then
Last_Stm := ECA;
-- If statement sequence of delay alternative is missing, then
-- we can definitely fall through, and we post the error
-- message on the delay alternative itself.
-- Note: if both ECA and DCA are missing the return, then we
-- post only one message, should be enough to fix the bugs.
-- If not we will get a message next time on the DCA when the
-- ECA is fixed!
elsif No (Statements (DCA)) then
Last_Stm := DCA;
-- Else check both statement sequences
else
Check_Statement_Sequence (Statements (ECA));
Check_Statement_Sequence (Statements (DCA));
return;
end if;
end;
-- Conditional entry call, check entry call and else part
-- Note: in expanded code, the conditional entry call has been
-- converted to a set of expanded statements on which the check
-- will work correctly in any case.
elsif Kind = N_Conditional_Entry_Call then
declare
ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
begin
-- If statement sequence of entry call alternative is missing,
-- then we can definitely fall through, and we post the error
-- message on the entry call alternative itself.
if No (Statements (ECA)) then
Last_Stm := ECA;
-- Else check statement sequence and else part
else
Check_Statement_Sequence (Statements (ECA));
Check_Statement_Sequence (Else_Statements (Last_Stm));
return;
end if;
end;
end if;
-- If we fall through, issue appropriate message
if Mode = 'F' then
if not Raise_Exception_Call then
Error_Msg_N
("RETURN statement missing following this statement??!",
Last_Stm);
Error_Msg_N
("\Program_Error may be raised at run time??!",
Last_Stm);
end if;
-- Note: we set Err even though we have not issued a warning
-- because we still have a case of a missing return. This is
-- an extremely marginal case, probably will never be noticed
-- but we might as well get it right.
Err := True;
-- Otherwise we have the case of a procedure marked No_Return
else
if not Raise_Exception_Call then
Error_Msg_N
("implied return after this statement " &
"will raise Program_Error??",
Last_Stm);
Error_Msg_NE
("\procedure & is marked as No_Return??!",
Last_Stm, Proc);
end if;
declare
RE : constant Node_Id :=
Make_Raise_Program_Error (Sloc (Last_Stm),
Reason => PE_Implicit_Return);
begin
Insert_After (Last_Stm, RE);
Analyze (RE);
end;
end if;
end Check_Statement_Sequence;
-- Start of processing for Check_Returns
begin
Err := False;
Check_Statement_Sequence (Statements (HSS));
if Present (Exception_Handlers (HSS)) then
Handler := First_Non_Pragma (Exception_Handlers (HSS));
while Present (Handler) loop
Check_Statement_Sequence (Statements (Handler));
Next_Non_Pragma (Handler);
end loop;
end if;
end Check_Returns;
----------------------------
-- Check_Subprogram_Order --
----------------------------
procedure Check_Subprogram_Order (N : Node_Id) is
function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
-- This is used to check if S1 > S2 in the sense required by this test,
-- for example nameab < namec, but name2 < name10.
-----------------------------
-- Subprogram_Name_Greater --
-----------------------------
function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
L1, L2 : Positive;
N1, N2 : Natural;
begin
-- Deal with special case where names are identical except for a
-- numerical suffix. These are handled specially, taking the numeric
-- ordering from the suffix into account.
L1 := S1'Last;
while S1 (L1) in '0' .. '9' loop
L1 := L1 - 1;
end loop;
L2 := S2'Last;
while S2 (L2) in '0' .. '9' loop
L2 := L2 - 1;
end loop;
-- If non-numeric parts non-equal, do straight compare
if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
return S1 > S2;
-- If non-numeric parts equal, compare suffixed numeric parts. Note
-- that a missing suffix is treated as numeric zero in this test.
else
N1 := 0;
while L1 < S1'Last loop
L1 := L1 + 1;
N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
end loop;
N2 := 0;
while L2 < S2'Last loop
L2 := L2 + 1;
N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
end loop;
return N1 > N2;
end if;
end Subprogram_Name_Greater;
-- Start of processing for Check_Subprogram_Order
begin
-- Check body in alpha order if this is option
if Style_Check
and then Style_Check_Order_Subprograms
and then Nkind (N) = N_Subprogram_Body
and then Comes_From_Source (N)
and then In_Extended_Main_Source_Unit (N)
then
declare
LSN : String_Ptr
renames Scope_Stack.Table
(Scope_Stack.Last).Last_Subprogram_Name;
Body_Id : constant Entity_Id :=
Defining_Entity (Specification (N));
begin
Get_Decoded_Name_String (Chars (Body_Id));
if LSN /= null then
if Subprogram_Name_Greater
(LSN.all, Name_Buffer (1 .. Name_Len))
then
Style.Subprogram_Not_In_Alpha_Order (Body_Id);
end if;
Free (LSN);
end if;
LSN := new String'(Name_Buffer (1 .. Name_Len));
end;
end if;
end Check_Subprogram_Order;
------------------------------
-- Check_Subtype_Conformant --
------------------------------
procedure Check_Subtype_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty;
Skip_Controlling_Formals : Boolean := False;
Get_Inst : Boolean := False)
is
Result : Boolean;
pragma Warnings (Off, Result);
begin
Check_Conformance
(New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
Skip_Controlling_Formals => Skip_Controlling_Formals,
Get_Inst => Get_Inst);
end Check_Subtype_Conformant;
---------------------------
-- Check_Type_Conformant --
---------------------------
procedure Check_Type_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id := Empty)
is
Result : Boolean;
pragma Warnings (Off, Result);
begin
Check_Conformance
(New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
end Check_Type_Conformant;
---------------------------
-- Can_Override_Operator --
---------------------------
function Can_Override_Operator (Subp : Entity_Id) return Boolean is
Typ : Entity_Id;
begin
if Nkind (Subp) /= N_Defining_Operator_Symbol then
return False;
else
Typ := Base_Type (Etype (First_Formal (Subp)));
-- Check explicitly that the operation is a primitive of the type
return Operator_Matches_Spec (Subp, Subp)
and then not Is_Generic_Type (Typ)
and then Scope (Subp) = Scope (Typ)
and then not Is_Class_Wide_Type (Typ);
end if;
end Can_Override_Operator;
----------------------
-- Conforming_Types --
----------------------
function Conforming_Types
(T1 : Entity_Id;
T2 : Entity_Id;
Ctype : Conformance_Type;
Get_Inst : Boolean := False) return Boolean
is
Type_1 : Entity_Id := T1;
Type_2 : Entity_Id := T2;
Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
-- If neither T1 nor T2 are generic actual types, or if they are in
-- different scopes (e.g. parent and child instances), then verify that
-- the base types are equal. Otherwise T1 and T2 must be on the same
-- subtype chain. The whole purpose of this procedure is to prevent
-- spurious ambiguities in an instantiation that may arise if two
-- distinct generic types are instantiated with the same actual.
function Find_Designated_Type (T : Entity_Id) return Entity_Id;
-- An access parameter can designate an incomplete type. If the
-- incomplete type is the limited view of a type from a limited_
-- with_clause, check whether the non-limited view is available. If
-- it is a (non-limited) incomplete type, get the full view.
function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
-- Returns True if and only if either T1 denotes a limited view of T2
-- or T2 denotes a limited view of T1. This can arise when the limited
-- with view of a type is used in a subprogram declaration and the
-- subprogram body is in the scope of a regular with clause for the
-- same unit. In such a case, the two type entities can be considered
-- identical for purposes of conformance checking.
----------------------
-- Base_Types_Match --
----------------------
function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
BT1 : constant Entity_Id := Base_Type (T1);
BT2 : constant Entity_Id := Base_Type (T2);
begin
if T1 = T2 then
return True;
elsif BT1 = BT2 then
-- The following is too permissive. A more precise test should
-- check that the generic actual is an ancestor subtype of the
-- other ???.
-- See code in Find_Corresponding_Spec that applies an additional
-- filter to handle accidental amiguities in instances.
return not Is_Generic_Actual_Type (T1)
or else not Is_Generic_Actual_Type (T2)
or else Scope (T1) /= Scope (T2);
-- If T2 is a generic actual type it is declared as the subtype of
-- the actual. If that actual is itself a subtype we need to use its
-- own base type to check for compatibility.
elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
return True;
elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
return True;
else
return False;
end if;
end Base_Types_Match;
--------------------------
-- Find_Designated_Type --
--------------------------
function Find_Designated_Type (T : Entity_Id) return Entity_Id is
Desig : Entity_Id;
begin
Desig := Directly_Designated_Type (T);
if Ekind (Desig) = E_Incomplete_Type then
-- If regular incomplete type, get full view if available
if Present (Full_View (Desig)) then
Desig := Full_View (Desig);
-- If limited view of a type, get non-limited view if available,
-- and check again for a regular incomplete type.
elsif Present (Non_Limited_View (Desig)) then
Desig := Get_Full_View (Non_Limited_View (Desig));
end if;
end if;
return Desig;
end Find_Designated_Type;
-------------------------------
-- Matches_Limited_With_View --
-------------------------------
function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
begin
-- In some cases a type imported through a limited_with clause, and
-- its nonlimited view are both visible, for example in an anonymous
-- access-to-class-wide type in a formal. Both entities designate the
-- same type.
if From_With_Type (T1) and then T2 = Available_View (T1) then
return True;
elsif From_With_Type (T2) and then T1 = Available_View (T2) then
return True;
elsif From_With_Type (T1)
and then From_With_Type (T2)
and then Available_View (T1) = Available_View (T2)
then
return True;
else
return False;
end if;
end Matches_Limited_With_View;
-- Start of processing for Conforming_Types
begin
-- The context is an instance association for a formal access-to-
-- subprogram type; the formal parameter types require mapping because
-- they may denote other formal parameters of the generic unit.
if Get_Inst then
Type_1 := Get_Instance_Of (T1);
Type_2 := Get_Instance_Of (T2);
end if;
-- If one of the types is a view of the other introduced by a limited
-- with clause, treat these as conforming for all purposes.
if Matches_Limited_With_View (T1, T2) then
return True;
elsif Base_Types_Match (Type_1, Type_2) then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Type_1, Type_2);
elsif Is_Incomplete_Or_Private_Type (Type_1)
and then Present (Full_View (Type_1))
and then Base_Types_Match (Full_View (Type_1), Type_2)
then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
elsif Ekind (Type_2) = E_Incomplete_Type
and then Present (Full_View (Type_2))
and then Base_Types_Match (Type_1, Full_View (Type_2))
then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
elsif Is_Private_Type (Type_2)
and then In_Instance
and then Present (Full_View (Type_2))
and then Base_Types_Match (Type_1, Full_View (Type_2))
then
return Ctype <= Mode_Conformant
or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
end if;
-- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
-- treated recursively because they carry a signature. As far as
-- conformance is concerned, convention plays no role, and either
-- or both could be access to protected subprograms.
Are_Anonymous_Access_To_Subprogram_Types :=
Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
E_Anonymous_Access_Protected_Subprogram_Type)
and then
Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
E_Anonymous_Access_Protected_Subprogram_Type);
-- Test anonymous access type case. For this case, static subtype
-- matching is required for mode conformance (RM 6.3.1(15)). We check
-- the base types because we may have built internal subtype entities
-- to handle null-excluding types (see Process_Formals).
if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
and then
Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
-- Ada 2005 (AI-254)
or else Are_Anonymous_Access_To_Subprogram_Types
then
declare
Desig_1 : Entity_Id;
Desig_2 : Entity_Id;
begin
-- In Ada 2005, access constant indicators must match for
-- subtype conformance.
if Ada_Version >= Ada_2005
and then Ctype >= Subtype_Conformant
and then
Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
then
return False;
end if;
Desig_1 := Find_Designated_Type (Type_1);
Desig_2 := Find_Designated_Type (Type_2);
-- If the context is an instance association for a formal
-- access-to-subprogram type; formal access parameter designated
-- types require mapping because they may denote other formal
-- parameters of the generic unit.
if Get_Inst then
Desig_1 := Get_Instance_Of (Desig_1);
Desig_2 := Get_Instance_Of (Desig_2);
end if;
-- It is possible for a Class_Wide_Type to be introduced for an
-- incomplete type, in which case there is a separate class_ wide
-- type for the full view. The types conform if their Etypes
-- conform, i.e. one may be the full view of the other. This can
-- only happen in the context of an access parameter, other uses
-- of an incomplete Class_Wide_Type are illegal.
if Is_Class_Wide_Type (Desig_1)
and then
Is_Class_Wide_Type (Desig_2)
then
return
Conforming_Types
(Etype (Base_Type (Desig_1)),
Etype (Base_Type (Desig_2)), Ctype);
elsif Are_Anonymous_Access_To_Subprogram_Types then
if Ada_Version < Ada_2005 then
return Ctype = Type_Conformant
or else
Subtypes_Statically_Match (Desig_1, Desig_2);
-- We must check the conformance of the signatures themselves
else
declare
Conformant : Boolean;
begin
Check_Conformance
(Desig_1, Desig_2, Ctype, False, Conformant);
return Conformant;
end;
end if;
else
return Base_Type (Desig_1) = Base_Type (Desig_2)
and then (Ctype = Type_Conformant
or else
Subtypes_Statically_Match (Desig_1, Desig_2));
end if;
end;
-- Otherwise definitely no match
else
if ((Ekind (Type_1) = E_Anonymous_Access_Type
and then Is_Access_Type (Type_2))
or else (Ekind (Type_2) = E_Anonymous_Access_Type
and then Is_Access_Type (Type_1)))
and then
Conforming_Types
(Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
then
May_Hide_Profile := True;
end if;
return False;
end if;
end Conforming_Types;
--------------------------
-- Create_Extra_Formals --
--------------------------
procedure Create_Extra_Formals (E : Entity_Id) is
Formal : Entity_Id;
First_Extra : Entity_Id := Empty;
Last_Extra : Entity_Id;
Formal_Type : Entity_Id;
P_Formal : Entity_Id := Empty;
function Add_Extra_Formal
(Assoc_Entity : Entity_Id;
Typ : Entity_Id;
Scope : Entity_Id;
Suffix : String) return Entity_Id;
-- Add an extra formal to the current list of formals and extra formals.
-- The extra formal is added to the end of the list of extra formals,
-- and also returned as the result. These formals are always of mode IN.
-- The new formal has the type Typ, is declared in Scope, and its name
-- is given by a concatenation of the name of Assoc_Entity and Suffix.
-- The following suffixes are currently used. They should not be changed
-- without coordinating with CodePeer, which makes use of these to
-- provide better messages.
-- O denotes the Constrained bit.
-- L denotes the accessibility level.
-- BIP_xxx denotes an extra formal for a build-in-place function. See
-- the full list in exp_ch6.BIP_Formal_Kind.
----------------------
-- Add_Extra_Formal --
----------------------
function Add_Extra_Formal
(Assoc_Entity : Entity_Id;
Typ : Entity_Id;
Scope : Entity_Id;
Suffix : String) return Entity_Id
is
EF : constant Entity_Id :=
Make_Defining_Identifier (Sloc (Assoc_Entity),
Chars => New_External_Name (Chars (Assoc_Entity),
Suffix => Suffix));
begin
-- A little optimization. Never generate an extra formal for the
-- _init operand of an initialization procedure, since it could
-- never be used.
if Chars (Formal) = Name_uInit then
return Empty;
end if;
Set_Ekind (EF, E_In_Parameter);
Set_Actual_Subtype (EF, Typ);
Set_Etype (EF, Typ);
Set_Scope (EF, Scope);
Set_Mechanism (EF, Default_Mechanism);
Set_Formal_Validity (EF);
if No (First_Extra) then
First_Extra := EF;
Set_Extra_Formals (Scope, First_Extra);
end if;
if Present (Last_Extra) then
Set_Extra_Formal (Last_Extra, EF);
end if;
Last_Extra := EF;
return EF;
end Add_Extra_Formal;
-- Start of processing for Create_Extra_Formals
begin
-- We never generate extra formals if expansion is not active because we
-- don't need them unless we are generating code.
if not Expander_Active then
return;
end if;
-- No need to generate extra formals in interface thunks whose target
-- primitive has no extra formals.
if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
return;
end if;
-- If this is a derived subprogram then the subtypes of the parent
-- subprogram's formal parameters will be used to determine the need
-- for extra formals.
if Is_Overloadable (E) and then Present (Alias (E)) then
P_Formal := First_Formal (Alias (E));
end if;
Last_Extra := Empty;
Formal := First_Formal (E);
while Present (Formal) loop
Last_Extra := Formal;
Next_Formal (Formal);
end loop;
-- If Extra_formals were already created, don't do it again. This
-- situation may arise for subprogram types created as part of
-- dispatching calls (see Expand_Dispatching_Call)
if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
return;
end if;
-- If the subprogram is a predefined dispatching subprogram then don't
-- generate any extra constrained or accessibility level formals. In
-- general we suppress these for internal subprograms (by not calling
-- Freeze_Subprogram and Create_Extra_Formals at all), but internally
-- generated stream attributes do get passed through because extra
-- build-in-place formals are needed in some cases (limited 'Input).
if Is_Predefined_Internal_Operation (E) then
goto Test_For_Func_Result_Extras;
end if;
Formal := First_Formal (E);
while Present (Formal) loop
-- Create extra formal for supporting the attribute 'Constrained.
-- The case of a private type view without discriminants also
-- requires the extra formal if the underlying type has defaulted
-- discriminants.
if Ekind (Formal) /= E_In_Parameter then
if Present (P_Formal) then
Formal_Type := Etype (P_Formal);
else
Formal_Type := Etype (Formal);
end if;
-- Do not produce extra formals for Unchecked_Union parameters.
-- Jump directly to the end of the loop.
if Is_Unchecked_Union (Base_Type (Formal_Type)) then
goto Skip_Extra_Formal_Generation;
end if;
if not Has_Discriminants (Formal_Type)
and then Ekind (Formal_Type) in Private_Kind
and then Present (Underlying_Type (Formal_Type))
then
Formal_Type := Underlying_Type (Formal_Type);
end if;
-- Suppress the extra formal if formal's subtype is constrained or
-- indefinite, or we're compiling for Ada 2012 and the underlying
-- type is tagged and limited. In Ada 2012, a limited tagged type
-- can have defaulted discriminants, but 'Constrained is required
-- to return True, so the formal is never needed (see AI05-0214).
-- Note that this ensures consistency of calling sequences for
-- dispatching operations when some types in a class have defaults
-- on discriminants and others do not (and requiring the extra
-- formal would introduce distributed overhead).
-- If the type does not have a completion yet, treat as prior to
-- Ada 2012 for consistency.
if Has_Discriminants (Formal_Type)
and then not Is_Constrained (Formal_Type)
and then not Is_Indefinite_Subtype (Formal_Type)
and then (Ada_Version < Ada_2012
or else No (Underlying_Type (Formal_Type))
or else not
(Is_Limited_Type (Formal_Type)
and then
(Is_Tagged_Type
(Underlying_Type (Formal_Type)))))
then
Set_Extra_Constrained
(Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
end if;
end if;
-- Create extra formal for supporting accessibility checking. This
-- is done for both anonymous access formals and formals of named
-- access types that are marked as controlling formals. The latter
-- case can occur when Expand_Dispatching_Call creates a subprogram
-- type and substitutes the types of access-to-class-wide actuals
-- for the anonymous access-to-specific-type of controlling formals.
-- Base_Type is applied because in cases where there is a null
-- exclusion the formal may have an access subtype.
-- This is suppressed if we specifically suppress accessibility
-- checks at the package level for either the subprogram, or the
-- package in which it resides. However, we do not suppress it
-- simply if the scope has accessibility checks suppressed, since
-- this could cause trouble when clients are compiled with a
-- different suppression setting. The explicit checks at the
-- package level are safe from this point of view.
if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
or else (Is_Controlling_Formal (Formal)
and then Is_Access_Type (Base_Type (Etype (Formal)))))
and then not
(Explicit_Suppress (E, Accessibility_Check)
or else
Explicit_Suppress (Scope (E), Accessibility_Check))
and then
(No (P_Formal)
or else Present (Extra_Accessibility (P_Formal)))
then
Set_Extra_Accessibility
(Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
end if;
-- This label is required when skipping extra formal generation for
-- Unchecked_Union parameters.
<<Skip_Extra_Formal_Generation>>
if Present (P_Formal) then
Next_Formal (P_Formal);
end if;
Next_Formal (Formal);
end loop;
<<Test_For_Func_Result_Extras>>
-- Ada 2012 (AI05-234): "the accessibility level of the result of a
-- function call is ... determined by the point of call ...".
if Needs_Result_Accessibility_Level (E) then
Set_Extra_Accessibility_Of_Result
(E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
end if;
-- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
-- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
declare
Result_Subt : constant Entity_Id := Etype (E);
Full_Subt : constant Entity_Id := Available_View (Result_Subt);
Formal_Typ : Entity_Id;
Discard : Entity_Id;
pragma Warnings (Off, Discard);
begin
-- In the case of functions with unconstrained result subtypes,
-- add a 4-state formal indicating whether the return object is
-- allocated by the caller (1), or should be allocated by the
-- callee on the secondary stack (2), in the global heap (3), or
-- in a user-defined storage pool (4). For the moment we just use
-- Natural for the type of this formal. Note that this formal
-- isn't usually needed in the case where the result subtype is
-- constrained, but it is needed when the function has a tagged
-- result, because generally such functions can be called in a
-- dispatching context and such calls must be handled like calls
-- to a class-wide function.
if Needs_BIP_Alloc_Form (E) then
Discard :=
Add_Extra_Formal
(E, Standard_Natural,
E, BIP_Formal_Suffix (BIP_Alloc_Form));
-- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
-- use a user-defined pool. This formal is not added on
-- .NET/JVM/ZFP as those targets do not support pools.
if VM_Target = No_VM
and then RTE_Available (RE_Root_Storage_Pool_Ptr)
then
Discard :=
Add_Extra_Formal
(E, RTE (RE_Root_Storage_Pool_Ptr),
E, BIP_Formal_Suffix (BIP_Storage_Pool));
end if;
end if;
-- In the case of functions whose result type needs finalization,
-- add an extra formal which represents the finalization master.
if Needs_BIP_Finalization_Master (E) then
Discard :=
Add_Extra_Formal
(E, RTE (RE_Finalization_Master_Ptr),
E, BIP_Formal_Suffix (BIP_Finalization_Master));
end if;
-- When the result type contains tasks, add two extra formals: the
-- master of the tasks to be created, and the caller's activation
-- chain.
if Has_Task (Full_Subt) then
Discard :=
Add_Extra_Formal
(E, RTE (RE_Master_Id),
E, BIP_Formal_Suffix (BIP_Task_Master));
Discard :=
Add_Extra_Formal
(E, RTE (RE_Activation_Chain_Access),
E, BIP_Formal_Suffix (BIP_Activation_Chain));
end if;
-- All build-in-place functions get an extra formal that will be
-- passed the address of the return object within the caller.
Formal_Typ :=
Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
Set_Etype (Formal_Typ, Formal_Typ);
Set_Depends_On_Private
(Formal_Typ, Has_Private_Component (Formal_Typ));
Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
Set_Is_Access_Constant (Formal_Typ, False);
-- Ada 2005 (AI-50217): Propagate the attribute that indicates
-- the designated type comes from the limited view (for back-end
-- purposes).
Set_From_With_Type (Formal_Typ, From_With_Type (Result_Subt));
Layout_Type (Formal_Typ);
Discard :=
Add_Extra_Formal
(E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
end;
end if;
end Create_Extra_Formals;
-----------------------------
-- Enter_Overloaded_Entity --
-----------------------------
procedure Enter_Overloaded_Entity (S : Entity_Id) is
E : Entity_Id := Current_Entity_In_Scope (S);
C_E : Entity_Id := Current_Entity (S);
begin
if Present (E) then
Set_Has_Homonym (E);
Set_Has_Homonym (S);
end if;
Set_Is_Immediately_Visible (S);
Set_Scope (S, Current_Scope);
-- Chain new entity if front of homonym in current scope, so that
-- homonyms are contiguous.
if Present (E) and then E /= C_E then
while Homonym (C_E) /= E loop
C_E := Homonym (C_E);
end loop;
Set_Homonym (C_E, S);
else
E := C_E;
Set_Current_Entity (S);
end if;
Set_Homonym (S, E);
if Is_Inherited_Operation (S) then
Append_Inherited_Subprogram (S);
else
Append_Entity (S, Current_Scope);
end if;
Set_Public_Status (S);
if Debug_Flag_E then
Write_Str ("New overloaded entity chain: ");
Write_Name (Chars (S));
E := S;
while Present (E) loop
Write_Str (" "); Write_Int (Int (E));
E := Homonym (E);
end loop;
Write_Eol;
end if;
-- Generate warning for hiding
if Warn_On_Hiding
and then Comes_From_Source (S)
and then In_Extended_Main_Source_Unit (S)
then
E := S;
loop
E := Homonym (E);
exit when No (E);
-- Warn unless genuine overloading. Do not emit warning on
-- hiding predefined operators in Standard (these are either an
-- (artifact of our implicit declarations, or simple noise) but
-- keep warning on a operator defined on a local subtype, because
-- of the real danger that different operators may be applied in
-- various parts of the program.
-- Note that if E and S have the same scope, there is never any
-- hiding. Either the two conflict, and the program is illegal,
-- or S is overriding an implicit inherited subprogram.
if Scope (E) /= Scope (S)
and then (not Is_Overloadable (E)
or else Subtype_Conformant (E, S))
and then (Is_Immediately_Visible (E)
or else
Is_Potentially_Use_Visible (S))
then
if Scope (E) /= Standard_Standard then
Error_Msg_Sloc := Sloc (E);
Error_Msg_N ("declaration of & hides one#?h?", S);
elsif Nkind (S) = N_Defining_Operator_Symbol
and then
Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
then
Error_Msg_N
("declaration of & hides predefined operator?h?", S);
end if;
end if;
end loop;
end if;
end Enter_Overloaded_Entity;
-----------------------------
-- Check_Untagged_Equality --
-----------------------------
procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
Obj_Decl : Node_Id;
begin
if Nkind (Decl) = N_Subprogram_Declaration
and then Is_Record_Type (Typ)
and then not Is_Tagged_Type (Typ)
then
-- If the type is not declared in a package, or if we are in the
-- body of the package or in some other scope, the new operation is
-- not primitive, and therefore legal, though suspicious. If the
-- type is a generic actual (sub)type, the operation is not primitive
-- either because the base type is declared elsewhere.
if Is_Frozen (Typ) then
if Ekind (Scope (Typ)) /= E_Package
or else Scope (Typ) /= Current_Scope
then
null;
elsif Is_Generic_Actual_Type (Typ) then
null;
elsif In_Package_Body (Scope (Typ)) then
Error_Msg_NE
("equality operator must be declared "
& "before type& is frozen", Eq_Op, Typ);
Error_Msg_N
("\move declaration to package spec", Eq_Op);
else
Error_Msg_NE
("equality operator must be declared "
& "before type& is frozen", Eq_Op, Typ);
Obj_Decl := Next (Parent (Typ));
while Present (Obj_Decl) and then Obj_Decl /= Decl loop
if Nkind (Obj_Decl) = N_Object_Declaration
and then Etype (Defining_Identifier (Obj_Decl)) = Typ
then
Error_Msg_NE
("type& is frozen by declaration??", Obj_Decl, Typ);
Error_Msg_N
("\an equality operator cannot be declared after this "
& "point (RM 4.5.2 (9.8)) (Ada 2012))??", Obj_Decl);
exit;
end if;
Next (Obj_Decl);
end loop;
end if;
elsif not In_Same_List (Parent (Typ), Decl)
and then not Is_Limited_Type (Typ)
then
-- This makes it illegal to have a primitive equality declared in
-- the private part if the type is visible.
Error_Msg_N ("equality operator appears too late", Eq_Op);
end if;
end if;
end Check_Untagged_Equality;
-----------------------------
-- Find_Corresponding_Spec --
-----------------------------
function Find_Corresponding_Spec
(N : Node_Id;
Post_Error : Boolean := True) return Entity_Id
is
Spec : constant Node_Id := Specification (N);
Designator : constant Entity_Id := Defining_Entity (Spec);
E : Entity_Id;
function Different_Generic_Profile (E : Entity_Id) return Boolean;
-- Even if fully conformant, a body may depend on a generic actual when
-- the spec does not, or vice versa, in which case they were distinct
-- entities in the generic.
-------------------------------
-- Different_Generic_Profile --
-------------------------------
function Different_Generic_Profile (E : Entity_Id) return Boolean is
F1, F2 : Entity_Id;
function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
-- Check that the types of corresponding formals have the same
-- generic actual if any. We have to account for subtypes of a
-- generic formal, declared between a spec and a body, which may
-- appear distinct in an instance but matched in the generic.
-------------------------
-- Same_Generic_Actual --
-------------------------
function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
begin
return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
or else
(Present (Parent (T1))
and then Comes_From_Source (Parent (T1))
and then Nkind (Parent (T1)) = N_Subtype_Declaration
and then Is_Entity_Name (Subtype_Indication (Parent (T1)))
and then Entity (Subtype_Indication (Parent (T1))) = T2);
end Same_Generic_Actual;
-- Start of processing for Different_Generic_Profile
begin
if not In_Instance then
return False;
elsif Ekind (E) = E_Function
and then not Same_Generic_Actual (Etype (E), Etype (Designator))
then
return True;
end if;
F1 := First_Formal (Designator);
F2 := First_Formal (E);
while Present (F1) loop
if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
return True;
end if;
Next_Formal (F1);
Next_Formal (F2);
end loop;
return False;
end Different_Generic_Profile;
-- Start of processing for Find_Corresponding_Spec
begin
E := Current_Entity (Designator);
while Present (E) loop
-- We are looking for a matching spec. It must have the same scope,
-- and the same name, and either be type conformant, or be the case
-- of a library procedure spec and its body (which belong to one
-- another regardless of whether they are type conformant or not).
if Scope (E) = Current_Scope then
if Current_Scope = Standard_Standard
or else (Ekind (E) = Ekind (Designator)
and then Type_Conformant (E, Designator))
then
-- Within an instantiation, we know that spec and body are
-- subtype conformant, because they were subtype conformant in
-- the generic. We choose the subtype-conformant entity here as
-- well, to resolve spurious ambiguities in the instance that
-- were not present in the generic (i.e. when two different
-- types are given the same actual). If we are looking for a
-- spec to match a body, full conformance is expected.
if In_Instance then
Set_Convention (Designator, Convention (E));
-- Skip past subprogram bodies and subprogram renamings that
-- may appear to have a matching spec, but that aren't fully
-- conformant with it. That can occur in cases where an
-- actual type causes unrelated homographs in the instance.
if Nkind_In (N, N_Subprogram_Body,
N_Subprogram_Renaming_Declaration)
and then Present (Homonym (E))
and then not Fully_Conformant (Designator, E)
then
goto Next_Entity;
elsif not Subtype_Conformant (Designator, E) then
goto Next_Entity;
elsif Different_Generic_Profile (E) then
goto Next_Entity;
end if;
end if;
-- Ada 2012 (AI05-0165): For internally generated bodies of
-- null procedures locate the internally generated spec. We
-- enforce mode conformance since a tagged type may inherit
-- from interfaces several null primitives which differ only
-- in the mode of the formals.
if not (Comes_From_Source (E))
and then Is_Null_Procedure (E)
and then not Mode_Conformant (Designator, E)
then
null;
-- For null procedures coming from source that are completions,
-- analysis of the generated body will establish the link.
elsif Comes_From_Source (E)
and then Nkind (Spec) = N_Procedure_Specification
and then Null_Present (Spec)
then
return E;
elsif not Has_Completion (E) then
if Nkind (N) /= N_Subprogram_Body_Stub then
Set_Corresponding_Spec (N, E);
end if;
Set_Has_Completion (E);
return E;
elsif Nkind (Parent (N)) = N_Subunit then
-- If this is the proper body of a subunit, the completion
-- flag is set when analyzing the stub.
return E;
-- If E is an internal function with a controlling result that
-- was created for an operation inherited by a null extension,
-- it may be overridden by a body without a previous spec (one
-- more reason why these should be shunned). In that case we
-- remove the generated body if present, because the current
-- one is the explicit overriding.
elsif Ekind (E) = E_Function
and then Ada_Version >= Ada_2005
and then not Comes_From_Source (E)
and then Has_Controlling_Result (E)
and then Is_Null_Extension (Etype (E))
and then Comes_From_Source (Spec)
then
Set_Has_Completion (E, False);
if Expander_Active
and then Nkind (Parent (E)) = N_Function_Specification
then
Remove
(Unit_Declaration_Node
(Corresponding_Body (Unit_Declaration_Node (E))));
return E;
-- If expansion is disabled, or if the wrapper function has
-- not been generated yet, this a late body overriding an
-- inherited operation, or it is an overriding by some other
-- declaration before the controlling result is frozen. In
-- either case this is a declaration of a new entity.
else
return Empty;
end if;
-- If the body already exists, then this is an error unless
-- the previous declaration is the implicit declaration of a
-- derived subprogram. It is also legal for an instance to
-- contain type conformant overloadable declarations (but the
-- generic declaration may not), per 8.3(26/2).
elsif No (Alias (E))
and then not Is_Intrinsic_Subprogram (E)
and then not In_Instance
and then Post_Error
then
Error_Msg_Sloc := Sloc (E);
if Is_Imported (E) then
Error_Msg_NE
("body not allowed for imported subprogram & declared#",
N, E);
else
Error_Msg_NE ("duplicate body for & declared#", N, E);
end if;
end if;
-- Child units cannot be overloaded, so a conformance mismatch
-- between body and a previous spec is an error.
elsif Is_Child_Unit (E)
and then
Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
and then
Nkind (Parent (Unit_Declaration_Node (Designator))) =
N_Compilation_Unit
and then Post_Error
then
Error_Msg_N
("body of child unit does not match previous declaration", N);
end if;
end if;
<<Next_Entity>>
E := Homonym (E);
end loop;
-- On exit, we know that no previous declaration of subprogram exists
return Empty;
end Find_Corresponding_Spec;
----------------------
-- Fully_Conformant --
----------------------
function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
Result : Boolean;
begin
Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
return Result;
end Fully_Conformant;
----------------------------------
-- Fully_Conformant_Expressions --
----------------------------------
function Fully_Conformant_Expressions
(Given_E1 : Node_Id;
Given_E2 : Node_Id) return Boolean
is
E1 : constant Node_Id := Original_Node (Given_E1);
E2 : constant Node_Id := Original_Node (Given_E2);
-- We always test conformance on original nodes, since it is possible
-- for analysis and/or expansion to make things look as though they
-- conform when they do not, e.g. by converting 1+2 into 3.
function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
renames Fully_Conformant_Expressions;
function FCL (L1, L2 : List_Id) return Boolean;
-- Compare elements of two lists for conformance. Elements have to be
-- conformant, and actuals inserted as default parameters do not match
-- explicit actuals with the same value.
function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
-- Compare an operator node with a function call
---------
-- FCL --
---------
function FCL (L1, L2 : List_Id) return Boolean is
N1, N2 : Node_Id;
begin
if L1 = No_List then
N1 := Empty;
else
N1 := First (L1);
end if;
if L2 = No_List then
N2 := Empty;
else
N2 := First (L2);
end if;
-- Compare two lists, skipping rewrite insertions (we want to compare
-- the original trees, not the expanded versions!)
loop
if Is_Rewrite_Insertion (N1) then
Next (N1);
elsif Is_Rewrite_Insertion (N2) then
Next (N2);
elsif No (N1) then
return No (N2);
elsif No (N2) then
return False;
elsif not FCE (N1, N2) then
return False;
else
Next (N1);
Next (N2);
end if;
end loop;
end FCL;
---------
-- FCO --
---------
function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
Actuals : constant List_Id := Parameter_Associations (Call_Node);
Act : Node_Id;
begin
if No (Actuals)
or else Entity (Op_Node) /= Entity (Name (Call_Node))
then
return False;
else
Act := First (Actuals);
if Nkind (Op_Node) in N_Binary_Op then
if not FCE (Left_Opnd (Op_Node), Act) then
return False;
end if;
Next (Act);
end if;
return Present (Act)
and then FCE (Right_Opnd (Op_Node), Act)
and then No (Next (Act));
end if;
end FCO;
-- Start of processing for Fully_Conformant_Expressions
begin
-- Non-conformant if paren count does not match. Note: if some idiot
-- complains that we don't do this right for more than 3 levels of
-- parentheses, they will be treated with the respect they deserve!
if Paren_Count (E1) /= Paren_Count (E2) then
return False;
-- If same entities are referenced, then they are conformant even if
-- they have different forms (RM 8.3.1(19-20)).
elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
if Present (Entity (E1)) then
return Entity (E1) = Entity (E2)
or else (Chars (Entity (E1)) = Chars (Entity (E2))
and then Ekind (Entity (E1)) = E_Discriminant
and then Ekind (Entity (E2)) = E_In_Parameter);
elsif Nkind (E1) = N_Expanded_Name
and then Nkind (E2) = N_Expanded_Name
and then Nkind (Selector_Name (E1)) = N_Character_Literal
and then Nkind (Selector_Name (E2)) = N_Character_Literal
then
return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
else
-- Identifiers in component associations don't always have
-- entities, but their names must conform.
return Nkind (E1) = N_Identifier
and then Nkind (E2) = N_Identifier
and then Chars (E1) = Chars (E2);
end if;
elsif Nkind (E1) = N_Character_Literal
and then Nkind (E2) = N_Expanded_Name
then
return Nkind (Selector_Name (E2)) = N_Character_Literal
and then Chars (E1) = Chars (Selector_Name (E2));
elsif Nkind (E2) = N_Character_Literal
and then Nkind (E1) = N_Expanded_Name
then
return Nkind (Selector_Name (E1)) = N_Character_Literal
and then Chars (E2) = Chars (Selector_Name (E1));
elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
return FCO (E1, E2);
elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
return FCO (E2, E1);
-- Otherwise we must have the same syntactic entity
elsif Nkind (E1) /= Nkind (E2) then
return False;
-- At this point, we specialize by node type
else
case Nkind (E1) is
when N_Aggregate =>
return
FCL (Expressions (E1), Expressions (E2))
and then
FCL (Component_Associations (E1),
Component_Associations (E2));
when N_Allocator =>
if Nkind (Expression (E1)) = N_Qualified_Expression
or else
Nkind (Expression (E2)) = N_Qualified_Expression
then
return FCE (Expression (E1), Expression (E2));
-- Check that the subtype marks and any constraints
-- are conformant
else
declare
Indic1 : constant Node_Id := Expression (E1);
Indic2 : constant Node_Id := Expression (E2);
Elt1 : Node_Id;
Elt2 : Node_Id;
begin
if Nkind (Indic1) /= N_Subtype_Indication then
return
Nkind (Indic2) /= N_Subtype_Indication
and then Entity (Indic1) = Entity (Indic2);
elsif Nkind (Indic2) /= N_Subtype_Indication then
return
Nkind (Indic1) /= N_Subtype_Indication
and then Entity (Indic1) = Entity (Indic2);
else
if Entity (Subtype_Mark (Indic1)) /=
Entity (Subtype_Mark (Indic2))
then
return False;
end if;
Elt1 := First (Constraints (Constraint (Indic1)));
Elt2 := First (Constraints (Constraint (Indic2)));
while Present (Elt1) and then Present (Elt2) loop
if not FCE (Elt1, Elt2) then
return False;
end if;
Next (Elt1);
Next (Elt2);
end loop;
return True;
end if;
end;
end if;
when N_Attribute_Reference =>
return
Attribute_Name (E1) = Attribute_Name (E2)
and then FCL (Expressions (E1), Expressions (E2));
when N_Binary_Op =>
return
Entity (E1) = Entity (E2)
and then FCE (Left_Opnd (E1), Left_Opnd (E2))
and then FCE (Right_Opnd (E1), Right_Opnd (E2));
when N_Short_Circuit | N_Membership_Test =>
return
FCE (Left_Opnd (E1), Left_Opnd (E2))
and then
FCE (Right_Opnd (E1), Right_Opnd (E2));
when N_Case_Expression =>
declare
Alt1 : Node_Id;
Alt2 : Node_Id;
begin
if not FCE (Expression (E1), Expression (E2)) then
return False;
else
Alt1 := First (Alternatives (E1));
Alt2 := First (Alternatives (E2));
loop
if Present (Alt1) /= Present (Alt2) then
return False;
elsif No (Alt1) then
return True;
end if;
if not FCE (Expression (Alt1), Expression (Alt2))
or else not FCL (Discrete_Choices (Alt1),
Discrete_Choices (Alt2))
then
return False;
end if;
Next (Alt1);
Next (Alt2);
end loop;
end if;
end;
when N_Character_Literal =>
return
Char_Literal_Value (E1) = Char_Literal_Value (E2);
when N_Component_Association =>
return
FCL (Choices (E1), Choices (E2))
and then
FCE (Expression (E1), Expression (E2));
when N_Explicit_Dereference =>
return
FCE (Prefix (E1), Prefix (E2));
when N_Extension_Aggregate =>
return
FCL (Expressions (E1), Expressions (E2))
and then Null_Record_Present (E1) =
Null_Record_Present (E2)
and then FCL (Component_Associations (E1),
Component_Associations (E2));
when N_Function_Call =>
return
FCE (Name (E1), Name (E2))
and then
FCL (Parameter_Associations (E1),
Parameter_Associations (E2));
when N_If_Expression =>
return
FCL (Expressions (E1), Expressions (E2));
when N_Indexed_Component =>
return
FCE (Prefix (E1), Prefix (E2))
and then
FCL (Expressions (E1), Expressions (E2));
when N_Integer_Literal =>
return (Intval (E1) = Intval (E2));
when N_Null =>
return True;
when N_Operator_Symbol =>
return
Chars (E1) = Chars (E2);
when N_Others_Choice =>
return True;
when N_Parameter_Association =>
return
Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
and then FCE (Explicit_Actual_Parameter (E1),
Explicit_Actual_Parameter (E2));
when N_Qualified_Expression =>
return
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
and then
FCE (Expression (E1), Expression (E2));
when N_Quantified_Expression =>
if not FCE (Condition (E1), Condition (E2)) then
return False;
end if;
if Present (Loop_Parameter_Specification (E1))
and then Present (Loop_Parameter_Specification (E2))
then
declare
L1 : constant Node_Id :=
Loop_Parameter_Specification (E1);
L2 : constant Node_Id :=
Loop_Parameter_Specification (E2);
begin
return
Reverse_Present (L1) = Reverse_Present (L2)
and then
FCE (Defining_Identifier (L1),
Defining_Identifier (L2))
and then
FCE (Discrete_Subtype_Definition (L1),
Discrete_Subtype_Definition (L2));
end;
elsif Present (Iterator_Specification (E1))
and then Present (Iterator_Specification (E2))
then
declare
I1 : constant Node_Id := Iterator_Specification (E1);
I2 : constant Node_Id := Iterator_Specification (E2);
begin
return
FCE (Defining_Identifier (I1),
Defining_Identifier (I2))
and then
Of_Present (I1) = Of_Present (I2)
and then
Reverse_Present (I1) = Reverse_Present (I2)
and then FCE (Name (I1), Name (I2))
and then FCE (Subtype_Indication (I1),
Subtype_Indication (I2));
end;
-- The quantified expressions used different specifications to
-- walk their respective ranges.
else
return False;
end if;
when N_Range =>
return
FCE (Low_Bound (E1), Low_Bound (E2))
and then
FCE (High_Bound (E1), High_Bound (E2));
when N_Real_Literal =>
return (Realval (E1) = Realval (E2));
when N_Selected_Component =>
return
FCE (Prefix (E1), Prefix (E2))
and then
FCE (Selector_Name (E1), Selector_Name (E2));
when N_Slice =>
return
FCE (Prefix (E1), Prefix (E2))
and then
FCE (Discrete_Range (E1), Discrete_Range (E2));
when N_String_Literal =>
declare
S1 : constant String_Id := Strval (E1);
S2 : constant String_Id := Strval (E2);
L1 : constant Nat := String_Length (S1);
L2 : constant Nat := String_Length (S2);
begin
if L1 /= L2 then
return False;
else
for J in 1 .. L1 loop
if Get_String_Char (S1, J) /=
Get_String_Char (S2, J)
then
return False;
end if;
end loop;
return True;
end if;
end;
when N_Type_Conversion =>
return
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
and then
FCE (Expression (E1), Expression (E2));
when N_Unary_Op =>
return
Entity (E1) = Entity (E2)
and then
FCE (Right_Opnd (E1), Right_Opnd (E2));
when N_Unchecked_Type_Conversion =>
return
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
and then
FCE (Expression (E1), Expression (E2));
-- All other node types cannot appear in this context. Strictly
-- we should raise a fatal internal error. Instead we just ignore
-- the nodes. This means that if anyone makes a mistake in the
-- expander and mucks an expression tree irretrievably, the result
-- will be a failure to detect a (probably very obscure) case
-- of non-conformance, which is better than bombing on some
-- case where two expressions do in fact conform.
when others =>
return True;
end case;
end if;
end Fully_Conformant_Expressions;
----------------------------------------
-- Fully_Conformant_Discrete_Subtypes --
----------------------------------------
function Fully_Conformant_Discrete_Subtypes
(Given_S1 : Node_Id;
Given_S2 : Node_Id) return Boolean
is
S1 : constant Node_Id := Original_Node (Given_S1);
S2 : constant Node_Id := Original_Node (Given_S2);
function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
-- Special-case for a bound given by a discriminant, which in the body
-- is replaced with the discriminal of the enclosing type.
function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
-- Check both bounds
-----------------------
-- Conforming_Bounds --
-----------------------
function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
begin
if Is_Entity_Name (B1)
and then Is_Entity_Name (B2)
and then Ekind (Entity (B1)) = E_Discriminant
then
return Chars (B1) = Chars (B2);
else
return Fully_Conformant_Expressions (B1, B2);
end if;
end Conforming_Bounds;
-----------------------
-- Conforming_Ranges --
-----------------------
function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
begin
return
Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
and then
Conforming_Bounds (High_Bound (R1), High_Bound (R2));
end Conforming_Ranges;
-- Start of processing for Fully_Conformant_Discrete_Subtypes
begin
if Nkind (S1) /= Nkind (S2) then
return False;
elsif Is_Entity_Name (S1) then
return Entity (S1) = Entity (S2);
elsif Nkind (S1) = N_Range then
return Conforming_Ranges (S1, S2);
elsif Nkind (S1) = N_Subtype_Indication then
return
Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
and then
Conforming_Ranges
(Range_Expression (Constraint (S1)),
Range_Expression (Constraint (S2)));
else
return True;
end if;
end Fully_Conformant_Discrete_Subtypes;
--------------------
-- Install_Entity --
--------------------
procedure Install_Entity (E : Entity_Id) is
Prev : constant Entity_Id := Current_Entity (E);
begin
Set_Is_Immediately_Visible (E);
Set_Current_Entity (E);
Set_Homonym (E, Prev);
end Install_Entity;
---------------------
-- Install_Formals --
---------------------
procedure Install_Formals (Id : Entity_Id) is
F : Entity_Id;
begin
F := First_Formal (Id);
while Present (F) loop
Install_Entity (F);
Next_Formal (F);
end loop;
end Install_Formals;
-----------------------------
-- Is_Interface_Conformant --
-----------------------------
function Is_Interface_Conformant
(Tagged_Type : Entity_Id;
Iface_Prim : Entity_Id;
Prim : Entity_Id) return Boolean
is
Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
-- Return the controlling formal of Prim
------------------------
-- Controlling_Formal --
------------------------
function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
E : Entity_Id := First_Entity (Prim);
begin
while Present (E) loop
if Is_Formal (E) and then Is_Controlling_Formal (E) then
return E;
end if;
Next_Entity (E);
end loop;
return Empty;
end Controlling_Formal;
-- Local variables
Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
-- Start of processing for Is_Interface_Conformant
begin
pragma Assert (Is_Subprogram (Iface_Prim)
and then Is_Subprogram (Prim)
and then Is_Dispatching_Operation (Iface_Prim)
and then Is_Dispatching_Operation (Prim));
pragma Assert (Is_Interface (Iface)
or else (Present (Alias (Iface_Prim))
and then
Is_Interface
(Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
if Prim = Iface_Prim
or else not Is_Subprogram (Prim)
or else Ekind (Prim) /= Ekind (Iface_Prim)
or else not Is_Dispatching_Operation (Prim)
or else Scope (Prim) /= Scope (Tagged_Type)
or else No (Typ)
or else Base_Type (Typ) /= Base_Type (Tagged_Type)
or else not Primitive_Names_Match (Iface_Prim, Prim)
then
return False;
-- The mode of the controlling formals must match
elsif Present (Iface_Ctrl_F)
and then Present (Prim_Ctrl_F)
and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
then
return False;
-- Case of a procedure, or a function whose result type matches the
-- result type of the interface primitive, or a function that has no
-- controlling result (I or access I).
elsif Ekind (Iface_Prim) = E_Procedure
or else Etype (Prim) = Etype (Iface_Prim)
or else not Has_Controlling_Result (Prim)
then
return Type_Conformant
(Iface_Prim, Prim, Skip_Controlling_Formals => True);
-- Case of a function returning an interface, or an access to one. Check
-- that the return types correspond.
elsif Implements_Interface (Typ, Iface) then
if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
/=
(Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
then
return False;
else
return
Type_Conformant (Prim, Iface_Prim,
Skip_Controlling_Formals => True);
end if;
else
return False;
end if;
end Is_Interface_Conformant;
---------------------------------
-- Is_Non_Overriding_Operation --
---------------------------------
function Is_Non_Overriding_Operation
(Prev_E : Entity_Id;
New_E : Entity_Id) return Boolean
is
Formal : Entity_Id;
F_Typ : Entity_Id;
G_Typ : Entity_Id := Empty;
function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
-- If F_Type is a derived type associated with a generic actual subtype,
-- then return its Generic_Parent_Type attribute, else return Empty.
function Types_Correspond
(P_Type : Entity_Id;
N_Type : Entity_Id) return Boolean;
-- Returns true if and only if the types (or designated types in the
-- case of anonymous access types) are the same or N_Type is derived
-- directly or indirectly from P_Type.
-----------------------------
-- Get_Generic_Parent_Type --
-----------------------------
function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
G_Typ : Entity_Id;
Defn : Node_Id;
Indic : Node_Id;
begin
if Is_Derived_Type (F_Typ)
and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
then
-- The tree must be traversed to determine the parent subtype in
-- the generic unit, which unfortunately isn't always available
-- via semantic attributes. ??? (Note: The use of Original_Node
-- is needed for cases where a full derived type has been
-- rewritten.)
Defn := Type_Definition (Original_Node (Parent (F_Typ)));
if Nkind (Defn) = N_Derived_Type_Definition then
Indic := Subtype_Indication (Defn);
if Nkind (Indic) = N_Subtype_Indication then
G_Typ := Entity (Subtype_Mark (Indic));
else
G_Typ := Entity (Indic);
end if;
if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
and then Present (Generic_Parent_Type (Parent (G_Typ)))
then
return Generic_Parent_Type (Parent (G_Typ));
end if;
end if;
end if;
return Empty;
end Get_Generic_Parent_Type;
----------------------
-- Types_Correspond --
----------------------
function Types_Correspond
(P_Type : Entity_Id;
N_Type : Entity_Id) return Boolean
is
Prev_Type : Entity_Id := Base_Type (P_Type);
New_Type : Entity_Id := Base_Type (N_Type);
begin
if Ekind (Prev_Type) = E_Anonymous_Access_Type then
Prev_Type := Designated_Type (Prev_Type);
end if;
if Ekind (New_Type) = E_Anonymous_Access_Type then
New_Type := Designated_Type (New_Type);
end if;
if Prev_Type = New_Type then
return True;
elsif not Is_Class_Wide_Type (New_Type) then
while Etype (New_Type) /= New_Type loop
New_Type := Etype (New_Type);
if New_Type = Prev_Type then
return True;
end if;
end loop;
end if;
return False;
end Types_Correspond;
-- Start of processing for Is_Non_Overriding_Operation
begin
-- In the case where both operations are implicit derived subprograms
-- then neither overrides the other. This can only occur in certain
-- obscure cases (e.g., derivation from homographs created in a generic
-- instantiation).
if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
return True;
elsif Ekind (Current_Scope) = E_Package
and then Is_Generic_Instance (Current_Scope)
and then In_Private_Part (Current_Scope)
and then Comes_From_Source (New_E)
then
-- We examine the formals and result type of the inherited operation,
-- to determine whether their type is derived from (the instance of)
-- a generic type. The first such formal or result type is the one
-- tested.
Formal := First_Formal (Prev_E);
while Present (Formal) loop
F_Typ := Base_Type (Etype (Formal));
if Ekind (F_Typ) = E_Anonymous_Access_Type then
F_Typ := Designated_Type (F_Typ);
end if;
G_Typ := Get_Generic_Parent_Type (F_Typ);
exit when Present (G_Typ);
Next_Formal (Formal);
end loop;
if No (G_Typ) and then Ekind (Prev_E) = E_Function then
G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
end if;
if No (G_Typ) then
return False;
end if;
-- If the generic type is a private type, then the original operation
-- was not overriding in the generic, because there was no primitive
-- operation to override.
if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
N_Formal_Private_Type_Definition
then
return True;
-- The generic parent type is the ancestor of a formal derived
-- type declaration. We need to check whether it has a primitive
-- operation that should be overridden by New_E in the generic.
else
declare
P_Formal : Entity_Id;
N_Formal : Entity_Id;
P_Typ : Entity_Id;
N_Typ : Entity_Id;
P_Prim : Entity_Id;
Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
begin
while Present (Prim_Elt) loop
P_Prim := Node (Prim_Elt);
if Chars (P_Prim) = Chars (New_E)
and then Ekind (P_Prim) = Ekind (New_E)
then
P_Formal := First_Formal (P_Prim);
N_Formal := First_Formal (New_E);
while Present (P_Formal) and then Present (N_Formal) loop
P_Typ := Etype (P_Formal);
N_Typ := Etype (N_Formal);
if not Types_Correspond (P_Typ, N_Typ) then
exit;
end if;
Next_Entity (P_Formal);
Next_Entity (N_Formal);
end loop;
-- Found a matching primitive operation belonging to the
-- formal ancestor type, so the new subprogram is
-- overriding.
if No (P_Formal)
and then No (N_Formal)
and then (Ekind (New_E) /= E_Function
or else
Types_Correspond
(Etype (P_Prim), Etype (New_E)))
then
return False;
end if;
end if;
Next_Elmt (Prim_Elt);
end loop;
-- If no match found, then the new subprogram does not override
-- in the generic (nor in the instance).
-- If the type in question is not abstract, and the subprogram
-- is, this will be an error if the new operation is in the
-- private part of the instance. Emit a warning now, which will
-- make the subsequent error message easier to understand.
if not Is_Abstract_Type (F_Typ)
and then Is_Abstract_Subprogram (Prev_E)
and then In_Private_Part (Current_Scope)
then
Error_Msg_Node_2 := F_Typ;
Error_Msg_NE
("private operation& in generic unit does not override " &
"any primitive operation of& (RM 12.3 (18))??",
New_E, New_E);
end if;
return True;
end;
end if;
else
return False;
end if;
end Is_Non_Overriding_Operation;
-------------------------------------
-- List_Inherited_Pre_Post_Aspects --
-------------------------------------
procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
begin
if Opt.List_Inherited_Aspects
and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
then
declare
Inherited : constant Subprogram_List := Inherited_Subprograms (E);
P : Node_Id;
begin
for J in Inherited'Range loop
P := Pre_Post_Conditions (Contract (Inherited (J)));
while Present (P) loop
Error_Msg_Sloc := Sloc (P);
if Class_Present (P) and then not Split_PPC (P) then
if Pragma_Name (P) = Name_Precondition then
Error_Msg_N
("info: & inherits `Pre''Class` aspect from #?L?",
E);
else
Error_Msg_N
("info: & inherits `Post''Class` aspect from #?L?",
E);
end if;
end if;
P := Next_Pragma (P);
end loop;
end loop;
end;
end if;
end List_Inherited_Pre_Post_Aspects;
------------------------------
-- Make_Inequality_Operator --
------------------------------
-- S is the defining identifier of an equality operator. We build a
-- subprogram declaration with the right signature. This operation is
-- intrinsic, because it is always expanded as the negation of the
-- call to the equality function.
procedure Make_Inequality_Operator (S : Entity_Id) is
Loc : constant Source_Ptr := Sloc (S);
Decl : Node_Id;
Formals : List_Id;
Op_Name : Entity_Id;
FF : constant Entity_Id := First_Formal (S);
NF : constant Entity_Id := Next_Formal (FF);
begin
-- Check that equality was properly defined, ignore call if not
if No (NF) then
return;
end if;
declare
A : constant Entity_Id :=
Make_Defining_Identifier (Sloc (FF),
Chars => Chars (FF));
B : constant Entity_Id :=
Make_Defining_Identifier (Sloc (NF),
Chars => Chars (NF));
begin
Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type =>
New_Reference_To (Etype (First_Formal (S)),
Sloc (Etype (First_Formal (S))))),
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Parameter_Type =>
New_Reference_To (Etype (Next_Formal (First_Formal (S))),
Sloc (Etype (Next_Formal (First_Formal (S)))))));
Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Op_Name,
Parameter_Specifications => Formals,
Result_Definition =>
New_Reference_To (Standard_Boolean, Loc)));
-- Insert inequality right after equality if it is explicit or after
-- the derived type when implicit. These entities are created only
-- for visibility purposes, and eventually replaced in the course
-- of expansion, so they do not need to be attached to the tree and
-- seen by the back-end. Keeping them internal also avoids spurious
-- freezing problems. The declaration is inserted in the tree for
-- analysis, and removed afterwards. If the equality operator comes
-- from an explicit declaration, attach the inequality immediately
-- after. Else the equality is inherited from a derived type
-- declaration, so insert inequality after that declaration.
if No (Alias (S)) then
Insert_After (Unit_Declaration_Node (S), Decl);
elsif Is_List_Member (Parent (S)) then
Insert_After (Parent (S), Decl);
else
Insert_After (Parent (Etype (First_Formal (S))), Decl);
end if;
Mark_Rewrite_Insertion (Decl);
Set_Is_Intrinsic_Subprogram (Op_Name);
Analyze (Decl);
Remove (Decl);
Set_Has_Completion (Op_Name);
Set_Corresponding_Equality (Op_Name, S);
Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
end;
end Make_Inequality_Operator;
----------------------
-- May_Need_Actuals --
----------------------
procedure May_Need_Actuals (Fun : Entity_Id) is
F : Entity_Id;
B : Boolean;
begin
F := First_Formal (Fun);
B := True;
while Present (F) loop
if No (Default_Value (F)) then
B := False;
exit;
end if;
Next_Formal (F);
end loop;
Set_Needs_No_Actuals (Fun, B);
end May_Need_Actuals;
---------------------
-- Mode_Conformant --
---------------------
function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
Result : Boolean;
begin
Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
return Result;
end Mode_Conformant;
---------------------------
-- New_Overloaded_Entity --
---------------------------
procedure New_Overloaded_Entity
(S : Entity_Id;
Derived_Type : Entity_Id := Empty)
is
Overridden_Subp : Entity_Id := Empty;
-- Set if the current scope has an operation that is type-conformant
-- with S, and becomes hidden by S.
Is_Primitive_Subp : Boolean;
-- Set to True if the new subprogram is primitive
E : Entity_Id;
-- Entity that S overrides
Prev_Vis : Entity_Id := Empty;
-- Predecessor of E in Homonym chain
procedure Check_For_Primitive_Subprogram
(Is_Primitive : out Boolean;
Is_Overriding : Boolean := False);
-- If the subprogram being analyzed is a primitive operation of the type
-- of a formal or result, set the Has_Primitive_Operations flag on the
-- type, and set Is_Primitive to True (otherwise set to False). Set the
-- corresponding flag on the entity itself for later use.
procedure Check_Synchronized_Overriding
(Def_Id : Entity_Id;
Overridden_Subp : out Entity_Id);
-- First determine if Def_Id is an entry or a subprogram either defined
-- in the scope of a task or protected type, or is a primitive of such
-- a type. Check whether Def_Id overrides a subprogram of an interface
-- implemented by the synchronized type, return the overridden entity
-- or Empty.
function Is_Private_Declaration (E : Entity_Id) return Boolean;
-- Check that E is declared in the private part of the current package,
-- or in the package body, where it may hide a previous declaration.
-- We can't use In_Private_Part by itself because this flag is also
-- set when freezing entities, so we must examine the place of the
-- declaration in the tree, and recognize wrapper packages as well.
function Is_Overriding_Alias
(Old_E : Entity_Id;
New_E : Entity_Id) return Boolean;
-- Check whether new subprogram and old subprogram are both inherited
-- from subprograms that have distinct dispatch table entries. This can
-- occur with derivations from instances with accidental homonyms. The
-- function is conservative given that the converse is only true within
-- instances that contain accidental overloadings.
------------------------------------
-- Check_For_Primitive_Subprogram --
------------------------------------
procedure Check_For_Primitive_Subprogram
(Is_Primitive : out Boolean;
Is_Overriding : Boolean := False)
is
Formal : Entity_Id;
F_Typ : Entity_Id;
B_Typ : Entity_Id;
function Visible_Part_Type (T : Entity_Id) return Boolean;
-- Returns true if T is declared in the visible part of the current
-- package scope; otherwise returns false. Assumes that T is declared
-- in a package.
procedure Check_Private_Overriding (T : Entity_Id);
-- Checks that if a primitive abstract subprogram of a visible
-- abstract type is declared in a private part, then it must override
-- an abstract subprogram declared in the visible part. Also checks
-- that if a primitive function with a controlling result is declared
-- in a private part, then it must override a function declared in
-- the visible part.
------------------------------
-- Check_Private_Overriding --
------------------------------
procedure Check_Private_Overriding (T : Entity_Id) is
begin
if Is_Package_Or_Generic_Package (Current_Scope)
and then In_Private_Part (Current_Scope)
and then Visible_Part_Type (T)
and then not In_Instance
then
if Is_Abstract_Type (T)
and then Is_Abstract_Subprogram (S)
and then (not Is_Overriding
or else not Is_Abstract_Subprogram (E))
then
Error_Msg_N
("abstract subprograms must be visible "
& "(RM 3.9.3(10))!", S);
elsif Ekind (S) = E_Function and then not Is_Overriding then
if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
Error_Msg_N
("private function with tagged result must"
& " override visible-part function", S);
Error_Msg_N
("\move subprogram to the visible part"
& " (RM 3.9.3(10))", S);
-- AI05-0073: extend this test to the case of a function
-- with a controlling access result.
elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
and then Is_Tagged_Type (Designated_Type (Etype (S)))
and then
not Is_Class_Wide_Type (Designated_Type (Etype (S)))
and then Ada_Version >= Ada_2012
then
Error_Msg_N
("private function with controlling access result "
& "must override visible-part function", S);
Error_Msg_N
("\move subprogram to the visible part"
& " (RM 3.9.3(10))", S);
end if;
end if;
end if;
end Check_Private_Overriding;
-----------------------
-- Visible_Part_Type --
-----------------------
function Visible_Part_Type (T : Entity_Id) return Boolean is
P : constant Node_Id := Unit_Declaration_Node (Scope (T));
N : Node_Id;
begin
-- If the entity is a private type, then it must be declared in a
-- visible part.
if Ekind (T) in Private_Kind then
return True;
end if;
-- Otherwise, we traverse the visible part looking for its
-- corresponding declaration. We cannot use the declaration
-- node directly because in the private part the entity of a
-- private type is the one in the full view, which does not
-- indicate that it is the completion of something visible.
N := First (Visible_Declarations (Specification (P)));
while Present (N) loop
if Nkind (N) = N_Full_Type_Declaration
and then Present (Defining_Identifier (N))
and then T = Defining_Identifier (N)
then
return True;
elsif Nkind_In (N, N_Private_Type_Declaration,
N_Private_Extension_Declaration)
and then Present (Defining_Identifier (N))
and then T = Full_View (Defining_Identifier (N))
then
return True;
end if;
Next (N);
end loop;
return False;
end Visible_Part_Type;
-- Start of processing for Check_For_Primitive_Subprogram
begin
Is_Primitive := False;
if not Comes_From_Source (S) then
null;
-- If subprogram is at library level, it is not primitive operation
elsif Current_Scope = Standard_Standard then
null;
elsif (Is_Package_Or_Generic_Package (Current_Scope)
and then not In_Package_Body (Current_Scope))
or else Is_Overriding
then
-- For function, check return type
if Ekind (S) = E_Function then
if Ekind (Etype (S)) = E_Anonymous_Access_Type then
F_Typ := Designated_Type (Etype (S));
else
F_Typ := Etype (S);
end if;
B_Typ := Base_Type (F_Typ);
if Scope (B_Typ) = Current_Scope
and then not Is_Class_Wide_Type (B_Typ)
and then not Is_Generic_Type (B_Typ)
then
Is_Primitive := True;
Set_Has_Primitive_Operations (B_Typ);
Set_Is_Primitive (S);
Check_Private_Overriding (B_Typ);
end if;
end if;
-- For all subprograms, check formals
Formal := First_Formal (S);
while Present (Formal) loop
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
F_Typ := Designated_Type (Etype (Formal));
else
F_Typ := Etype (Formal);
end if;
B_Typ := Base_Type (F_Typ);
if Ekind (B_Typ) = E_Access_Subtype then
B_Typ := Base_Type (B_Typ);
end if;
if Scope (B_Typ) = Current_Scope
and then not Is_Class_Wide_Type (B_Typ)
and then not Is_Generic_Type (B_Typ)
then
Is_Primitive := True;
Set_Is_Primitive (S);
Set_Has_Primitive_Operations (B_Typ);
Check_Private_Overriding (B_Typ);
end if;
Next_Formal (Formal);
end loop;
-- Special case: An equality function can be redefined for a type
-- occurring in a declarative part, and won't otherwise be treated as
-- a primitive because it doesn't occur in a package spec and doesn't
-- override an inherited subprogram. It's important that we mark it
-- primitive so it can be returned by Collect_Primitive_Operations
-- and be used in composing the equality operation of later types
-- that have a component of the type.
elsif Chars (S) = Name_Op_Eq
and then Etype (S) = Standard_Boolean
then
B_Typ := Base_Type (Etype (First_Formal (S)));
if Scope (B_Typ) = Current_Scope
and then
Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
and then not Is_Limited_Type (B_Typ)
then
Is_Primitive := True;
Set_Is_Primitive (S);
Set_Has_Primitive_Operations (B_Typ);
Check_Private_Overriding (B_Typ);
end if;
end if;
end Check_For_Primitive_Subprogram;
-----------------------------------
-- Check_Synchronized_Overriding --
-----------------------------------
procedure Check_Synchronized_Overriding
(Def_Id : Entity_Id;
Overridden_Subp : out Entity_Id)
is
Ifaces_List : Elist_Id;
In_Scope : Boolean;
Typ : Entity_Id;
function Matches_Prefixed_View_Profile
(Prim_Params : List_Id;
Iface_Params : List_Id) return Boolean;
-- Determine whether a subprogram's parameter profile Prim_Params
-- matches that of a potentially overridden interface subprogram
-- Iface_Params. Also determine if the type of first parameter of
-- Iface_Params is an implemented interface.
-----------------------------------
-- Matches_Prefixed_View_Profile --
-----------------------------------
function Matches_Prefixed_View_Profile
(Prim_Params : List_Id;
Iface_Params : List_Id) return Boolean
is
Iface_Id : Entity_Id;
Iface_Param : Node_Id;
Iface_Typ : Entity_Id;
Prim_Id : Entity_Id;
Prim_Param : Node_Id;
Prim_Typ : Entity_Id;
function Is_Implemented
(Ifaces_List : Elist_Id;
Iface : Entity_Id) return Boolean;
-- Determine if Iface is implemented by the current task or
-- protected type.
--------------------
-- Is_Implemented --
--------------------
function Is_Implemented
(Ifaces_List : Elist_Id;
Iface : Entity_Id) return Boolean
is
Iface_Elmt : Elmt_Id;
begin
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
if Node (Iface_Elmt) = Iface then
return True;
end if;
Next_Elmt (Iface_Elmt);
end loop;
return False;
end Is_Implemented;
-- Start of processing for Matches_Prefixed_View_Profile
begin
Iface_Param := First (Iface_Params);
Iface_Typ := Etype (Defining_Identifier (Iface_Param));
if Is_Access_Type (Iface_Typ) then
Iface_Typ := Designated_Type (Iface_Typ);
end if;
Prim_Param := First (Prim_Params);
-- The first parameter of the potentially overridden subprogram
-- must be an interface implemented by Prim.
if not Is_Interface (Iface_Typ)
or else not Is_Implemented (Ifaces_List, Iface_Typ)
then
return False;
end if;
-- The checks on the object parameters are done, move onto the
-- rest of the parameters.
if not In_Scope then
Prim_Param := Next (Prim_Param);
end if;
Iface_Param := Next (Iface_Param);
while Present (Iface_Param) and then Present (Prim_Param) loop
Iface_Id := Defining_Identifier (Iface_Param);
Iface_Typ := Find_Parameter_Type (Iface_Param);
Prim_Id := Defining_Identifier (Prim_Param);
Prim_Typ := Find_Parameter_Type (Prim_Param);
if Ekind (Iface_Typ) = E_Anonymous_Access_Type
and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
then
Iface_Typ := Designated_Type (Iface_Typ);
Prim_Typ := Designated_Type (Prim_Typ);
end if;
-- Case of multiple interface types inside a parameter profile
-- (Obj_Param : in out Iface; ...; Param : Iface)
-- If the interface type is implemented, then the matching type
-- in the primitive should be the implementing record type.
if Ekind (Iface_Typ) = E_Record_Type
and then Is_Interface (Iface_Typ)
and then Is_Implemented (Ifaces_List, Iface_Typ)
then
if Prim_Typ /= Typ then
return False;
end if;
-- The two parameters must be both mode and subtype conformant
elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
or else not
Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
then
return False;
end if;
Next (Iface_Param);
Next (Prim_Param);
end loop;
-- One of the two lists contains more parameters than the other
if Present (Iface_Param) or else Present (Prim_Param) then
return False;
end if;
return True;
end Matches_Prefixed_View_Profile;
-- Start of processing for Check_Synchronized_Overriding
begin
Overridden_Subp := Empty;
-- Def_Id must be an entry or a subprogram. We should skip predefined
-- primitives internally generated by the frontend; however at this
-- stage predefined primitives are still not fully decorated. As a
-- minor optimization we skip here internally generated subprograms.
if (Ekind (Def_Id) /= E_Entry
and then Ekind (Def_Id) /= E_Function
and then Ekind (Def_Id) /= E_Procedure)
or else not Comes_From_Source (Def_Id)
then
return;
end if;
-- Search for the concurrent declaration since it contains the list
-- of all implemented interfaces. In this case, the subprogram is
-- declared within the scope of a protected or a task type.
if Present (Scope (Def_Id))
and then Is_Concurrent_Type (Scope (Def_Id))
and then not Is_Generic_Actual_Type (Scope (Def_Id))
then
Typ := Scope (Def_Id);
In_Scope := True;
-- The enclosing scope is not a synchronized type and the subprogram
-- has no formals.
elsif No (First_Formal (Def_Id)) then
return;
-- The subprogram has formals and hence it may be a primitive of a
-- concurrent type.
else
Typ := Etype (First_Formal (Def_Id));
if Is_Access_Type (Typ) then
Typ := Directly_Designated_Type (Typ);
end if;
if Is_Concurrent_Type (Typ)
and then not Is_Generic_Actual_Type (Typ)
then
In_Scope := False;
-- This case occurs when the concurrent type is declared within
-- a generic unit. As a result the corresponding record has been
-- built and used as the type of the first formal, we just have
-- to retrieve the corresponding concurrent type.
elsif Is_Concurrent_Record_Type (Typ)
and then not Is_Class_Wide_Type (Typ)
and then Present (Corresponding_Concurrent_Type (Typ))
then
Typ := Corresponding_Concurrent_Type (Typ);
In_Scope := False;
else
return;
end if;
end if;
-- There is no overriding to check if is an inherited operation in a
-- type derivation on for a generic actual.
Collect_Interfaces (Typ, Ifaces_List);
if Is_Empty_Elmt_List (Ifaces_List) then
return;
end if;
-- Determine whether entry or subprogram Def_Id overrides a primitive
-- operation that belongs to one of the interfaces in Ifaces_List.
declare
Candidate : Entity_Id := Empty;
Hom : Entity_Id := Empty;
Iface_Typ : Entity_Id;
Subp : Entity_Id := Empty;
begin
-- Traverse the homonym chain, looking for a potentially
-- overridden subprogram that belongs to an implemented
-- interface.
Hom := Current_Entity_In_Scope (Def_Id);
while Present (Hom) loop
Subp := Hom;
if Subp = Def_Id
or else not Is_Overloadable (Subp)
or else not Is_Primitive (Subp)
or else not Is_Dispatching_Operation (Subp)
or else not Present (Find_Dispatching_Type (Subp))
or else not Is_Interface (Find_Dispatching_Type (Subp))
then
null;
-- Entries and procedures can override abstract or null
-- interface procedures.
elsif (Ekind (Def_Id) = E_Procedure
or else Ekind (Def_Id) = E_Entry)
and then Ekind (Subp) = E_Procedure
and then Matches_Prefixed_View_Profile
(Parameter_Specifications (Parent (Def_Id)),
Parameter_Specifications (Parent (Subp)))
then
Candidate := Subp;
-- For an overridden subprogram Subp, check whether the mode
-- of its first parameter is correct depending on the kind
-- of synchronized type.
declare
Formal : constant Node_Id := First_Formal (Candidate);
begin
-- In order for an entry or a protected procedure to
-- override, the first parameter of the overridden
-- routine must be of mode "out", "in out" or
-- access-to-variable.
if Ekind_In (Candidate, E_Entry, E_Procedure)
and then Is_Protected_Type (Typ)
and then Ekind (Formal) /= E_In_Out_Parameter
and then Ekind (Formal) /= E_Out_Parameter
and then Nkind (Parameter_Type (Parent (Formal))) /=
N_Access_Definition
then
null;
-- All other cases are OK since a task entry or routine
-- does not have a restriction on the mode of the first
-- parameter of the overridden interface routine.
else
Overridden_Subp := Candidate;
return;
end if;
end;
-- Functions can override abstract interface functions
elsif Ekind (Def_Id) = E_Function
and then Ekind (Subp) = E_Function
and then Matches_Prefixed_View_Profile
(Parameter_Specifications (Parent (Def_Id)),
Parameter_Specifications (Parent (Subp)))
and then Etype (Result_Definition (Parent (Def_Id))) =
Etype (Result_Definition (Parent (Subp)))
then
Overridden_Subp := Subp;
return;
end if;
Hom := Homonym (Hom);
end loop;
-- After examining all candidates for overriding, we are left with
-- the best match which is a mode incompatible interface routine.
-- Do not emit an error if the Expander is active since this error
-- will be detected later on after all concurrent types are
-- expanded and all wrappers are built. This check is meant for
-- spec-only compilations.
if Present (Candidate) and then not Expander_Active then
Iface_Typ :=
Find_Parameter_Type (Parent (First_Formal (Candidate)));
-- Def_Id is primitive of a protected type, declared inside the
-- type, and the candidate is primitive of a limited or
-- synchronized interface.
if In_Scope
and then Is_Protected_Type (Typ)
and then
(Is_Limited_Interface (Iface_Typ)
or else Is_Protected_Interface (Iface_Typ)
or else Is_Synchronized_Interface (Iface_Typ)
or else Is_Task_Interface (Iface_Typ))
then
Error_Msg_PT (Parent (Typ), Candidate);
end if;
end if;
Overridden_Subp := Candidate;
return;
end;
end Check_Synchronized_Overriding;
----------------------------
-- Is_Private_Declaration --
----------------------------
function Is_Private_Declaration (E : Entity_Id) return Boolean is
Priv_Decls : List_Id;
Decl : constant Node_Id := Unit_Declaration_Node (E);
begin
if Is_Package_Or_Generic_Package (Current_Scope)
and then In_Private_Part (Current_Scope)
then
Priv_Decls :=
Private_Declarations
(Specification (Unit_Declaration_Node (Current_Scope)));
return In_Package_Body (Current_Scope)
or else
(Is_List_Member (Decl)
and then List_Containing (Decl) = Priv_Decls)
or else (Nkind (Parent (Decl)) = N_Package_Specification
and then not
Is_Compilation_Unit
(Defining_Entity (Parent (Decl)))
and then List_Containing (Parent (Parent (Decl))) =
Priv_Decls);
else
return False;
end if;
end Is_Private_Declaration;
--------------------------
-- Is_Overriding_Alias --
--------------------------
function Is_Overriding_Alias
(Old_E : Entity_Id;
New_E : Entity_Id) return Boolean
is
AO : constant Entity_Id := Alias (Old_E);
AN : constant Entity_Id := Alias (New_E);
begin
return Scope (AO) /= Scope (AN)
or else No (DTC_Entity (AO))
or else No (DTC_Entity (AN))
or else DT_Position (AO) = DT_Position (AN);
end Is_Overriding_Alias;
-- Start of processing for New_Overloaded_Entity
begin
-- We need to look for an entity that S may override. This must be a
-- homonym in the current scope, so we look for the first homonym of
-- S in the current scope as the starting point for the search.
E := Current_Entity_In_Scope (S);
-- Ada 2005 (AI-251): Derivation of abstract interface primitives.
-- They are directly added to the list of primitive operations of
-- Derived_Type, unless this is a rederivation in the private part
-- of an operation that was already derived in the visible part of
-- the current package.
if Ada_Version >= Ada_2005
and then Present (Derived_Type)
and then Present (Alias (S))
and then Is_Dispatching_Operation (Alias (S))
and then Present (Find_Dispatching_Type (Alias (S)))
and then Is_Interface (Find_Dispatching_Type (Alias (S)))
then
-- For private types, when the full-view is processed we propagate to
-- the full view the non-overridden entities whose attribute "alias"
-- references an interface primitive. These entities were added by
-- Derive_Subprograms to ensure that interface primitives are
-- covered.
-- Inside_Freeze_Actions is non zero when S corresponds with an
-- internal entity that links an interface primitive with its
-- covering primitive through attribute Interface_Alias (see
-- Add_Internal_Interface_Entities).
if Inside_Freezing_Actions = 0
and then Is_Package_Or_Generic_Package (Current_Scope)
and then In_Private_Part (Current_Scope)
and then Nkind (Parent (E)) = N_Private_Extension_Declaration
and then Nkind (Parent (S)) = N_Full_Type_Declaration
and then Full_View (Defining_Identifier (Parent (E)))
= Defining_Identifier (Parent (S))
and then Alias (E) = Alias (S)
then
Check_Operation_From_Private_View (S, E);
Set_Is_Dispatching_Operation (S);
-- Common case
else
Enter_Overloaded_Entity (S);
Check_Dispatching_Operation (S, Empty);
Check_For_Primitive_Subprogram (Is_Primitive_Subp);
end if;
return;
end if;
-- If there is no homonym then this is definitely not overriding
if No (E) then
Enter_Overloaded_Entity (S);
Check_Dispatching_Operation (S, Empty);
Check_For_Primitive_Subprogram (Is_Primitive_Subp);
-- If subprogram has an explicit declaration, check whether it has an
-- overriding indicator.
if Comes_From_Source (S) then
Check_Synchronized_Overriding (S, Overridden_Subp);
-- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
-- it may have overridden some hidden inherited primitive. Update
-- Overridden_Subp to avoid spurious errors when checking the
-- overriding indicator.
if Ada_Version >= Ada_2012
and then No (Overridden_Subp)
and then Is_Dispatching_Operation (S)
and then Present (Overridden_Operation (S))
then
Overridden_Subp := Overridden_Operation (S);
end if;
Check_Overriding_Indicator
(S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
end if;
-- If there is a homonym that is not overloadable, then we have an
-- error, except for the special cases checked explicitly below.
elsif not Is_Overloadable (E) then
-- Check for spurious conflict produced by a subprogram that has the
-- same name as that of the enclosing generic package. The conflict
-- occurs within an instance, between the subprogram and the renaming
-- declaration for the package. After the subprogram, the package
-- renaming declaration becomes hidden.
if Ekind (E) = E_Package
and then Present (Renamed_Object (E))
and then Renamed_Object (E) = Current_Scope
and then Nkind (Parent (Renamed_Object (E))) =
N_Package_Specification
and then Present (Generic_Parent (Parent (Renamed_Object (E))))
then
Set_Is_Hidden (E);
Set_Is_Immediately_Visible (E, False);
Enter_Overloaded_Entity (S);
Set_Homonym (S, Homonym (E));
Check_Dispatching_Operation (S, Empty);
Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
-- If the subprogram is implicit it is hidden by the previous
-- declaration. However if it is dispatching, it must appear in the
-- dispatch table anyway, because it can be dispatched to even if it
-- cannot be called directly.
elsif Present (Alias (S)) and then not Comes_From_Source (S) then
Set_Scope (S, Current_Scope);
if Is_Dispatching_Operation (Alias (S)) then
Check_Dispatching_Operation (S, Empty);
end if;
return;
else
Error_Msg_Sloc := Sloc (E);
-- Generate message, with useful additional warning if in generic
if Is_Generic_Unit (E) then
Error_Msg_N ("previous generic unit cannot be overloaded", S);
Error_Msg_N ("\& conflicts with declaration#", S);
else
Error_Msg_N ("& conflicts with declaration#", S);
end if;
return;
end if;
-- E exists and is overloadable
else
Check_Synchronized_Overriding (S, Overridden_Subp);
-- Loop through E and its homonyms to determine if any of them is
-- the candidate for overriding by S.
while Present (E) loop
-- Definitely not interesting if not in the current scope
if Scope (E) /= Current_Scope then
null;
-- Ada 2012 (AI05-0165): For internally generated bodies of null
-- procedures locate the internally generated spec. We enforce
-- mode conformance since a tagged type may inherit from
-- interfaces several null primitives which differ only in
-- the mode of the formals.
elsif not Comes_From_Source (S)
and then Is_Null_Procedure (S)
and then not Mode_Conformant (E, S)
then
null;
-- Check if we have type conformance
elsif Type_Conformant (E, S) then
-- If the old and new entities have the same profile and one
-- is not the body of the other, then this is an error, unless
-- one of them is implicitly declared.
-- There are some cases when both can be implicit, for example
-- when both a literal and a function that overrides it are
-- inherited in a derivation, or when an inherited operation
-- of a tagged full type overrides the inherited operation of
-- a private extension. Ada 83 had a special rule for the
-- literal case. In Ada 95, the later implicit operation hides
-- the former, and the literal is always the former. In the
-- odd case where both are derived operations declared at the
-- same point, both operations should be declared, and in that
-- case we bypass the following test and proceed to the next
-- part. This can only occur for certain obscure cases in
-- instances, when an operation on a type derived from a formal
-- private type does not override a homograph inherited from
-- the actual. In subsequent derivations of such a type, the
-- DT positions of these operations remain distinct, if they
-- have been set.
if Present (Alias (S))
and then (No (Alias (E))
or else Comes_From_Source (E)
or else Is_Abstract_Subprogram (S)
or else
(Is_Dispatching_Operation (E)
and then Is_Overriding_Alias (E, S)))
and then Ekind (E) /= E_Enumeration_Literal
then
-- When an derived operation is overloaded it may be due to
-- the fact that the full view of a private extension
-- re-inherits. It has to be dealt with.
if Is_Package_Or_Generic_Package (Current_Scope)
and then In_Private_Part (Current_Scope)
then
Check_Operation_From_Private_View (S, E);
end if;
-- In any case the implicit operation remains hidden by the
-- existing declaration, which is overriding. Indicate that
-- E overrides the operation from which S is inherited.
if Present (Alias (S)) then
Set_Overridden_Operation (E, Alias (S));
else
Set_Overridden_Operation (E, S);
end if;
if Comes_From_Source (E) then
Check_Overriding_Indicator (E, S, Is_Primitive => False);
end if;
return;
-- Within an instance, the renaming declarations for actual
-- subprograms may become ambiguous, but they do not hide each
-- other.
elsif Ekind (E) /= E_Entry
and then not Comes_From_Source (E)
and then not Is_Generic_Instance (E)
and then (Present (Alias (E))
or else Is_Intrinsic_Subprogram (E))
and then (not In_Instance
or else No (Parent (E))
or else Nkind (Unit_Declaration_Node (E)) /=
N_Subprogram_Renaming_Declaration)
then
-- A subprogram child unit is not allowed to override an
-- inherited subprogram (10.1.1(20)).
if Is_Child_Unit (S) then
Error_Msg_N
("child unit overrides inherited subprogram in parent",
S);
return;
end if;
if Is_Non_Overriding_Operation (E, S) then
Enter_Overloaded_Entity (S);
if No (Derived_Type)
or else Is_Tagged_Type (Derived_Type)
then
Check_Dispatching_Operation (S, Empty);
end if;
return;
end if;
-- E is a derived operation or an internal operator which
-- is being overridden. Remove E from further visibility.
-- Furthermore, if E is a dispatching operation, it must be
-- replaced in the list of primitive operations of its type
-- (see Override_Dispatching_Operation).
Overridden_Subp := E;
declare
Prev : Entity_Id;
begin
Prev := First_Entity (Current_Scope);
while Present (Prev) and then Next_Entity (Prev) /= E loop
Next_Entity (Prev);
end loop;
-- It is possible for E to be in the current scope and
-- yet not in the entity chain. This can only occur in a
-- generic context where E is an implicit concatenation
-- in the formal part, because in a generic body the
-- entity chain starts with the formals.
pragma Assert
(Present (Prev) or else Chars (E) = Name_Op_Concat);
-- E must be removed both from the entity_list of the
-- current scope, and from the visibility chain
if Debug_Flag_E then
Write_Str ("Override implicit operation ");
Write_Int (Int (E));
Write_Eol;
end if;
-- If E is a predefined concatenation, it stands for four
-- different operations. As a result, a single explicit
-- declaration does not hide it. In a possible ambiguous
-- situation, Disambiguate chooses the user-defined op,
-- so it is correct to retain the previous internal one.
if Chars (E) /= Name_Op_Concat
or else Ekind (E) /= E_Operator
then
-- For nondispatching derived operations that are
-- overridden by a subprogram declared in the private
-- part of a package, we retain the derived subprogram
-- but mark it as not immediately visible. If the
-- derived operation was declared in the visible part
-- then this ensures that it will still be visible
-- outside the package with the proper signature
-- (calls from outside must also be directed to this
-- version rather than the overriding one, unlike the
-- dispatching case). Calls from inside the package
-- will still resolve to the overriding subprogram
-- since the derived one is marked as not visible
-- within the package.
-- If the private operation is dispatching, we achieve
-- the overriding by keeping the implicit operation
-- but setting its alias to be the overriding one. In
-- this fashion the proper body is executed in all
-- cases, but the original signature is used outside
-- of the package.
-- If the overriding is not in the private part, we
-- remove the implicit operation altogether.
if Is_Private_Declaration (S) then
if not Is_Dispatching_Operation (E) then
Set_Is_Immediately_Visible (E, False);
else
-- Work done in Override_Dispatching_Operation,
-- so nothing else needs to be done here.
null;
end if;
else
-- Find predecessor of E in Homonym chain
if E = Current_Entity (E) then
Prev_Vis := Empty;
else
Prev_Vis := Current_Entity (E);
while Homonym (Prev_Vis) /= E loop
Prev_Vis := Homonym (Prev_Vis);
end loop;
end if;
if Prev_Vis /= Empty then
-- Skip E in the visibility chain
Set_Homonym (Prev_Vis, Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Homonym (E));
end if;
Set_Next_Entity (Prev, Next_Entity (E));
if No (Next_Entity (Prev)) then
Set_Last_Entity (Current_Scope, Prev);
end if;
end if;
end if;
Enter_Overloaded_Entity (S);
-- For entities generated by Derive_Subprograms the
-- overridden operation is the inherited primitive
-- (which is available through the attribute alias).
if not (Comes_From_Source (E))
and then Is_Dispatching_Operation (E)
and then Find_Dispatching_Type (E) =
Find_Dispatching_Type (S)
and then Present (Alias (E))
and then Comes_From_Source (Alias (E))
then
Set_Overridden_Operation (S, Alias (E));
-- Normal case of setting entity as overridden
-- Note: Static_Initialization and Overridden_Operation
-- attributes use the same field in subprogram entities.
-- Static_Initialization is only defined for internal
-- initialization procedures, where Overridden_Operation
-- is irrelevant. Therefore the setting of this attribute
-- must check whether the target is an init_proc.
elsif not Is_Init_Proc (S) then
Set_Overridden_Operation (S, E);
end if;
Check_Overriding_Indicator (S, E, Is_Primitive => True);
-- If S is a user-defined subprogram or a null procedure
-- expanded to override an inherited null procedure, or a
-- predefined dispatching primitive then indicate that E
-- overrides the operation from which S is inherited.
if Comes_From_Source (S)
or else
(Present (Parent (S))
and then
Nkind (Parent (S)) = N_Procedure_Specification
and then
Null_Present (Parent (S)))
or else
(Present (Alias (E))
and then
Is_Predefined_Dispatching_Operation (Alias (E)))
then
if Present (Alias (E)) then
Set_Overridden_Operation (S, Alias (E));
end if;
end if;
if Is_Dispatching_Operation (E) then
-- An overriding dispatching subprogram inherits the
-- convention of the overridden subprogram (AI-117).
Set_Convention (S, Convention (E));
Check_Dispatching_Operation (S, E);
else
Check_Dispatching_Operation (S, Empty);
end if;
Check_For_Primitive_Subprogram
(Is_Primitive_Subp, Is_Overriding => True);
goto Check_Inequality;
end;
-- Apparent redeclarations in instances can occur when two
-- formal types get the same actual type. The subprograms in
-- in the instance are legal, even if not callable from the
-- outside. Calls from within are disambiguated elsewhere.
-- For dispatching operations in the visible part, the usual
-- rules apply, and operations with the same profile are not
-- legal (B830001).
elsif (In_Instance_Visible_Part
and then not Is_Dispatching_Operation (E))
or else In_Instance_Not_Visible
then
null;
-- Here we have a real error (identical profile)
else
Error_Msg_Sloc := Sloc (E);
-- Avoid cascaded errors if the entity appears in
-- subsequent calls.
Set_Scope (S, Current_Scope);
-- Generate error, with extra useful warning for the case
-- of a generic instance with no completion.
if Is_Generic_Instance (S)
and then not Has_Completion (E)
then
Error_Msg_N
("instantiation cannot provide body for&", S);
Error_Msg_N ("\& conflicts with declaration#", S);
else
Error_Msg_N ("& conflicts with declaration#", S);
end if;
return;
end if;
else
-- If one subprogram has an access parameter and the other
-- a parameter of an access type, calls to either might be
-- ambiguous. Verify that parameters match except for the
-- access parameter.
if May_Hide_Profile then
declare
F1 : Entity_Id;
F2 : Entity_Id;
begin
F1 := First_Formal (S);
F2 := First_Formal (E);
while Present (F1) and then Present (F2) loop
if Is_Access_Type (Etype (F1)) then
if not Is_Access_Type (Etype (F2))
or else not Conforming_Types
(Designated_Type (Etype (F1)),
Designated_Type (Etype (F2)),
Type_Conformant)
then
May_Hide_Profile := False;
end if;
elsif
not Conforming_Types
(Etype (F1), Etype (F2), Type_Conformant)
then
May_Hide_Profile := False;
end if;
Next_Formal (F1);
Next_Formal (F2);
end loop;
if May_Hide_Profile
and then No (F1)
and then No (F2)
then
Error_Msg_NE ("calls to& may be ambiguous??", S, S);
end if;
end;
end if;
end if;
E := Homonym (E);
end loop;
-- On exit, we know that S is a new entity
Enter_Overloaded_Entity (S);
Check_For_Primitive_Subprogram (Is_Primitive_Subp);
Check_Overriding_Indicator
(S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
-- Overloading is not allowed in SPARK, except for operators
if Nkind (S) /= N_Defining_Operator_Symbol then
Error_Msg_Sloc := Sloc (Homonym (S));
Check_SPARK_Restriction
("overloading not allowed with entity#", S);
end if;
-- If S is a derived operation for an untagged type then by
-- definition it's not a dispatching operation (even if the parent
-- operation was dispatching), so Check_Dispatching_Operation is not
-- called in that case.
if No (Derived_Type)
or else Is_Tagged_Type (Derived_Type)
then
Check_Dispatching_Operation (S, Empty);
end if;
end if;
-- If this is a user-defined equality operator that is not a derived
-- subprogram, create the corresponding inequality. If the operation is
-- dispatching, the expansion is done elsewhere, and we do not create
-- an explicit inequality operation.
<<Check_Inequality>>
if Chars (S) = Name_Op_Eq
and then Etype (S) = Standard_Boolean
and then Present (Parent (S))
and then not Is_Dispatching_Operation (S)
then
Make_Inequality_Operator (S);
if Ada_Version >= Ada_2012 then
Check_Untagged_Equality (S);
end if;
end if;
end New_Overloaded_Entity;
---------------------
-- Process_Formals --
---------------------
procedure Process_Formals
(T : List_Id;
Related_Nod : Node_Id)
is
Param_Spec : Node_Id;
Formal : Entity_Id;
Formal_Type : Entity_Id;
Default : Node_Id;
Ptype : Entity_Id;
Num_Out_Params : Nat := 0;
First_Out_Param : Entity_Id := Empty;
-- Used for setting Is_Only_Out_Parameter
function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
-- Determine whether an access type designates a type coming from a
-- limited view.
function Is_Class_Wide_Default (D : Node_Id) return Boolean;
-- Check whether the default has a class-wide type. After analysis the
-- default has the type of the formal, so we must also check explicitly
-- for an access attribute.
-------------------------------
-- Designates_From_With_Type --
-------------------------------
function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
Desig : Entity_Id := Typ;
begin
if Is_Access_Type (Desig) then
Desig := Directly_Designated_Type (Desig);
end if;
if Is_Class_Wide_Type (Desig) then
Desig := Root_Type (Desig);
end if;
return
Ekind (Desig) = E_Incomplete_Type and then From_With_Type (Desig);
end Designates_From_With_Type;
---------------------------
-- Is_Class_Wide_Default --
---------------------------
function Is_Class_Wide_Default (D : Node_Id) return Boolean is
begin
return Is_Class_Wide_Type (Designated_Type (Etype (D)))
or else (Nkind (D) = N_Attribute_Reference
and then Attribute_Name (D) = Name_Access
and then Is_Class_Wide_Type (Etype (Prefix (D))));
end Is_Class_Wide_Default;
-- Start of processing for Process_Formals
begin
-- In order to prevent premature use of the formals in the same formal
-- part, the Ekind is left undefined until all default expressions are
-- analyzed. The Ekind is established in a separate loop at the end.
Param_Spec := First (T);
while Present (Param_Spec) loop
Formal := Defining_Identifier (Param_Spec);
Set_Never_Set_In_Source (Formal, True);
Enter_Name (Formal);
-- Case of ordinary parameters
if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
Find_Type (Parameter_Type (Param_Spec));
Ptype := Parameter_Type (Param_Spec);
if Ptype = Error then
goto Continue;
end if;
Formal_Type := Entity (Ptype);
if Is_Incomplete_Type (Formal_Type)
or else
(Is_Class_Wide_Type (Formal_Type)
and then Is_Incomplete_Type (Root_Type (Formal_Type)))
then
-- Ada 2005 (AI-326): Tagged incomplete types allowed in
-- primitive operations, as long as their completion is
-- in the same declarative part. If in the private part
-- this means that the type cannot be a Taft-amendment type.
-- Check is done on package exit. For access to subprograms,
-- the use is legal for Taft-amendment types.
-- Ada 2012: tagged incomplete types are allowed as generic
-- formal types. They do not introduce dependencies and the
-- corresponding generic subprogram does not have a delayed
-- freeze, because it does not need a freeze node.
if Is_Tagged_Type (Formal_Type) then
if Ekind (Scope (Current_Scope)) = E_Package
and then not From_With_Type (Formal_Type)
and then not Is_Generic_Type (Formal_Type)
and then not Is_Class_Wide_Type (Formal_Type)
then
if not Nkind_In
(Parent (T), N_Access_Function_Definition,
N_Access_Procedure_Definition)
then
Append_Elmt
(Current_Scope,
Private_Dependents (Base_Type (Formal_Type)));
-- Freezing is delayed to ensure that Register_Prim
-- will get called for this operation, which is needed
-- in cases where static dispatch tables aren't built.
-- (Note that the same is done for controlling access
-- parameter cases in function Access_Definition.)
Set_Has_Delayed_Freeze (Current_Scope);
end if;
end if;
-- Special handling of Value_Type for CIL case
elsif Is_Value_Type (Formal_Type) then
null;
elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
N_Access_Procedure_Definition)
then
-- AI05-0151: Tagged incomplete types are allowed in all
-- formal parts. Untagged incomplete types are not allowed
-- in bodies.
if Ada_Version >= Ada_2012 then
if Is_Tagged_Type (Formal_Type) then
null;
elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
N_Entry_Body,
N_Subprogram_Body)
then
Error_Msg_NE
("invalid use of untagged incomplete type&",
Ptype, Formal_Type);
end if;
else
Error_Msg_NE
("invalid use of incomplete type&",
Param_Spec, Formal_Type);
-- Further checks on the legality of incomplete types
-- in formal parts are delayed until the freeze point
-- of the enclosing subprogram or access to subprogram.
end if;
end if;
elsif Ekind (Formal_Type) = E_Void then
Error_Msg_NE
("premature use of&",
Parameter_Type (Param_Spec), Formal_Type);
end if;
-- Ada 2012 (AI-142): Handle aliased parameters
if Ada_Version >= Ada_2012
and then Aliased_Present (Param_Spec)
then
Set_Is_Aliased (Formal);
end if;
-- Ada 2005 (AI-231): Create and decorate an internal subtype
-- declaration corresponding to the null-excluding type of the
-- formal in the enclosing scope. Finally, replace the parameter
-- type of the formal with the internal subtype.
if Ada_Version >= Ada_2005
and then Null_Exclusion_Present (Param_Spec)
then
if not Is_Access_Type (Formal_Type) then
Error_Msg_N
("`NOT NULL` allowed only for an access type", Param_Spec);
else
if Can_Never_Be_Null (Formal_Type)
and then Comes_From_Source (Related_Nod)
then
Error_Msg_NE
("`NOT NULL` not allowed (& already excludes null)",
Param_Spec, Formal_Type);
end if;
Formal_Type :=
Create_Null_Excluding_Itype
(T => Formal_Type,
Related_Nod => Related_Nod,
Scope_Id => Scope (Current_Scope));
-- If the designated type of the itype is an itype that is
-- not frozen yet, we set the Has_Delayed_Freeze attribute
-- on the access subtype, to prevent order-of-elaboration
-- issues in the backend.
-- Example:
-- type T is access procedure;
-- procedure Op (O : not null T);
if Is_Itype (Directly_Designated_Type (Formal_Type))
and then
not Is_Frozen (Directly_Designated_Type (Formal_Type))
then
Set_Has_Delayed_Freeze (Formal_Type);
end if;
end if;
end if;
-- An access formal type
else
Formal_Type :=
Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
-- No need to continue if we already notified errors
if not Present (Formal_Type) then
return;
end if;
-- Ada 2005 (AI-254)
declare
AD : constant Node_Id :=
Access_To_Subprogram_Definition
(Parameter_Type (Param_Spec));
begin
if Present (AD) and then Protected_Present (AD) then
Formal_Type :=
Replace_Anonymous_Access_To_Protected_Subprogram
(Param_Spec);
end if;
end;
end if;
Set_Etype (Formal, Formal_Type);
-- Deal with default expression if present
Default := Expression (Param_Spec);
if Present (Default) then
Check_SPARK_Restriction
("default expression is not allowed", Default);
if Out_Present (Param_Spec) then
Error_Msg_N
("default initialization only allowed for IN parameters",
Param_Spec);
end if;
-- Do the special preanalysis of the expression (see section on
-- "Handling of Default Expressions" in the spec of package Sem).
Preanalyze_Spec_Expression (Default, Formal_Type);
-- An access to constant cannot be the default for
-- an access parameter that is an access to variable.
if Ekind (Formal_Type) = E_Anonymous_Access_Type
and then not Is_Access_Constant (Formal_Type)
and then Is_Access_Type (Etype (Default))
and then Is_Access_Constant (Etype (Default))
then
Error_Msg_N
("formal that is access to variable cannot be initialized " &
"with an access-to-constant expression", Default);
end if;
-- Check that the designated type of an access parameter's default
-- is not a class-wide type unless the parameter's designated type
-- is also class-wide.
if Ekind (Formal_Type) = E_Anonymous_Access_Type
and then not Designates_From_With_Type (Formal_Type)
and then Is_Class_Wide_Default (Default)
and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
then
Error_Msg_N
("access to class-wide expression not allowed here", Default);
end if;
-- Check incorrect use of dynamically tagged expressions
if Is_Tagged_Type (Formal_Type) then
Check_Dynamically_Tagged_Expression
(Expr => Default,
Typ => Formal_Type,
Related_Nod => Default);
end if;
end if;
-- Ada 2005 (AI-231): Static checks
if Ada_Version >= Ada_2005
and then Is_Access_Type (Etype (Formal))
and then Can_Never_Be_Null (Etype (Formal))
then
Null_Exclusion_Static_Checks (Param_Spec);
end if;
<<Continue>>
Next (Param_Spec);
end loop;
-- If this is the formal part of a function specification, analyze the
-- subtype mark in the context where the formals are visible but not
-- yet usable, and may hide outer homographs.
if Nkind (Related_Nod) = N_Function_Specification then
Analyze_Return_Type (Related_Nod);
end if;
-- Now set the kind (mode) of each formal
Param_Spec := First (T);
while Present (Param_Spec) loop
Formal := Defining_Identifier (Param_Spec);
Set_Formal_Mode (Formal);
if Ekind (Formal) = E_In_Parameter then
Set_Default_Value (Formal, Expression (Param_Spec));
if Present (Expression (Param_Spec)) then
Default := Expression (Param_Spec);
if Is_Scalar_Type (Etype (Default)) then
if Nkind (Parameter_Type (Param_Spec)) /=
N_Access_Definition
then
Formal_Type := Entity (Parameter_Type (Param_Spec));
else
Formal_Type :=
Access_Definition
(Related_Nod, Parameter_Type (Param_Spec));
end if;
Apply_Scalar_Range_Check (Default, Formal_Type);
end if;
end if;
elsif Ekind (Formal) = E_Out_Parameter then
Num_Out_Params := Num_Out_Params + 1;
if Num_Out_Params = 1 then
First_Out_Param := Formal;
end if;
elsif Ekind (Formal) = E_In_Out_Parameter then
Num_Out_Params := Num_Out_Params + 1;
end if;
-- Skip remaining processing if formal type was in error
if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
goto Next_Parameter;
end if;
-- Force call by reference if aliased
if Is_Aliased (Formal) then
Set_Mechanism (Formal, By_Reference);
-- Warn if user asked this to be passed by copy
if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
Error_Msg_N
("cannot pass aliased parameter & by copy?", Formal);
end if;
-- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
Set_Mechanism (Formal, By_Copy);
elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
Set_Mechanism (Formal, By_Reference);
end if;
<<Next_Parameter>>
Next (Param_Spec);
end loop;
if Present (First_Out_Param) and then Num_Out_Params = 1 then
Set_Is_Only_Out_Parameter (First_Out_Param);
end if;
end Process_Formals;
------------------
-- Process_PPCs --
------------------
procedure Process_PPCs
(N : Node_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Prag : Node_Id;
Parms : List_Id;
Designator : Entity_Id;
-- Subprogram designator, set from Spec_Id if present, else Body_Id
Precond : Node_Id := Empty;
-- Set non-Empty if we prepend precondition to the declarations. This
-- is used to hook up inherited preconditions (adding the condition
-- expression with OR ELSE, and adding the message).
Inherited_Precond : Node_Id;
-- Precondition inherited from parent subprogram
Inherited : constant Subprogram_List :=
Inherited_Subprograms (Spec_Id);
-- List of subprograms inherited by this subprogram
Plist : List_Id := No_List;
-- List of generated postconditions
procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
-- Append a node to a list. If there is no list, create a new one. When
-- the item denotes a pragma, it is added to the list only when it is
-- enabled.
procedure Check_Access_Invariants (E : Entity_Id);
-- If the subprogram returns an access to a type with invariants, or
-- has access parameters whose designated type has an invariant, then
-- under the same visibility conditions as for other invariant checks,
-- the type invariant must be applied to the returned value.
function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id;
-- Prag contains an analyzed precondition or postcondition pragma. This
-- function copies the pragma, changes it to the corresponding Check
-- pragma and returns the Check pragma as the result. If Pspec is non-
-- empty, this is the case of inheriting a PPC, where we must change
-- references to parameters of the inherited subprogram to point to the
-- corresponding parameters of the current subprogram.
function Has_Checked_Predicate (Typ : Entity_Id) return Boolean;
-- Determine whether type Typ has or inherits at least one predicate
-- aspect or pragma, for which the applicable policy is Checked.
function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
-- Determine whether the body of procedure Proc_Id contains a sole null
-- statement, possibly followed by an optional return.
procedure Insert_After_Last_Declaration (Nod : Node_Id);
-- Insert node Nod after the last declaration of the context
function Is_Public_Subprogram_For (T : Entity_Id) return Boolean;
-- T is the entity for a private type for which invariants are defined.
-- This function returns True if the procedure corresponding to the
-- value of Designator is a public procedure from the point of view of
-- this type (i.e. its spec is in the visible part of the package that
-- contains the declaration of the private type). A True value means
-- that an invariant check is required (for an IN OUT parameter, or
-- the returned value of a function.
-------------------------
-- Append_Enabled_Item --
-------------------------
procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
begin
-- Do not chain ignored or disabled pragmas
if Nkind (Item) = N_Pragma
and then (Is_Ignored (Item) or else Is_Disabled (Item))
then
null;
-- Add the item
else
if No (List) then
List := New_List;
end if;
Append (Item, List);
end if;
end Append_Enabled_Item;
-----------------------------
-- Check_Access_Invariants --
-----------------------------
procedure Check_Access_Invariants (E : Entity_Id) is
Call : Node_Id;
Obj : Node_Id;
Typ : Entity_Id;
begin
if Is_Access_Type (Etype (E))
and then not Is_Access_Constant (Etype (E))
then
Typ := Designated_Type (Etype (E));
if Has_Invariants (Typ)
and then Present (Invariant_Procedure (Typ))
and then not Has_Null_Body (Invariant_Procedure (Typ))
and then Is_Public_Subprogram_For (Typ)
then
Obj :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (E, Loc));
Set_Etype (Obj, Typ);
Call := Make_Invariant_Call (Obj);
Append_Enabled_Item
(Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => Make_Null (Loc),
Right_Opnd => New_Occurrence_Of (E, Loc)),
Then_Statements => New_List (Call)),
List => Plist);
end if;
end if;
end Check_Access_Invariants;
--------------
-- Grab_PPC --
--------------
function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id is
Nam : constant Name_Id := Pragma_Name (Prag);
Map : Elist_Id;
CP : Node_Id;
Ename : Name_Id;
-- Effective name of pragma (maybe Pre/Post rather than Precondition/
-- Postcodition if the pragma came from a Pre/Post aspect). We need
-- the name right when we generate the Check pragma, since we want
-- the right set of check policies to apply.
begin
-- Prepare map if this is the case where we have to map entities of
-- arguments in the overridden subprogram to corresponding entities
-- of the current subprogram.
if No (Pspec) then
Map := No_Elist;
else
declare
PF : Entity_Id;
CF : Entity_Id;
begin
Map := New_Elmt_List;
PF := First_Formal (Pspec);
CF := First_Formal (Designator);
while Present (PF) loop
Append_Elmt (PF, Map);
Append_Elmt (CF, Map);
Next_Formal (PF);
Next_Formal (CF);
end loop;
end;
end if;
-- Now we can copy the tree, doing any required substitutions
CP := New_Copy_Tree (Prag, Map => Map, New_Scope => Current_Scope);
-- Set Analyzed to false, since we want to reanalyze the check
-- procedure. Note that it is only at the outer level that we
-- do this fiddling, for the spec cases, the already preanalyzed
-- parameters are not affected.
Set_Analyzed (CP, False);
-- We also make sure Comes_From_Source is False for the copy
Set_Comes_From_Source (CP, False);
-- For a postcondition pragma within a generic, preserve the pragma
-- for later expansion. This is also used when an error was detected,
-- thus setting Expander_Active to False.
if Nam = Name_Postcondition
and then not Expander_Active
then
return CP;
end if;
-- Get effective name of aspect
if Present (Corresponding_Aspect (Prag)) then
Ename := Chars (Identifier (Corresponding_Aspect (Prag)));
else
Ename := Nam;
end if;
-- Change copy of pragma into corresponding pragma Check
Prepend_To (Pragma_Argument_Associations (CP),
Make_Pragma_Argument_Association (Sloc (Prag),
Expression => Make_Identifier (Loc, Ename)));
Set_Pragma_Identifier (CP, Make_Identifier (Sloc (Prag), Name_Check));
-- If this is inherited case and the current message starts with
-- "failed p", we change it to "failed inherited p...".
if Present (Pspec) then
declare
Msg : constant Node_Id :=
Last (Pragma_Argument_Associations (CP));
begin
if Chars (Msg) = Name_Message then
String_To_Name_Buffer (Strval (Expression (Msg)));
if Name_Buffer (1 .. 8) = "failed p" then
Insert_Str_In_Name_Buffer ("inherited ", 8);
Set_Strval
(Expression (Last (Pragma_Argument_Associations (CP))),
String_From_Name_Buffer);
end if;
end if;
end;
end if;
-- Return the check pragma
return CP;
end Grab_PPC;
---------------------------
-- Has_Checked_Predicate --
---------------------------
function Has_Checked_Predicate (Typ : Entity_Id) return Boolean is
Anc : Entity_Id;
Pred : Node_Id;
begin
-- Climb the ancestor type chain staring from the input. This is done
-- because the input type may lack aspect/pragma predicate and simply
-- inherit those from its ancestor.
-- Note that predicate pragmas include all three cases of predicate
-- aspects (Predicate, Dynamic_Predicate, Static_Predicate), so this
-- routine checks for all three cases.
Anc := Typ;
while Present (Anc) loop
Pred := Get_Pragma (Anc, Pragma_Predicate);
if Present (Pred) and then not Is_Ignored (Pred) then
return True;
end if;
Anc := Nearest_Ancestor (Anc);
end loop;
return False;
end Has_Checked_Predicate;
-------------------
-- Has_Null_Body --
-------------------
function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
Body_Id : Entity_Id;
Decl : Node_Id;
Spec : Node_Id;
Stmt1 : Node_Id;
Stmt2 : Node_Id;
begin
Spec := Parent (Proc_Id);
Decl := Parent (Spec);
-- Retrieve the entity of the invariant procedure body
if Nkind (Spec) = N_Procedure_Specification
and then Nkind (Decl) = N_Subprogram_Declaration
then
Body_Id := Corresponding_Body (Decl);
-- The body acts as a spec
else
Body_Id := Proc_Id;
end if;
-- The body will be generated later
if No (Body_Id) then
return False;
end if;
Spec := Parent (Body_Id);
Decl := Parent (Spec);
pragma Assert
(Nkind (Spec) = N_Procedure_Specification
and then Nkind (Decl) = N_Subprogram_Body);
Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
-- Look for a null statement followed by an optional return statement
if Nkind (Stmt1) = N_Null_Statement then
Stmt2 := Next (Stmt1);
if Present (Stmt2) then
return Nkind (Stmt2) = N_Simple_Return_Statement;
else
return True;
end if;
end if;
return False;
end Has_Null_Body;
-----------------------------------
-- Insert_After_Last_Declaration --
-----------------------------------
procedure Insert_After_Last_Declaration (Nod : Node_Id) is
Decls : constant List_Id := Declarations (N);
begin
if No (Decls) then
Set_Declarations (N, New_List (Nod));
else
Append_To (Decls, Nod);
end if;
end Insert_After_Last_Declaration;
------------------------------
-- Is_Public_Subprogram_For --
------------------------------
-- The type T is a private type, its declaration is therefore in
-- the list of public declarations of some package. The test for a
-- public subprogram is that its declaration is in this same list
-- of declarations for the same package (note that all the public
-- declarations are in one list, and all the private declarations
-- in another, so this deals with the public/private distinction).
function Is_Public_Subprogram_For (T : Entity_Id) return Boolean is
DD : constant Node_Id := Unit_Declaration_Node (Designator);
-- The subprogram declaration for the subprogram in question
TL : constant List_Id :=
Visible_Declarations
(Specification (Unit_Declaration_Node (Scope (T))));
-- The list of declarations containing the private declaration of
-- the type. We know it is a private type, so we know its scope is
-- the package in question, and we know it must be in the visible
-- declarations of this package.
begin
-- If the subprogram declaration is not a list member, it must be
-- an Init_Proc, in which case we want to consider it to be a
-- public subprogram, since we do get initializations to deal with.
-- Other internally generated subprograms are not public.
if not Is_List_Member (DD)
and then Is_Init_Proc (Defining_Entity (DD))
then
return True;
-- The declaration may have been generated for an expression function
-- so check whether that function comes from source.
elsif not Comes_From_Source (DD)
and then
(Nkind (Original_Node (DD)) /= N_Expression_Function
or else not Comes_From_Source (Defining_Entity (DD)))
then
return False;
-- Otherwise we test whether the subprogram is declared in the
-- visible declarations of the package containing the type.
else
return TL = List_Containing (DD);
end if;
end Is_Public_Subprogram_For;
-- Local variables
Formal : Node_Id;
Formal_Typ : Entity_Id;
Func_Typ : Entity_Id;
Post_Proc : Entity_Id;
Result : Node_Id;
-- Start of processing for Process_PPCs
begin
-- Capture designator from spec if present, else from body
if Present (Spec_Id) then
Designator := Spec_Id;
else
Designator := Body_Id;
end if;
-- Do not process a predicate function as its body will contain a
-- recursive call to itself and blow up the stack.
if Ekind (Designator) = E_Function
and then Is_Predicate_Function (Designator)
then
return;
-- Internally generated subprograms, such as type-specific functions,
-- don't get assertion checks.
elsif Get_TSS_Name (Designator) /= TSS_Null then
return;
end if;
-- Grab preconditions from spec
if Present (Spec_Id) then
-- Loop through PPC pragmas from spec. Note that preconditions from
-- the body will be analyzed and converted when we scan the body
-- declarations below.
Prag := Pre_Post_Conditions (Contract (Spec_Id));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Precondition then
-- For Pre (or Precondition pragma), we simply prepend the
-- pragma to the list of declarations right away so that it
-- will be executed at the start of the procedure. Note that
-- this processing reverses the order of the list, which is
-- what we want since new entries were chained to the head of
-- the list. There can be more than one precondition when we
-- use pragma Precondition.
if not Class_Present (Prag) then
Prepend (Grab_PPC, Declarations (N));
-- For Pre'Class there can only be one pragma, and we save
-- it in Precond for now. We will add inherited Pre'Class
-- stuff before inserting this pragma in the declarations.
else
Precond := Grab_PPC;
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Now deal with inherited preconditions
for J in Inherited'Range loop
Prag := Pre_Post_Conditions (Contract (Inherited (J)));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Precondition
and then Class_Present (Prag)
then
Inherited_Precond := Grab_PPC (Inherited (J));
-- No precondition so far, so establish this as the first
if No (Precond) then
Precond := Inherited_Precond;
-- Here we already have a precondition, add inherited one
else
-- Add new precondition to old one using OR ELSE
declare
New_Expr : constant Node_Id :=
Get_Pragma_Arg
(Next (First (Pragma_Argument_Associations
(Inherited_Precond))));
Old_Expr : constant Node_Id :=
Get_Pragma_Arg
(Next (First (Pragma_Argument_Associations
(Precond))));
begin
if Paren_Count (Old_Expr) = 0 then
Set_Paren_Count (Old_Expr, 1);
end if;
if Paren_Count (New_Expr) = 0 then
Set_Paren_Count (New_Expr, 1);
end if;
Rewrite (Old_Expr,
Make_Or_Else (Sloc (Old_Expr),
Left_Opnd => Relocate_Node (Old_Expr),
Right_Opnd => New_Expr));
end;
-- Add new message in the form:
-- failed precondition from bla
-- also failed inherited precondition from bla
-- ...
-- Skip this if exception locations are suppressed
if not Exception_Locations_Suppressed then
declare
New_Msg : constant Node_Id :=
Get_Pragma_Arg
(Last
(Pragma_Argument_Associations
(Inherited_Precond)));
Old_Msg : constant Node_Id :=
Get_Pragma_Arg
(Last
(Pragma_Argument_Associations
(Precond)));
begin
Start_String (Strval (Old_Msg));
Store_String_Chars (ASCII.LF & " also ");
Store_String_Chars (Strval (New_Msg));
Set_Strval (Old_Msg, End_String);
end;
end if;
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
end loop;
-- If we have built a precondition for Pre'Class (including any
-- Pre'Class aspects inherited from parent subprograms), then we
-- insert this composite precondition at this stage.
if Present (Precond) then
Prepend (Precond, Declarations (N));
end if;
end if;
-- Build postconditions procedure if needed and prepend the following
-- declaration to the start of the declarations for the subprogram.
-- procedure _postconditions [(_Result : resulttype)] is
-- begin
-- pragma Check (Postcondition, condition [,message]);
-- pragma Check (Postcondition, condition [,message]);
-- ...
-- Invariant_Procedure (_Result) ...
-- Invariant_Procedure (Arg1)
-- ...
-- end;
-- First we deal with the postconditions in the body
if Is_Non_Empty_List (Declarations (N)) then
-- Loop through declarations
Prag := First (Declarations (N));
while Present (Prag) loop
if Nkind (Prag) = N_Pragma then
-- Capture postcondition pragmas
if Pragma_Name (Prag) = Name_Postcondition then
Analyze (Prag);
-- If expansion is disabled, as in a generic unit, save
-- pragma for later expansion.
if not Expander_Active then
Prepend (Grab_PPC, Declarations (N));
else
Append_Enabled_Item (Grab_PPC, Plist);
end if;
end if;
Next (Prag);
-- Not a pragma, if comes from source, then end scan
elsif Comes_From_Source (Prag) then
exit;
-- Skip stuff not coming from source
else
Next (Prag);
end if;
end loop;
end if;
-- Now deal with any postconditions from the spec
if Present (Spec_Id) then
Spec_Postconditions : declare
procedure Process_Contract_Cases (Spec : Node_Id);
-- This processes the Contract_Test_Cases from Spec, processing
-- any contract-cases from the list. The caller has checked that
-- Contract_Test_Cases is non-Empty.
procedure Process_Post_Conditions
(Spec : Node_Id;
Class : Boolean);
-- This processes the Pre_Post_Conditions from Spec, processing
-- any postconditions from the list. If Class is True, then only
-- postconditions marked with Class_Present are considered. The
-- caller has checked that Pre_Post_Conditions is non-Empty.
----------------------------
-- Process_Contract_Cases --
----------------------------
procedure Process_Contract_Cases (Spec : Node_Id) is
begin
-- Loop through Contract_Cases pragmas from spec
Prag := Contract_Test_Cases (Contract (Spec));
loop
if Pragma_Name (Prag) = Name_Contract_Cases then
Expand_Contract_Cases
(CCs => Prag,
Subp_Id => Spec_Id,
Decls => Declarations (N),
Stmts => Plist);
end if;
Prag := Next_Pragma (Prag);
exit when No (Prag);
end loop;
end Process_Contract_Cases;
-----------------------------
-- Process_Post_Conditions --
-----------------------------
procedure Process_Post_Conditions
(Spec : Node_Id;
Class : Boolean)
is
Pspec : Node_Id;
begin
if Class then
Pspec := Spec;
else
Pspec := Empty;
end if;
-- Loop through PPC pragmas from spec
Prag := Pre_Post_Conditions (Contract (Spec));
loop
if Pragma_Name (Prag) = Name_Postcondition
and then (not Class or else Class_Present (Prag))
then
if not Expander_Active then
Prepend (Grab_PPC (Pspec), Declarations (N));
else
Append_Enabled_Item (Grab_PPC (Pspec), Plist);
end if;
end if;
Prag := Next_Pragma (Prag);
exit when No (Prag);
end loop;
end Process_Post_Conditions;
-- Start of processing for Spec_Postconditions
begin
-- Process postconditions expressed as contract-cases
if Present (Contract_Test_Cases (Contract (Spec_Id))) then
Process_Contract_Cases (Spec_Id);
end if;
-- Process spec postconditions
if Present (Pre_Post_Conditions (Contract (Spec_Id))) then
Process_Post_Conditions (Spec_Id, Class => False);
end if;
-- Process inherited postconditions
for J in Inherited'Range loop
if Present (Pre_Post_Conditions (Contract (Inherited (J)))) then
Process_Post_Conditions (Inherited (J), Class => True);
end if;
end loop;
end Spec_Postconditions;
end if;
-- Add an invariant call to check the result of a function
if Ekind (Designator) /= E_Procedure and then Expander_Active then
Func_Typ := Etype (Designator);
Result := Make_Defining_Identifier (Loc, Name_uResult);
Set_Etype (Result, Func_Typ);
-- Add argument for return
Parms := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Result,
Parameter_Type => New_Occurrence_Of (Func_Typ, Loc)));
-- Add invariant call if returning type with invariants and this is a
-- public function, i.e. a function declared in the visible part of
-- the package defining the private type.
if Has_Invariants (Func_Typ)
and then Present (Invariant_Procedure (Func_Typ))
and then not Has_Null_Body (Invariant_Procedure (Func_Typ))
and then Is_Public_Subprogram_For (Func_Typ)
then
Append_Enabled_Item
(Make_Invariant_Call (New_Occurrence_Of (Result, Loc)), Plist);
end if;
-- Same if return value is an access to type with invariants
Check_Access_Invariants (Result);
-- Procedure case
else
Parms := No_List;
end if;
-- Add invariant calls and predicate calls for parameters. Note that
-- this is done for functions as well, since in Ada 2012 they can have
-- IN OUT args.
if Expander_Active then
Formal := First_Formal (Designator);
while Present (Formal) loop
if Ekind (Formal) /= E_In_Parameter
or else Is_Access_Type (Etype (Formal))
then
Formal_Typ := Etype (Formal);
if Has_Invariants (Formal_Typ)
and then Present (Invariant_Procedure (Formal_Typ))
and then not Has_Null_Body (Invariant_Procedure (Formal_Typ))
and then Is_Public_Subprogram_For (Formal_Typ)
then
Append_Enabled_Item
(Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
Plist);
end if;
Check_Access_Invariants (Formal);
if Has_Predicates (Formal_Typ)
and then Present (Predicate_Function (Formal_Typ))
and then Has_Checked_Predicate (Formal_Typ)
then
Append_Enabled_Item
(Make_Predicate_Check
(Formal_Typ, New_Occurrence_Of (Formal, Loc)),
Plist);
end if;
end if;
Next_Formal (Formal);
end loop;
end if;
-- Build and insert postcondition procedure
if Expander_Active and then Present (Plist) then
Post_Proc :=
Make_Defining_Identifier (Loc, Chars => Name_uPostconditions);
-- Insert the corresponding body of a post condition pragma after the
-- last declaration of the context. This ensures that the body will
-- not cause any premature freezing as it may mention types:
-- procedure Proc (Obj : Array_Typ) is
-- procedure _postconditions is
-- begin
-- ... Obj ...
-- end _postconditions;
-- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
-- begin
-- In the example above, Obj is of type T but the incorrect placement
-- of _postconditions will cause a crash in gigi due to an out of
-- order reference. The body of _postconditions must be placed after
-- the declaration of Temp to preserve correct visibility.
Insert_After_Last_Declaration (
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Post_Proc,
Parameter_Specifications => Parms),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Plist)));
Set_Ekind (Post_Proc, E_Procedure);
-- If this is a procedure, set the Postcondition_Proc attribute on
-- the proper defining entity for the subprogram.
if Ekind (Designator) = E_Procedure then
Set_Postcondition_Proc (Designator, Post_Proc);
end if;
Set_Has_Postconditions (Designator);
end if;
end Process_PPCs;
----------------------------
-- Reference_Body_Formals --
----------------------------
procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
Fs : Entity_Id;
Fb : Entity_Id;
begin
if Error_Posted (Spec) then
return;
end if;
-- Iterate over both lists. They may be of different lengths if the two
-- specs are not conformant.
Fs := First_Formal (Spec);
Fb := First_Formal (Bod);
while Present (Fs) and then Present (Fb) loop
Generate_Reference (Fs, Fb, 'b');
if Style_Check then
Style.Check_Identifier (Fb, Fs);
end if;
Set_Spec_Entity (Fb, Fs);
Set_Referenced (Fs, False);
Next_Formal (Fs);
Next_Formal (Fb);
end loop;
end Reference_Body_Formals;
-------------------------
-- Set_Actual_Subtypes --
-------------------------
procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
Decl : Node_Id;
Formal : Entity_Id;
T : Entity_Id;
First_Stmt : Node_Id := Empty;
AS_Needed : Boolean;
begin
-- If this is an empty initialization procedure, no need to create
-- actual subtypes (small optimization).
if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
return;
end if;
Formal := First_Formal (Subp);
while Present (Formal) loop
T := Etype (Formal);
-- We never need an actual subtype for a constrained formal
if Is_Constrained (T) then
AS_Needed := False;
-- If we have unknown discriminants, then we do not need an actual
-- subtype, or more accurately we cannot figure it out! Note that
-- all class-wide types have unknown discriminants.
elsif Has_Unknown_Discriminants (T) then
AS_Needed := False;
-- At this stage we have an unconstrained type that may need an
-- actual subtype. For sure the actual subtype is needed if we have
-- an unconstrained array type.
elsif Is_Array_Type (T) then
AS_Needed := True;
-- The only other case needing an actual subtype is an unconstrained
-- record type which is an IN parameter (we cannot generate actual
-- subtypes for the OUT or IN OUT case, since an assignment can
-- change the discriminant values. However we exclude the case of
-- initialization procedures, since discriminants are handled very
-- specially in this context, see the section entitled "Handling of
-- Discriminants" in Einfo.
-- We also exclude the case of Discrim_SO_Functions (functions used
-- in front end layout mode for size/offset values), since in such
-- functions only discriminants are referenced, and not only are such
-- subtypes not needed, but they cannot always be generated, because
-- of order of elaboration issues.
elsif Is_Record_Type (T)
and then Ekind (Formal) = E_In_Parameter
and then Chars (Formal) /= Name_uInit
and then not Is_Unchecked_Union (T)
and then not Is_Discrim_SO_Function (Subp)
then
AS_Needed := True;
-- All other cases do not need an actual subtype
else
AS_Needed := False;
end if;
-- Generate actual subtypes for unconstrained arrays and
-- unconstrained discriminated records.
if AS_Needed then
if Nkind (N) = N_Accept_Statement then
-- If expansion is active, the formal is replaced by a local
-- variable that renames the corresponding entry of the
-- parameter block, and it is this local variable that may
-- require an actual subtype.
if Full_Expander_Active then
Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
else
Decl := Build_Actual_Subtype (T, Formal);
end if;
if Present (Handled_Statement_Sequence (N)) then
First_Stmt :=
First (Statements (Handled_Statement_Sequence (N)));
Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
Mark_Rewrite_Insertion (Decl);
else
-- If the accept statement has no body, there will be no
-- reference to the actuals, so no need to compute actual
-- subtypes.
return;
end if;
else
Decl := Build_Actual_Subtype (T, Formal);
Prepend (Decl, Declarations (N));
Mark_Rewrite_Insertion (Decl);
end if;
-- The declaration uses the bounds of an existing object, and
-- therefore needs no constraint checks.
Analyze (Decl, Suppress => All_Checks);
-- We need to freeze manually the generated type when it is
-- inserted anywhere else than in a declarative part.
if Present (First_Stmt) then
Insert_List_Before_And_Analyze (First_Stmt,
Freeze_Entity (Defining_Identifier (Decl), N));
end if;
if Nkind (N) = N_Accept_Statement
and then Full_Expander_Active
then
Set_Actual_Subtype (Renamed_Object (Formal),
Defining_Identifier (Decl));
else
Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
end if;
end if;
Next_Formal (Formal);
end loop;
end Set_Actual_Subtypes;
---------------------
-- Set_Formal_Mode --
---------------------
procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
Spec : constant Node_Id := Parent (Formal_Id);
begin
-- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
-- since we ensure that corresponding actuals are always valid at the
-- point of the call.
if Out_Present (Spec) then
if Ekind (Scope (Formal_Id)) = E_Function
or else Ekind (Scope (Formal_Id)) = E_Generic_Function
then
-- [IN] OUT parameters allowed for functions in Ada 2012
if Ada_Version >= Ada_2012 then
-- Even in Ada 2012 operators can only have IN parameters
if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
Error_Msg_N ("operators can only have IN parameters", Spec);
end if;
if In_Present (Spec) then
Set_Ekind (Formal_Id, E_In_Out_Parameter);
else
Set_Ekind (Formal_Id, E_Out_Parameter);
end if;
-- But not in earlier versions of Ada
else
Error_Msg_N ("functions can only have IN parameters", Spec);
Set_Ekind (Formal_Id, E_In_Parameter);
end if;
elsif In_Present (Spec) then
Set_Ekind (Formal_Id, E_In_Out_Parameter);
else
Set_Ekind (Formal_Id, E_Out_Parameter);
Set_Never_Set_In_Source (Formal_Id, True);
Set_Is_True_Constant (Formal_Id, False);
Set_Current_Value (Formal_Id, Empty);
end if;
else
Set_Ekind (Formal_Id, E_In_Parameter);
end if;
-- Set Is_Known_Non_Null for access parameters since the language
-- guarantees that access parameters are always non-null. We also set
-- Can_Never_Be_Null, since there is no way to change the value.
if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
-- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
-- null; In Ada 2005, only if then null_exclusion is explicit.
if Ada_Version < Ada_2005
or else Can_Never_Be_Null (Etype (Formal_Id))
then
Set_Is_Known_Non_Null (Formal_Id);
Set_Can_Never_Be_Null (Formal_Id);
end if;
-- Ada 2005 (AI-231): Null-exclusion access subtype
elsif Is_Access_Type (Etype (Formal_Id))
and then Can_Never_Be_Null (Etype (Formal_Id))
then
Set_Is_Known_Non_Null (Formal_Id);
-- We can also set Can_Never_Be_Null (thus preventing some junk
-- access checks) for the case of an IN parameter, which cannot
-- be changed, or for an IN OUT parameter, which can be changed but
-- not to a null value. But for an OUT parameter, the initial value
-- passed in can be null, so we can't set this flag in that case.
if Ekind (Formal_Id) /= E_Out_Parameter then
Set_Can_Never_Be_Null (Formal_Id);
end if;
end if;
Set_Mechanism (Formal_Id, Default_Mechanism);
Set_Formal_Validity (Formal_Id);
end Set_Formal_Mode;
-------------------------
-- Set_Formal_Validity --
-------------------------
procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
begin
-- If no validity checking, then we cannot assume anything about the
-- validity of parameters, since we do not know there is any checking
-- of the validity on the call side.
if not Validity_Checks_On then
return;
-- If validity checking for parameters is enabled, this means we are
-- not supposed to make any assumptions about argument values.
elsif Validity_Check_Parameters then
return;
-- If we are checking in parameters, we will assume that the caller is
-- also checking parameters, so we can assume the parameter is valid.
elsif Ekind (Formal_Id) = E_In_Parameter
and then Validity_Check_In_Params
then
Set_Is_Known_Valid (Formal_Id, True);
-- Similar treatment for IN OUT parameters
elsif Ekind (Formal_Id) = E_In_Out_Parameter
and then Validity_Check_In_Out_Params
then
Set_Is_Known_Valid (Formal_Id, True);
end if;
end Set_Formal_Validity;
------------------------
-- Subtype_Conformant --
------------------------
function Subtype_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Skip_Controlling_Formals : Boolean := False) return Boolean
is
Result : Boolean;
begin
Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
Skip_Controlling_Formals => Skip_Controlling_Formals);
return Result;
end Subtype_Conformant;
---------------------
-- Type_Conformant --
---------------------
function Type_Conformant
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Skip_Controlling_Formals : Boolean := False) return Boolean
is
Result : Boolean;
begin
May_Hide_Profile := False;
Check_Conformance
(New_Id, Old_Id, Type_Conformant, False, Result,
Skip_Controlling_Formals => Skip_Controlling_Formals);
return Result;
end Type_Conformant;
-------------------------------
-- Valid_Operator_Definition --
-------------------------------
procedure Valid_Operator_Definition (Designator : Entity_Id) is
N : Integer := 0;
F : Entity_Id;
Id : constant Name_Id := Chars (Designator);
N_OK : Boolean;
begin
F := First_Formal (Designator);
while Present (F) loop
N := N + 1;
if Present (Default_Value (F)) then
Error_Msg_N
("default values not allowed for operator parameters",
Parent (F));
end if;
Next_Formal (F);
end loop;
-- Verify that user-defined operators have proper number of arguments
-- First case of operators which can only be unary
if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
N_OK := (N = 1);
-- Case of operators which can be unary or binary
elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
N_OK := (N in 1 .. 2);
-- All other operators can only be binary
else
N_OK := (N = 2);
end if;
if not N_OK then
Error_Msg_N
("incorrect number of arguments for operator", Designator);
end if;
if Id = Name_Op_Ne
and then Base_Type (Etype (Designator)) = Standard_Boolean
and then not Is_Intrinsic_Subprogram (Designator)
then
Error_Msg_N
("explicit definition of inequality not allowed", Designator);
end if;
end Valid_Operator_Definition;
end Sem_Ch6;
|