summaryrefslogtreecommitdiff
path: root/gcc/ada/utils.c
blob: 8b0bf8183dd1127a84b64d11e7d2a45fd67cd1a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
/****************************************************************************
 *                                                                          *
 *                         GNAT COMPILER COMPONENTS                         *
 *                                                                          *
 *                                U T I L S                                 *
 *                                                                          *
 *                          C Implementation File                           *
 *                                                                          *
 *          Copyright (C) 1992-2004, Free Software Foundation, Inc.         *
 *                                                                          *
 * GNAT is free software;  you can  redistribute it  and/or modify it under *
 * terms of the  GNU General Public License as published  by the Free Soft- *
 * ware  Foundation;  either version 2,  or (at your option) any later ver- *
 * sion.  GNAT is distributed in the hope that it will be useful, but WITH- *
 * OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY *
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License *
 * for  more details.  You should have  received  a copy of the GNU General *
 * Public License  distributed with GNAT;  see file COPYING.  If not, write *
 * to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, *
 * MA 02111-1307, USA.                                                      *
 *                                                                          *
 * GNAT was originally developed  by the GNAT team at  New York University. *
 * Extensive contributions were provided by Ada Core Technologies Inc.      *
 *                                                                          *
 ****************************************************************************/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "defaults.h"
#include "toplev.h"
#include "output.h"
#include "ggc.h"
#include "debug.h"
#include "convert.h"
#include "target.h"
#include "function.h"

#include "ada.h"
#include "types.h"
#include "atree.h"
#include "elists.h"
#include "namet.h"
#include "nlists.h"
#include "stringt.h"
#include "uintp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"

#ifndef MAX_FIXED_MODE_SIZE
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
#endif

#ifndef MAX_BITS_PER_WORD
#define MAX_BITS_PER_WORD  BITS_PER_WORD
#endif

/* If nonzero, pretend we are allocating at global level.  */
int force_global;

/* Tree nodes for the various types and decls we create.  */
tree gnat_std_decls[(int) ADT_LAST];

/* Functions to call for each of the possible raise reasons.  */
tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];

/* Associates a GNAT tree node to a GCC tree node. It is used in
   `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
   of `save_gnu_tree' for more info.  */
static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;

/* This listhead is used to record any global objects that need elaboration.
   TREE_PURPOSE is the variable to be elaborated and TREE_VALUE is the
   initial value to assign.  */

static GTY(()) tree pending_elaborations;

/* This stack allows us to momentarily switch to generating elaboration
   lists for an inner context.  */

struct e_stack GTY(()) {
  struct e_stack *next;
  tree elab_list;
};
static GTY(()) struct e_stack *elist_stack;

/* This variable keeps a table for types for each precision so that we only
   allocate each of them once. Signed and unsigned types are kept separate.

   Note that these types are only used when fold-const requests something
   special.  Perhaps we should NOT share these types; we'll see how it
   goes later.  */
static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];

/* Likewise for float types, but record these by mode.  */
static GTY(()) tree float_types[NUM_MACHINE_MODES];

/* For each binding contour we allocate a binding_level structure which records
   the entities defined or declared in that contour. Contours include:

	the global one
	one for each subprogram definition
	one for each compound statement (declare block)

   Binding contours are used to create GCC tree BLOCK nodes.  */

struct binding_level GTY(())
{
  /* A chain of ..._DECL nodes for all variables, constants, functions,
     parameters and type declarations.  These ..._DECL nodes are chained
     through the TREE_CHAIN field. Note that these ..._DECL nodes are stored
     in the reverse of the order supplied to be compatible with the
     back-end.  */
  tree names;
  /* For each level (except the global one), a chain of BLOCK nodes for all
     the levels that were entered and exited one level down from this one.  */
  tree blocks;
  /* The BLOCK node for this level, if one has been preallocated.
     If 0, the BLOCK is allocated (if needed) when the level is popped.  */
  tree this_block;
  /* The binding level containing this one (the enclosing binding level). */
  struct binding_level *level_chain;
};

/* The binding level currently in effect.  */
static GTY(()) struct binding_level *current_binding_level;

/* A chain of binding_level structures awaiting reuse.  */
static GTY((deletable (""))) struct binding_level *free_binding_level;

/* The outermost binding level. This binding level is created when the
   compiler is started and it will exist through the entire compilation.  */
static struct binding_level *global_binding_level;

/* Binding level structures are initialized by copying this one.  */
static struct binding_level clear_binding_level = {NULL, NULL, NULL, NULL};

struct language_function GTY(())
{
  int unused;
};

static tree merge_sizes (tree, tree, tree, int, int);
static tree compute_related_constant (tree, tree);
static tree split_plus (tree, tree *);
static int value_zerop (tree);
static tree float_type_for_precision (int, enum machine_mode);
static tree convert_to_fat_pointer (tree, tree);
static tree convert_to_thin_pointer (tree, tree);
static tree make_descriptor_field (const char *,tree, tree, tree);
static int value_factor_p (tree, int);
static int potential_alignment_gap (tree, tree, tree);

/* Initialize the association of GNAT nodes to GCC trees.  */

void
init_gnat_to_gnu (void)
{
  associate_gnat_to_gnu
    = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));

  pending_elaborations = build_tree_list (NULL_TREE, NULL_TREE);
}

/* GNAT_ENTITY is a GNAT tree node for an entity.   GNU_DECL is the GCC tree
   which is to be associated with GNAT_ENTITY. Such GCC tree node is always
   a ..._DECL node.  If NO_CHECK is nonzero, the latter check is suppressed.

   If GNU_DECL is zero, a previous association is to be reset.  */

void
save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, int no_check)
{
  /* Check that GNAT_ENTITY is not already defined and that it is being set
     to something which is a decl.  Raise gigi 401 if not.  Usually, this
     means GNAT_ENTITY is defined twice, but occasionally is due to some
     Gigi problem.  */
  if (gnu_decl
      && (associate_gnat_to_gnu[gnat_entity - First_Node_Id]
	  || (! no_check && ! DECL_P (gnu_decl))))
    gigi_abort (401);

  associate_gnat_to_gnu[gnat_entity - First_Node_Id] = gnu_decl;
}

/* GNAT_ENTITY is a GNAT tree node for a defining identifier.
   Return the ..._DECL node that was associated with it.  If there is no tree
   node associated with GNAT_ENTITY, abort.

   In some cases, such as delayed elaboration or expressions that need to
   be elaborated only once, GNAT_ENTITY is really not an entity.  */

tree
get_gnu_tree (Entity_Id gnat_entity)
{
  if (! associate_gnat_to_gnu[gnat_entity - First_Node_Id])
    gigi_abort (402);

  return associate_gnat_to_gnu[gnat_entity - First_Node_Id];
}

/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY.  */

int
present_gnu_tree (Entity_Id gnat_entity)
{
  return (associate_gnat_to_gnu[gnat_entity - First_Node_Id] != NULL_TREE);
}


/* Return non-zero if we are currently in the global binding level.  */

int
global_bindings_p (void)
{
  return (force_global != 0 || current_binding_level == global_binding_level
	  ? -1 : 0);
}

/* Return the list of declarations in the current level. Note that this list
   is in reverse order (it has to be so for back-end compatibility).  */

tree
getdecls (void)
{
  return current_binding_level->names;
}

/* Nonzero if the current level needs to have a BLOCK made.  */

int
kept_level_p (void)
{
  return (current_binding_level->names != 0);
}

/* Enter a new binding level. The input parameter is ignored, but has to be
   specified for back-end compatibility.  */

void
pushlevel (int ignore ATTRIBUTE_UNUSED)
{
  struct binding_level *newlevel = NULL;

  /* Reuse a struct for this binding level, if there is one.  */
  if (free_binding_level)
    {
      newlevel = free_binding_level;
      free_binding_level = free_binding_level->level_chain;
    }
  else
    newlevel
      = (struct binding_level *) ggc_alloc (sizeof (struct binding_level));

  *newlevel = clear_binding_level;

  /* Add this level to the front of the chain (stack) of levels that are
     active.  */
  newlevel->level_chain = current_binding_level;
  current_binding_level = newlevel;
}

/* Exit a binding level.
   Pop the level off, and restore the state of the identifier-decl mappings
   that were in effect when this level was entered.

   If KEEP is nonzero, this level had explicit declarations, so
   and create a "block" (a BLOCK node) for the level
   to record its declarations and subblocks for symbol table output.

   If FUNCTIONBODY is nonzero, this level is the body of a function,
   so create a block as if KEEP were set and also clear out all
   label names.

   If REVERSE is nonzero, reverse the order of decls before putting
   them into the BLOCK.  */

tree
poplevel (int keep, int reverse, int functionbody)
{
  /* Points to a GCC BLOCK tree node. This is the BLOCK node construted for the
     binding level that we are about to exit and which is returned by this
     routine.  */
  tree block = NULL_TREE;
  tree decl_chain;
  tree decl_node;
  tree subblock_chain = current_binding_level->blocks;
  tree subblock_node;
  int block_previously_created;

  /* Reverse the list of XXXX_DECL nodes if desired.  Note that the ..._DECL
     nodes chained through the `names' field of current_binding_level are in
     reverse order except for PARM_DECL node, which are explicitly stored in
     the right order.  */
  current_binding_level->names
    = decl_chain = (reverse) ? nreverse (current_binding_level->names)
      : current_binding_level->names;

  /* Output any nested inline functions within this block which must be
     compiled because their address is needed. */
  for (decl_node = decl_chain; decl_node; decl_node = TREE_CHAIN (decl_node))
    if (TREE_CODE (decl_node) == FUNCTION_DECL
	&& ! TREE_ASM_WRITTEN (decl_node) && TREE_ADDRESSABLE (decl_node)
	&& DECL_INITIAL (decl_node) != 0)
      {
	push_function_context ();
	output_inline_function (decl_node);
	pop_function_context ();
      }

  block = 0;
  block_previously_created = (current_binding_level->this_block != 0);
  if (block_previously_created)
    block = current_binding_level->this_block;
  else if (keep || functionbody)
    block = make_node (BLOCK);
  if (block != 0)
    {
      BLOCK_VARS (block) = keep ? decl_chain : 0;
      BLOCK_SUBBLOCKS (block) = subblock_chain;
    }

  /* Record the BLOCK node just built as the subblock its enclosing scope.  */
  for (subblock_node = subblock_chain; subblock_node;
       subblock_node = TREE_CHAIN (subblock_node))
    BLOCK_SUPERCONTEXT (subblock_node) = block;

  /* Clear out the meanings of the local variables of this level.  */

  for (subblock_node = decl_chain; subblock_node;
       subblock_node = TREE_CHAIN (subblock_node))
    if (DECL_NAME (subblock_node) != 0)
      /* If the identifier was used or addressed via a local extern decl,
	 don't forget that fact.   */
      if (DECL_EXTERNAL (subblock_node))
	{
	  if (TREE_USED (subblock_node))
	    TREE_USED (DECL_NAME (subblock_node)) = 1;
	  if (TREE_ADDRESSABLE (subblock_node))
	    TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (subblock_node)) = 1;
	}

  {
    /* Pop the current level, and free the structure for reuse.  */
    struct binding_level *level = current_binding_level;
    current_binding_level = current_binding_level->level_chain;
    level->level_chain = free_binding_level;
    free_binding_level = level;
  }

  if (functionbody)
    {
      /* This is the top level block of a function. The ..._DECL chain stored
	 in BLOCK_VARS are the function's parameters (PARM_DECL nodes). Don't
	 leave them in the BLOCK because they are found in the FUNCTION_DECL
	 instead.  */
      DECL_INITIAL (current_function_decl) = block;
      BLOCK_VARS (block) = 0;
    }
  else if (block)
    {
      if (!block_previously_created)
	current_binding_level->blocks
	  = chainon (current_binding_level->blocks, block);
    }

  /* If we did not make a block for the level just exited, any blocks made for
     inner levels (since they cannot be recorded as subblocks in that level)
     must be carried forward so they will later become subblocks of something
     else.  */
  else if (subblock_chain)
    current_binding_level->blocks
      = chainon (current_binding_level->blocks, subblock_chain);
  if (block)
    TREE_USED (block) = 1;

  return block;
}

/* Insert BLOCK at the end of the list of subblocks of the
   current binding level.  This is used when a BIND_EXPR is expanded,
   to handle the BLOCK node inside the BIND_EXPR.  */

void
insert_block (tree block)
{
  TREE_USED (block) = 1;
  current_binding_level->blocks
    = chainon (current_binding_level->blocks, block);
}

/* Set the BLOCK node for the innermost scope
   (the one we are currently in).  */

void
set_block (tree block)
{
  current_binding_level->this_block = block;
  current_binding_level->names = chainon (current_binding_level->names,
					  BLOCK_VARS (block));
  current_binding_level->blocks = chainon (current_binding_level->blocks,
					   BLOCK_SUBBLOCKS (block));
}

/* Records a ..._DECL node DECL as belonging to the current lexical scope.
   Returns the ..._DECL node. */

tree
pushdecl (tree decl)
{
  struct binding_level *b;

  /* If at top level, there is no context. But PARM_DECLs always go in the
     level of its function. */
  if (global_bindings_p () && TREE_CODE (decl) != PARM_DECL)
    {
      b = global_binding_level;
      DECL_CONTEXT (decl) = 0;
    }
  else
    {
      b = current_binding_level;
      DECL_CONTEXT (decl) = current_function_decl;
    }

  /* Put the declaration on the list.  The list of declarations is in reverse
     order. The list will be reversed later if necessary.  This needs to be
     this way for compatibility with the back-end.

     Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into the list.  They
     will cause trouble with the debugger and aren't needed anyway.  */
  if (TREE_CODE (decl) != TYPE_DECL
      || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE)
    {
      TREE_CHAIN (decl) = b->names;
      b->names = decl;
    }

  /* For the declaration of a type, set its name if it either is not already
     set, was set to an IDENTIFIER_NODE, indicating an internal name,
     or if the previous type name was not derived from a source name.
     We'd rather have the type named with a real name and all the pointer
     types to the same object have the same POINTER_TYPE node.  Code in this
     function in c-decl.c makes a copy of the type node here, but that may
     cause us trouble with incomplete types, so let's not try it (at least
     for now).  */

  if (TREE_CODE (decl) == TYPE_DECL
      && DECL_NAME (decl) != 0
      && (TYPE_NAME (TREE_TYPE (decl)) == 0
	  || TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == IDENTIFIER_NODE
	  || (TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == TYPE_DECL
	      && DECL_ARTIFICIAL (TYPE_NAME (TREE_TYPE (decl)))
	      && ! DECL_ARTIFICIAL (decl))))
    TYPE_NAME (TREE_TYPE (decl)) = decl;

  return decl;
}

/* Do little here.  Set up the standard declarations later after the
   front end has been run.  */

void
gnat_init_decl_processing (void)
{
  input_line = 0;

  /* Make the binding_level structure for global names.  */
  current_function_decl = 0;
  current_binding_level = 0;
  free_binding_level = 0;
  pushlevel (0);
  global_binding_level = current_binding_level;

  build_common_tree_nodes (0);

  /* In Ada, we use a signed type for SIZETYPE.  Use the signed type
     corresponding to the size of Pmode.  In most cases when ptr_mode and
     Pmode differ, C will use the width of ptr_mode as sizetype.  But we get
     far better code using the width of Pmode.  Make this here since we need
     this before we can expand the GNAT types.  */
  set_sizetype (gnat_type_for_size (GET_MODE_BITSIZE (Pmode), 0));
  build_common_tree_nodes_2 (0);

  pushdecl (build_decl (TYPE_DECL, get_identifier (SIZE_TYPE), sizetype));

  /* We need to make the integer type before doing anything else.
     We stitch this in to the appropriate GNAT type later.  */
  pushdecl (build_decl (TYPE_DECL, get_identifier ("integer"),
			integer_type_node));
  pushdecl (build_decl (TYPE_DECL, get_identifier ("unsigned char"),
			char_type_node));

  ptr_void_type_node = build_pointer_type (void_type_node);

}

/* Create the predefined scalar types such as `integer_type_node' needed
   in the gcc back-end and initialize the global binding level.  */

void
init_gigi_decls (tree long_long_float_type, tree exception_type)
{
  tree endlink, decl;
  unsigned int i;

  /* Set the types that GCC and Gigi use from the front end.  We would like
     to do this for char_type_node, but it needs to correspond to the C
     char type.  */
  if (TREE_CODE (TREE_TYPE (long_long_float_type)) == INTEGER_TYPE)
    {
      /* In this case, the builtin floating point types are VAX float,
	 so make up a type for use.  */
      longest_float_type_node = make_node (REAL_TYPE);
      TYPE_PRECISION (longest_float_type_node) = LONG_DOUBLE_TYPE_SIZE;
      layout_type (longest_float_type_node);
      pushdecl (build_decl (TYPE_DECL, get_identifier ("longest float type"),
			    longest_float_type_node));
    }
  else
    longest_float_type_node = TREE_TYPE (long_long_float_type);

  except_type_node = TREE_TYPE (exception_type);

  unsigned_type_node = gnat_type_for_size (INT_TYPE_SIZE, 1);
  pushdecl (build_decl (TYPE_DECL, get_identifier ("unsigned int"),
			unsigned_type_node));

  void_type_decl_node
    = pushdecl (build_decl (TYPE_DECL, get_identifier ("void"),
			    void_type_node));

  void_ftype = build_function_type (void_type_node, NULL_TREE);
  ptr_void_ftype = build_pointer_type (void_ftype);

  /* Now declare runtime functions. */
  endlink = tree_cons (NULL_TREE, void_type_node, NULL_TREE);

  /* malloc is a function declaration tree for a function to allocate
     memory.  */
  malloc_decl = create_subprog_decl (get_identifier ("__gnat_malloc"),
				     NULL_TREE,
				     build_function_type (ptr_void_type_node,
							  tree_cons (NULL_TREE,
								     sizetype,
								     endlink)),
				     NULL_TREE, 0, 1, 1, 0);

  /* free is a function declaration tree for a function to free memory.  */
  free_decl
    = create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE,
			   build_function_type (void_type_node,
						tree_cons (NULL_TREE,
							   ptr_void_type_node,
							   endlink)),
			   NULL_TREE, 0, 1, 1, 0);

  /* Make the types and functions used for exception processing.    */
  jmpbuf_type
    = build_array_type (gnat_type_for_mode (Pmode, 0),
			build_index_type (build_int_2 (5, 0)));
  pushdecl (build_decl (TYPE_DECL, get_identifier ("JMPBUF_T"), jmpbuf_type));
  jmpbuf_ptr_type = build_pointer_type (jmpbuf_type);

  /* Functions to get and set the jumpbuf pointer for the current thread.  */
  get_jmpbuf_decl
    = create_subprog_decl
    (get_identifier ("system__soft_links__get_jmpbuf_address_soft"),
     NULL_TREE, build_function_type (jmpbuf_ptr_type, NULL_TREE),
     NULL_TREE, 0, 1, 1, 0);

  set_jmpbuf_decl
    = create_subprog_decl
    (get_identifier ("system__soft_links__set_jmpbuf_address_soft"),
     NULL_TREE,
     build_function_type (void_type_node,
			  tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
     NULL_TREE, 0, 1, 1, 0);

  /* Function to get the current exception.  */
  get_excptr_decl
    = create_subprog_decl
    (get_identifier ("system__soft_links__get_gnat_exception"),
     NULL_TREE,
     build_function_type (build_pointer_type (except_type_node), NULL_TREE),
     NULL_TREE, 0, 1, 1, 0);

  /* Functions that raise exceptions. */
  raise_nodefer_decl
    = create_subprog_decl
      (get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE,
       build_function_type (void_type_node,
			    tree_cons (NULL_TREE,
				       build_pointer_type (except_type_node),
				       endlink)),
       NULL_TREE, 0, 1, 1, 0);

  /* Hooks to call when entering/leaving an exception handler.  */
  begin_handler_decl
    = create_subprog_decl (get_identifier ("__gnat_begin_handler"), NULL_TREE,
			   build_function_type (void_type_node,
						tree_cons (NULL_TREE,
							   ptr_void_type_node,
							   endlink)),
			   NULL_TREE, 0, 1, 1, 0);

  end_handler_decl
    = create_subprog_decl (get_identifier ("__gnat_end_handler"), NULL_TREE,
			   build_function_type (void_type_node,
						tree_cons (NULL_TREE,
							   ptr_void_type_node,
							   endlink)),
			   NULL_TREE, 0, 1, 1, 0);

  /* If in no exception handlers mode, all raise statements are redirected to
     __gnat_last_chance_handler. No need to redefine raise_nodefer_decl, since
     this procedure will never be called in this mode.  */
  if (No_Exception_Handlers_Set ())
    {
      decl
	= create_subprog_decl
	  (get_identifier ("__gnat_last_chance_handler"), NULL_TREE,
	   build_function_type (void_type_node,
				tree_cons (NULL_TREE,
					   build_pointer_type (char_type_node),
					   tree_cons (NULL_TREE,
						      integer_type_node,
						      endlink))),
	   NULL_TREE, 0, 1, 1, 0);

      for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
	gnat_raise_decls[i] = decl;
    }
  else
    /* Otherwise, make one decl for each exception reason.  */
    for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
      {
	char name[17];

	sprintf (name, "__gnat_rcheck_%.2d", i);
	gnat_raise_decls[i]
	  = create_subprog_decl
	    (get_identifier (name), NULL_TREE,
	     build_function_type (void_type_node,
				  tree_cons (NULL_TREE,
					     build_pointer_type
					     (char_type_node),
					     tree_cons (NULL_TREE,
							integer_type_node,
							endlink))),
	     NULL_TREE, 0, 1, 1, 0);
      }

  /* Indicate that these never return.  */
  TREE_THIS_VOLATILE (raise_nodefer_decl) = 1;
  TREE_SIDE_EFFECTS (raise_nodefer_decl) = 1;
  TREE_TYPE (raise_nodefer_decl)
    = build_qualified_type (TREE_TYPE (raise_nodefer_decl),
			    TYPE_QUAL_VOLATILE);

  for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
    {
      TREE_THIS_VOLATILE (gnat_raise_decls[i]) = 1;
      TREE_SIDE_EFFECTS (gnat_raise_decls[i]) = 1;
      TREE_TYPE (gnat_raise_decls[i])
	= build_qualified_type (TREE_TYPE (gnat_raise_decls[i]),
				TYPE_QUAL_VOLATILE);
    }

  /* setjmp returns an integer and has one operand, which is a pointer to
     a jmpbuf.  */
  setjmp_decl
    = create_subprog_decl
      (get_identifier ("__builtin_setjmp"), NULL_TREE,
       build_function_type (integer_type_node,
			    tree_cons (NULL_TREE,  jmpbuf_ptr_type, endlink)),
       NULL_TREE, 0, 1, 1, 0);

  DECL_BUILT_IN_CLASS (setjmp_decl) = BUILT_IN_NORMAL;
  DECL_FUNCTION_CODE (setjmp_decl) = BUILT_IN_SETJMP;

  main_identifier_node = get_identifier ("main");
}

/* Given a record type (RECORD_TYPE) and a chain of FIELD_DECL
   nodes (FIELDLIST), finish constructing the record or union type.
   If HAS_REP is nonzero, this record has a rep clause; don't call
   layout_type but merely set the size and alignment ourselves.
   If DEFER_DEBUG is nonzero, do not call the debugging routines
   on this type; it will be done later. */

void
finish_record_type (tree record_type,
                    tree fieldlist,
                    int has_rep,
                    int defer_debug)
{
  enum tree_code code = TREE_CODE (record_type);
  tree ada_size = bitsize_zero_node;
  tree size = bitsize_zero_node;
  tree size_unit = size_zero_node;
  int var_size = 0;
  tree field;

  TYPE_FIELDS (record_type) = fieldlist;

  if (TYPE_NAME (record_type) != 0
      && TREE_CODE (TYPE_NAME (record_type)) == TYPE_DECL)
    TYPE_STUB_DECL (record_type) = TYPE_NAME (record_type);
  else
    TYPE_STUB_DECL (record_type)
      = pushdecl (build_decl (TYPE_DECL, TYPE_NAME (record_type),
			      record_type));

  /* We don't need both the typedef name and the record name output in
     the debugging information, since they are the same.  */
  DECL_ARTIFICIAL (TYPE_STUB_DECL (record_type)) = 1;

  /* Globally initialize the record first.  If this is a rep'ed record,
     that just means some initializations; otherwise, layout the record.  */

  if (has_rep)
    {
      TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
      TYPE_MODE (record_type) = BLKmode;
      if (TYPE_SIZE (record_type) == 0)
	{
	  TYPE_SIZE (record_type) = bitsize_zero_node;
	  TYPE_SIZE_UNIT (record_type) = size_zero_node;
	}
      /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
	 out just like a UNION_TYPE, since the size will be fixed.  */
      else if (code == QUAL_UNION_TYPE)
	code = UNION_TYPE;
    }
  else
    {
      /* Ensure there isn't a size already set.  There can be in an error
	 case where there is a rep clause but all fields have errors and
	 no longer have a position.  */
      TYPE_SIZE (record_type) = 0;
      layout_type (record_type);
    }

  /* At this point, the position and size of each field is known.  It was
     either set before entry by a rep clause, or by laying out the type above.

     We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
     to compute the Ada size; the GCC size and alignment (for rep'ed records
     that are not padding types); and the mode (for rep'ed records).  We also
     clear the DECL_BIT_FIELD indication for the cases we know have not been
     handled yet, and adjust DECL_NONADDRESSABLE_P accordingly.  */

  if (code == QUAL_UNION_TYPE)
    fieldlist = nreverse (fieldlist);

  for (field = fieldlist; field; field = TREE_CHAIN (field))
    {
      tree pos = bit_position (field);

      tree type = TREE_TYPE (field);
      tree this_size = DECL_SIZE (field);
      tree this_size_unit = DECL_SIZE_UNIT (field);
      tree this_ada_size = DECL_SIZE (field);

      /* We need to make an XVE/XVU record if any field has variable size,
	 whether or not the record does.  For example, if we have an union,
	 it may be that all fields, rounded up to the alignment, have the
	 same size, in which case we'll use that size.  But the debug
	 output routines (except Dwarf2) won't be able to output the fields,
	 so we need to make the special record.  */
      if (TREE_CODE (this_size) != INTEGER_CST)
	var_size = 1;

      if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
	  || TREE_CODE (type) == QUAL_UNION_TYPE)
	  && ! TYPE_IS_FAT_POINTER_P (type)
	  && ! TYPE_CONTAINS_TEMPLATE_P (type)
	  && TYPE_ADA_SIZE (type) != 0)
	this_ada_size = TYPE_ADA_SIZE (type);

      /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle.  */
      if (DECL_BIT_FIELD (field) && !STRICT_ALIGNMENT
	  && value_factor_p (pos, BITS_PER_UNIT)
	  && operand_equal_p (this_size, TYPE_SIZE (type), 0))
	DECL_BIT_FIELD (field) = 0;

      /* If we still have DECL_BIT_FIELD set at this point, we know the field
	 is technically not addressable.  Except that it can actually be
	 addressed if the field is BLKmode and happens to be properly
	 aligned.  */
      DECL_NONADDRESSABLE_P (field)
	|= DECL_BIT_FIELD (field) && DECL_MODE (field) != BLKmode;

      if (has_rep && ! DECL_BIT_FIELD (field))
	TYPE_ALIGN (record_type)
	  = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));

      switch (code)
	{
	case UNION_TYPE:
	  ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
	  size = size_binop (MAX_EXPR, size, this_size);
	  size_unit = size_binop (MAX_EXPR, size_unit, this_size_unit);
	  break;

	case QUAL_UNION_TYPE:
	  ada_size
	    = fold (build (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
			   this_ada_size, ada_size));
	  size = fold (build (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
			      this_size, size));
	  size_unit = fold (build (COND_EXPR, sizetype, DECL_QUALIFIER (field),
				   this_size_unit, size_unit));
	  break;

	case RECORD_TYPE:
	  /* Since we know here that all fields are sorted in order of
	     increasing bit position, the size of the record is one
	     higher than the ending bit of the last field processed
	     unless we have a rep clause, since in that case we might
	     have a field outside a QUAL_UNION_TYPE that has a higher ending
	     position.  So use a MAX in that case.  Also, if this field is a
	     QUAL_UNION_TYPE, we need to take into account the previous size in
	     the case of empty variants.  */
	  ada_size
	    = merge_sizes (ada_size, pos, this_ada_size,
			   TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
	  size = merge_sizes (size, pos, this_size,
			      TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
	  size_unit
	    = merge_sizes (size_unit, byte_position (field), this_size_unit,
			   TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
	  break;

	default:
	  abort ();
	}
    }

  if (code == QUAL_UNION_TYPE)
    nreverse (fieldlist);

  /* If this is a padding record, we never want to make the size smaller than
     what was specified in it, if any.  */
  if (TREE_CODE (record_type) == RECORD_TYPE
      && TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type) != 0)
    {
      size = TYPE_SIZE (record_type);
      size_unit = TYPE_SIZE_UNIT (record_type);
    }

  /* Now set any of the values we've just computed that apply.  */
  if (! TYPE_IS_FAT_POINTER_P (record_type)
      && ! TYPE_CONTAINS_TEMPLATE_P (record_type))
    SET_TYPE_ADA_SIZE (record_type, ada_size);

  if (has_rep)
    {
      if (! (TREE_CODE (record_type) == RECORD_TYPE
	     && TYPE_IS_PADDING_P (record_type)
	     && CONTAINS_PLACEHOLDER_P (size)))
	{
	  TYPE_SIZE (record_type) = round_up (size, TYPE_ALIGN (record_type));
	  TYPE_SIZE_UNIT (record_type)
	    = round_up (size_unit,
			TYPE_ALIGN (record_type) / BITS_PER_UNIT);
	}

      compute_record_mode (record_type);
    }

  if (! defer_debug)
    {
      /* If this record is of variable size, rename it so that the
	 debugger knows it is and make a new, parallel, record
	 that tells the debugger how the record is laid out.  See
	 exp_dbug.ads.  But don't do this for records that are padding
	 since they confuse GDB.  */
      if (var_size
	  && ! (TREE_CODE (record_type) == RECORD_TYPE
		&& TYPE_IS_PADDING_P (record_type)))
	{
	  tree new_record_type
	    = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
			 ? UNION_TYPE : TREE_CODE (record_type));
	  tree orig_id = DECL_NAME (TYPE_STUB_DECL (record_type));
	  tree new_id
	    = concat_id_with_name (orig_id,
				   TREE_CODE (record_type) == QUAL_UNION_TYPE
				   ? "XVU" : "XVE");
	  tree last_pos = bitsize_zero_node;
	  tree old_field;
	  tree prev_old_field = 0;

	  TYPE_NAME (new_record_type) = new_id;
	  TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
	  TYPE_STUB_DECL (new_record_type)
	    = pushdecl (build_decl (TYPE_DECL, new_id, new_record_type));
	  DECL_ARTIFICIAL (TYPE_STUB_DECL (new_record_type)) = 1;
	  DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
	    = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
	  TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));

	  /* Now scan all the fields, replacing each field with a new
	     field corresponding to the new encoding.  */
	  for (old_field = TYPE_FIELDS (record_type); old_field != 0;
	       old_field = TREE_CHAIN (old_field))
	    {
	      tree field_type = TREE_TYPE (old_field);
	      tree field_name = DECL_NAME (old_field);
	      tree new_field;
	      tree curpos = bit_position (old_field);
	      int var = 0;
	      unsigned int align = 0;
	      tree pos;

	      /* See how the position was modified from the last position.

		 There are two basic cases we support: a value was added
		 to the last position or the last position was rounded to
		 a boundary and they something was added.  Check for the
		 first case first.  If not, see if there is any evidence
		 of rounding.  If so, round the last position and try
		 again.

		 If this is a union, the position can be taken as zero. */

	      if (TREE_CODE (new_record_type) == UNION_TYPE)
		pos = bitsize_zero_node, align = 0;
	      else
		pos = compute_related_constant (curpos, last_pos);

	      if (pos == 0 && TREE_CODE (curpos) == MULT_EXPR
		  && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST)
		{
		  align = TREE_INT_CST_LOW (TREE_OPERAND (curpos, 1));
		  pos = compute_related_constant (curpos,
						  round_up (last_pos, align));
		}
	      else if (pos == 0 && TREE_CODE (curpos) == PLUS_EXPR
		       && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
		       && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
		       && host_integerp (TREE_OPERAND
					 (TREE_OPERAND (curpos, 0), 1),
					 1))
		{
		  align
		    = tree_low_cst
		      (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
		  pos = compute_related_constant (curpos,
						  round_up (last_pos, align));
		}
 	      else if (potential_alignment_gap (prev_old_field, old_field,
						pos))
 		{
 		  align = TYPE_ALIGN (field_type);
 		  pos = compute_related_constant (curpos,
 						  round_up (last_pos, align));
 		}

	      /* If we can't compute a position, set it to zero.

		 ??? We really should abort here, but it's too much work
		 to get this correct for all cases.  */

	      if (pos == 0)
		pos = bitsize_zero_node;

	      /* See if this type is variable-size and make a new type
		 and indicate the indirection if so.  */
	      if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
		{
		  field_type = build_pointer_type (field_type);
		  var = 1;
		}

	      /* Make a new field name, if necessary.  */
	      if (var || align != 0)
		{
		  char suffix[6];

		  if (align != 0)
		    sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
			     align / BITS_PER_UNIT);
		  else
		    strcpy (suffix, "XVL");

		  field_name = concat_id_with_name (field_name, suffix);
		}

	      new_field = create_field_decl (field_name, field_type,
					     new_record_type, 0,
					     DECL_SIZE (old_field), pos, 0);
	      TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
	      TYPE_FIELDS (new_record_type) = new_field;

	      /* If old_field is a QUAL_UNION_TYPE, take its size as being
		 zero.  The only time it's not the last field of the record
		 is when there are other components at fixed positions after
		 it (meaning there was a rep clause for every field) and we
		 want to be able to encode them.  */
	      last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
				     (TREE_CODE (TREE_TYPE (old_field))
				      == QUAL_UNION_TYPE)
				     ? bitsize_zero_node
				     : DECL_SIZE (old_field));
 	      prev_old_field = old_field;
	    }

	  TYPE_FIELDS (new_record_type)
	    = nreverse (TYPE_FIELDS (new_record_type));

	  rest_of_type_compilation (new_record_type, global_bindings_p ());
	}

      rest_of_type_compilation (record_type, global_bindings_p ());
    }
}

/* Utility function of above to merge LAST_SIZE, the previous size of a record
   with FIRST_BIT and SIZE that describe a field.  SPECIAL is nonzero
   if this represents a QUAL_UNION_TYPE in which case we must look for
   COND_EXPRs and replace a value of zero with the old size.  If HAS_REP
   is nonzero, we must take the MAX of the end position of this field
   with LAST_SIZE.  In all other cases, we use FIRST_BIT plus SIZE.

   We return an expression for the size.  */

static tree
merge_sizes (tree last_size,
             tree first_bit,
             tree size,
             int special,
             int has_rep)
{
  tree type = TREE_TYPE (last_size);
  tree new;

  if (! special || TREE_CODE (size) != COND_EXPR)
    {
      new = size_binop (PLUS_EXPR, first_bit, size);
      if (has_rep)
	new = size_binop (MAX_EXPR, last_size, new);
    }

  else
    new = fold (build (COND_EXPR, type, TREE_OPERAND (size, 0),
		       integer_zerop (TREE_OPERAND (size, 1))
		       ? last_size : merge_sizes (last_size, first_bit,
						  TREE_OPERAND (size, 1),
						  1, has_rep),
		       integer_zerop (TREE_OPERAND (size, 2))
		      ? last_size : merge_sizes (last_size, first_bit,
						 TREE_OPERAND (size, 2),
						 1, has_rep)));

  /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
     when fed through substitute_in_expr) into thinking that a constant
     size is not constant.  */
  while (TREE_CODE (new) == NON_LVALUE_EXPR)
    new = TREE_OPERAND (new, 0);

  return new;
}

/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
   related by the addition of a constant.  Return that constant if so.  */

static tree
compute_related_constant (tree op0, tree op1)
{
  tree op0_var, op1_var;
  tree op0_con = split_plus (op0, &op0_var);
  tree op1_con = split_plus (op1, &op1_var);
  tree result = size_binop (MINUS_EXPR, op0_con, op1_con);

  if (operand_equal_p (op0_var, op1_var, 0))
    return result;
  else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
    return result;
  else
    return 0;
}

/* Utility function of above to split a tree OP which may be a sum, into a
   constant part, which is returned, and a variable part, which is stored
   in *PVAR.  *PVAR may be bitsize_zero_node.  All operations must be of
   bitsizetype.  */

static tree
split_plus (tree in, tree *pvar)
{
  /* Strip NOPS in order to ease the tree traversal and maximize the
     potential for constant or plus/minus discovery. We need to be careful
     to always return and set *pvar to bitsizetype trees, but it's worth
     the effort.  */
  STRIP_NOPS (in);

  *pvar = convert (bitsizetype, in);

  if (TREE_CODE (in) == INTEGER_CST)
    {
      *pvar = bitsize_zero_node;
      return convert (bitsizetype, in);
    }
  else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
    {
      tree lhs_var, rhs_var;
      tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
      tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);

      if (lhs_var == TREE_OPERAND (in, 0)
	  && rhs_var == TREE_OPERAND (in, 1))
	return bitsize_zero_node;

      *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
      return size_binop (TREE_CODE (in), lhs_con, rhs_con);
    }
  else
    return bitsize_zero_node;
}

/* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
   subprogram. If it is void_type_node, then we are dealing with a procedure,
   otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
   PARM_DECL nodes that are the subprogram arguments.  CICO_LIST is the
   copy-in/copy-out list to be stored into TYPE_CICO_LIST.
   RETURNS_UNCONSTRAINED is nonzero if the function returns an unconstrained
   object.  RETURNS_BY_REF is nonzero if the function returns by reference.
   RETURNS_WITH_DSP is nonzero if the function is to return with a
   depressed stack pointer.  */

tree
create_subprog_type (tree return_type,
                     tree param_decl_list,
                     tree cico_list,
                     int returns_unconstrained,
                     int returns_by_ref,
                     int returns_with_dsp)
{
  /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
     the subprogram formal parameters. This list is generated by traversing the
     input list of PARM_DECL nodes.  */
  tree param_type_list = NULL;
  tree param_decl;
  tree type;

  for (param_decl = param_decl_list; param_decl;
       param_decl = TREE_CHAIN (param_decl))
    param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
					  param_type_list);

  /* The list of the function parameter types has to be terminated by the void
     type to signal to the back-end that we are not dealing with a variable
     parameter subprogram, but that the subprogram has a fixed number of
     parameters.  */
  param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);

  /* The list of argument types has been created in reverse
     so nreverse it.   */
  param_type_list = nreverse (param_type_list);

  type = build_function_type (return_type, param_type_list);

  /* TYPE may have been shared since GCC hashes types.  If it has a CICO_LIST
     or the new type should, make a copy of TYPE.  Likewise for
     RETURNS_UNCONSTRAINED and RETURNS_BY_REF.  */
  if (TYPE_CI_CO_LIST (type) != 0 || cico_list != 0
      || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
      || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref)
    type = copy_type (type);

  SET_TYPE_CI_CO_LIST (type, cico_list);
  TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
  TYPE_RETURNS_STACK_DEPRESSED (type) = returns_with_dsp;
  TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
  return type;
}

/* Return a copy of TYPE but safe to modify in any way.  */

tree
copy_type (tree type)
{
  tree new = copy_node (type);

  /* copy_node clears this field instead of copying it, because it is
     aliased with TREE_CHAIN.  */
  TYPE_STUB_DECL (new) = TYPE_STUB_DECL (type);

  TYPE_POINTER_TO (new) = 0;
  TYPE_REFERENCE_TO (new) = 0;
  TYPE_MAIN_VARIANT (new) = new;
  TYPE_NEXT_VARIANT (new) = 0;

  return new;
}

/* Return an INTEGER_TYPE of SIZETYPE with range MIN to MAX and whose
   TYPE_INDEX_TYPE is INDEX.  */

tree
create_index_type (tree min, tree max, tree index)
{
  /* First build a type for the desired range.  */
  tree type = build_index_2_type (min, max);

  /* If this type has the TYPE_INDEX_TYPE we want, return it.  Otherwise, if it
     doesn't have TYPE_INDEX_TYPE set, set it to INDEX.  If TYPE_INDEX_TYPE
     is set, but not to INDEX, make a copy of this type with the requested
     index type.  Note that we have no way of sharing these types, but that's
     only a small hole.  */
  if (TYPE_INDEX_TYPE (type) == index)
    return type;
  else if (TYPE_INDEX_TYPE (type) != 0)
    type = copy_type (type);

  SET_TYPE_INDEX_TYPE (type, index);
  return type;
}

/* Return a TYPE_DECL node. TYPE_NAME gives the name of the type (a character
   string) and TYPE is a ..._TYPE node giving its data type.
   ARTIFICIAL_P is nonzero if this is a declaration that was generated
   by the compiler.  DEBUG_INFO_P is nonzero if we need to write debugging
   information about this type.  */

tree
create_type_decl (tree type_name,
                  tree type,
                  struct attrib *attr_list,
                  int artificial_p,
                  int debug_info_p)
{
  tree type_decl = build_decl (TYPE_DECL, type_name, type);
  enum tree_code code = TREE_CODE (type);

  DECL_ARTIFICIAL (type_decl) = artificial_p;
  pushdecl (type_decl);
  process_attributes (type_decl, attr_list);

  /* Pass type declaration information to the debugger unless this is an
     UNCONSTRAINED_ARRAY_TYPE, which the debugger does not support,
     and ENUMERAL_TYPE or RECORD_TYPE which is handled separately,
     a dummy type, which will be completed later, or a type for which
     debugging information was not requested.  */
  if (code == UNCONSTRAINED_ARRAY_TYPE || TYPE_IS_DUMMY_P (type)
      || ! debug_info_p)
    DECL_IGNORED_P (type_decl) = 1;
  else if (code != ENUMERAL_TYPE && code != RECORD_TYPE
      && ! ((code == POINTER_TYPE || code == REFERENCE_TYPE)
	    && TYPE_IS_DUMMY_P (TREE_TYPE (type))))
    rest_of_decl_compilation (type_decl, NULL, global_bindings_p (), 0);

  return type_decl;
}

/* Returns a GCC VAR_DECL node. VAR_NAME gives the name of the variable.
   ASM_NAME is its assembler name (if provided).  TYPE is its data type
   (a GCC ..._TYPE node).  VAR_INIT is the GCC tree for an optional initial
   expression; NULL_TREE if none.

   CONST_FLAG is nonzero if this variable is constant.

   PUBLIC_FLAG is nonzero if this definition is to be made visible outside of
   the current compilation unit. This flag should be set when processing the
   variable definitions in a package specification.  EXTERN_FLAG is nonzero
   when processing an external variable declaration (as opposed to a
   definition: no storage is to be allocated for the variable here).

   STATIC_FLAG is only relevant when not at top level.  In that case
   it indicates whether to always allocate storage to the variable.   */

tree
create_var_decl (tree var_name,
                 tree asm_name,
                 tree type,
                 tree var_init,
                 int const_flag,
                 int public_flag,
                 int extern_flag,
                 int static_flag,
                 struct attrib *attr_list)
{
  int init_const
    = (var_init == 0
       ? 0
       : (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (var_init))
	  && (global_bindings_p () || static_flag
	      ? 0 != initializer_constant_valid_p (var_init,
						   TREE_TYPE (var_init))
	      : TREE_CONSTANT (var_init))));
  tree var_decl
    = build_decl ((const_flag && init_const
		   /* Only make a CONST_DECL for sufficiently-small objects.
		      We consider complex double "sufficiently-small"  */
		   && TYPE_SIZE (type) != 0
		   && host_integerp (TYPE_SIZE_UNIT (type), 1)
		   && 0 >= compare_tree_int (TYPE_SIZE_UNIT (type),
					     GET_MODE_SIZE (DCmode)))
		  ? CONST_DECL : VAR_DECL, var_name, type);
  tree assign_init = 0;

  /* If this is external, throw away any initializations unless this is a
     CONST_DECL (meaning we have a constant); they will be done elsewhere.  If
     we are defining a global here, leave a constant initialization and save
     any variable elaborations for the elaboration routine.  Otherwise, if
     the initializing expression is not the same as TYPE, generate the
     initialization with an assignment statement, since it knows how
     to do the required adjustents.  If we are just annotating types,
     throw away the initialization if it isn't a constant.  */

  if ((extern_flag && TREE_CODE (var_decl) != CONST_DECL)
      || (type_annotate_only && var_init != 0 && ! TREE_CONSTANT (var_init)))
    var_init = 0;

  if (global_bindings_p () && var_init != 0 && ! init_const)
    {
      add_pending_elaborations (var_decl, var_init);
      var_init = 0;
    }

  else if (var_init != 0
	   && ((TYPE_MAIN_VARIANT (TREE_TYPE (var_init))
		!= TYPE_MAIN_VARIANT (type))
	       || (static_flag && ! init_const)))
    assign_init = var_init, var_init = 0;

  DECL_COMMON   (var_decl) = !flag_no_common;
  DECL_INITIAL  (var_decl) = var_init;
  TREE_READONLY (var_decl) = const_flag;
  DECL_EXTERNAL (var_decl) = extern_flag;
  TREE_PUBLIC   (var_decl) = public_flag || extern_flag;
  TREE_CONSTANT (var_decl) = TREE_CODE (var_decl) == CONST_DECL;
  TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
    = TYPE_VOLATILE (type);

  /* At the global binding level we need to allocate static storage for the
     variable if and only if its not external. If we are not at the top level
     we allocate automatic storage unless requested not to.  */
  TREE_STATIC (var_decl) = global_bindings_p () ? !extern_flag : static_flag;

  if (asm_name != 0)
    SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);

  process_attributes (var_decl, attr_list);

  /* Add this decl to the current binding level and generate any
     needed code and RTL. */
  var_decl = pushdecl (var_decl);
  expand_decl (var_decl);

  if (DECL_CONTEXT (var_decl) != 0)
    expand_decl_init (var_decl);

  /* If this is volatile, force it into memory.  */
  if (TREE_SIDE_EFFECTS (var_decl))
    gnat_mark_addressable (var_decl);

  if (TREE_CODE (var_decl) != CONST_DECL)
    rest_of_decl_compilation (var_decl, 0, global_bindings_p (), 0);

  if (assign_init != 0)
    {
      /* If VAR_DECL has a padded type, convert it to the unpadded
	 type so the assignment is done properly.  */
      tree lhs = var_decl;

      if (TREE_CODE (TREE_TYPE (lhs)) == RECORD_TYPE
	  && TYPE_IS_PADDING_P (TREE_TYPE (lhs)))
	lhs = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (lhs))), lhs);

      expand_expr_stmt (build_binary_op (MODIFY_EXPR, NULL_TREE, lhs,
					 assign_init));
    }

  return var_decl;
}

/* Returns a FIELD_DECL node. FIELD_NAME the field name, FIELD_TYPE is its
   type, and RECORD_TYPE is the type of the parent.  PACKED is nonzero if
   this field is in a record type with a "pragma pack".  If SIZE is nonzero
   it is the specified size for this field.  If POS is nonzero, it is the bit
   position.  If ADDRESSABLE is nonzero, it means we are allowed to take
   the address of this field for aliasing purposes.  */

tree
create_field_decl (tree field_name,
                   tree field_type,
                   tree record_type,
                   int packed,
                   tree size,
                   tree pos,
                   int addressable)
{
  tree field_decl = build_decl (FIELD_DECL, field_name, field_type);

  DECL_CONTEXT (field_decl) = record_type;
  TREE_READONLY (field_decl) = TYPE_READONLY (field_type);

  /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
     byte boundary since GCC cannot handle less-aligned BLKmode bitfields.  */
  if (packed && TYPE_MODE (field_type) == BLKmode)
    DECL_ALIGN (field_decl) = BITS_PER_UNIT;

  /* If a size is specified, use it.  Otherwise, if the record type is packed
     compute a size to use, which may differ from the object's natural size.
     We always set a size in this case to trigger the checks for bitfield
     creation below, which is typically required when no position has been
     specified.  */
  if (size != 0)
    size = convert (bitsizetype, size);
  else if (packed == 1)
    {
      size = rm_size (field_type);

      /* For a constant size larger than MAX_FIXED_MODE_SIZE, round up to
         byte.  */
      if (TREE_CODE (size) == INTEGER_CST
          && compare_tree_int (size, MAX_FIXED_MODE_SIZE) > 0)
        size = round_up (size, BITS_PER_UNIT);
    }

  /* Make a bitfield if a size is specified for two reasons: first if the size
     differs from the natural size.  Second, if the alignment is insufficient.
     There are a number of ways the latter can be true.

     We never make a bitfield if the type of the field has a nonconstant size,
     or if it is claimed to be addressable, because no such entity requiring
     bitfield operations should reach here.

     We do *preventively* make a bitfield when there might be the need for it
     but we don't have all the necessary information to decide, as is the case
     of a field with no specified position in a packed record.

     We also don't look at STRICT_ALIGNMENT here, and rely on later processing
     in layout_decl or finish_record_type to clear the bit_field indication if
     it is in fact not needed. */
  if (size != 0 && TREE_CODE (size) == INTEGER_CST
      && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
      && ! addressable
      && (! operand_equal_p (TYPE_SIZE (field_type), size, 0)
	  || (pos != 0
	      && ! value_zerop (size_binop (TRUNC_MOD_EXPR, pos,
					    bitsize_int (TYPE_ALIGN
							 (field_type)))))
	  || packed
	  || (TYPE_ALIGN (record_type) != 0
	      && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
    {
      DECL_BIT_FIELD (field_decl) = 1;
      DECL_SIZE (field_decl) = size;
      if (! packed && pos == 0)
	DECL_ALIGN (field_decl)
	  = (TYPE_ALIGN (record_type) != 0
	     ? MIN (TYPE_ALIGN (record_type), TYPE_ALIGN (field_type))
	     : TYPE_ALIGN (field_type));
    }

  DECL_PACKED (field_decl) = pos != 0 ? DECL_BIT_FIELD (field_decl) : packed;
  DECL_ALIGN (field_decl)
    = MAX (DECL_ALIGN (field_decl),
	   DECL_BIT_FIELD (field_decl) ? 1
	   : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT
	   : TYPE_ALIGN (field_type));

  if (pos != 0)
    {
      /* We need to pass in the alignment the DECL is known to have.
	 This is the lowest-order bit set in POS, but no more than
	 the alignment of the record, if one is specified.  Note
	 that an alignment of 0 is taken as infinite.  */
      unsigned int known_align;

      if (host_integerp (pos, 1))
	known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
      else
	known_align = BITS_PER_UNIT;

      if (TYPE_ALIGN (record_type)
	  && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
	known_align = TYPE_ALIGN (record_type);

      layout_decl (field_decl, known_align);
      SET_DECL_OFFSET_ALIGN (field_decl,
			     host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
			     : BITS_PER_UNIT);
      pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
		    &DECL_FIELD_BIT_OFFSET (field_decl),
		    DECL_OFFSET_ALIGN (field_decl), pos);

      DECL_HAS_REP_P (field_decl) = 1;
    }

  /* If the field type is passed by reference, we will have pointers to the
     field, so it is addressable. */
  if (must_pass_by_ref (field_type) || default_pass_by_ref (field_type))
    addressable = 1;

  /* ??? For now, we say that any field of aggregate type is addressable
     because the front end may take 'Reference of it.  */
  if (AGGREGATE_TYPE_P (field_type))
    addressable = 1;

  /* Mark the decl as nonaddressable if it is indicated so semantically,
     meaning we won't ever attempt to take the address of the field.

     It may also be "technically" nonaddressable, meaning that even if we
     attempt to take the field's address we will actually get the address of a
     copy. This is the case for true bitfields, but the DECL_BIT_FIELD value
     we have at this point is not accurate enough, so we don't account for
     this here and let finish_record_type decide.  */
  DECL_NONADDRESSABLE_P (field_decl) = ! addressable;

  return field_decl;
}

/* Subroutine of previous function: return nonzero if EXP, ignoring any side
   effects, has the value of zero.  */

static int
value_zerop (tree exp)
{
  if (TREE_CODE (exp) == COMPOUND_EXPR)
    return value_zerop (TREE_OPERAND (exp, 1));

  return integer_zerop (exp);
}

/* Returns a PARM_DECL node. PARAM_NAME is the name of the parameter,
   PARAM_TYPE is its type.  READONLY is nonzero if the parameter is
   readonly (either an IN parameter or an address of a pass-by-ref
   parameter). */

tree
create_param_decl (tree param_name, tree param_type, int readonly)
{
  tree param_decl = build_decl (PARM_DECL, param_name, param_type);

  /* Honor targetm.calls.promote_prototypes(), as not doing so can
     lead to various ABI violations.  */
  if (targetm.calls.promote_prototypes (param_type)
      && (TREE_CODE (param_type) == INTEGER_TYPE
	  || TREE_CODE (param_type) == ENUMERAL_TYPE)
      && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
    {
      /* We have to be careful about biased types here.  Make a subtype
	 of integer_type_node with the proper biasing.  */
      if (TREE_CODE (param_type) == INTEGER_TYPE
	  && TYPE_BIASED_REPRESENTATION_P (param_type))
	{
	  param_type
	    = copy_type (build_range_type (integer_type_node,
					   TYPE_MIN_VALUE (param_type),
					   TYPE_MAX_VALUE (param_type)));

	  TYPE_BIASED_REPRESENTATION_P (param_type) = 1;
	}
      else
	param_type = integer_type_node;
    }

  DECL_ARG_TYPE (param_decl) = param_type;
  DECL_ARG_TYPE_AS_WRITTEN (param_decl) = param_type;
  TREE_READONLY (param_decl) = readonly;
  return param_decl;
}

/* Given a DECL and ATTR_LIST, process the listed attributes.  */

void
process_attributes (tree decl, struct attrib *attr_list)
{
  for (; attr_list; attr_list = attr_list->next)
    switch (attr_list->type)
      {
      case ATTR_MACHINE_ATTRIBUTE:
	decl_attributes (&decl, tree_cons (attr_list->name, attr_list->arg,
					   NULL_TREE),
			 ATTR_FLAG_TYPE_IN_PLACE);
	break;

      case ATTR_LINK_ALIAS:
	TREE_STATIC (decl) = 1;
	assemble_alias (decl, attr_list->name);
	break;

      case ATTR_WEAK_EXTERNAL:
	if (SUPPORTS_WEAK)
	  declare_weak (decl);
	else
	  post_error ("?weak declarations not supported on this target",
		      attr_list->error_point);
	break;

      case ATTR_LINK_SECTION:
	if (targetm.have_named_sections)
	  {
	    DECL_SECTION_NAME (decl)
	      = build_string (IDENTIFIER_LENGTH (attr_list->name),
			      IDENTIFIER_POINTER (attr_list->name));
	    DECL_COMMON (decl) = 0;
	  }
	else
	  post_error ("?section attributes are not supported for this target",
		      attr_list->error_point);
	break;
      }
}

/* Add some pending elaborations on the list.  */

void
add_pending_elaborations (tree var_decl, tree var_init)
{
  if (var_init != 0)
    Check_Elaboration_Code_Allowed (error_gnat_node);

  pending_elaborations
    = chainon (pending_elaborations, build_tree_list (var_decl, var_init));
}

/* Obtain any pending elaborations and clear the old list.  */

tree
get_pending_elaborations (void)
{
  /* Each thing added to the list went on the end; we want it on the
     beginning.  */
  tree result = TREE_CHAIN (pending_elaborations);

  TREE_CHAIN (pending_elaborations) = 0;
  return result;
}

/* Return true if VALUE is a multiple of FACTOR. FACTOR must be a power
   of 2. */

static int
value_factor_p (tree value, int factor)
{
  if (host_integerp (value, 1))
    return tree_low_cst (value, 1) % factor == 0;

  if (TREE_CODE (value) == MULT_EXPR)
    return (value_factor_p (TREE_OPERAND (value, 0), factor)
            || value_factor_p (TREE_OPERAND (value, 1), factor));

  return 0;
}

/* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
   unless we can prove these 2 fields are laid out in such a way that no gap
   exist between the end of PREV_FIELD and the begining of CURR_FIELD.  OFFSET
   is the distance in bits between the end of PREV_FIELD and the starting
   position of CURR_FIELD. It is ignored if null. */

static int
potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
{
  /* If this is the first field of the record, there cannot be any gap */
  if (!prev_field)
    return 0;

  /* If the previous field is a union type, then return False: The only
     time when such a field is not the last field of the record is when
     there are other components at fixed positions after it (meaning there
     was a rep clause for every field), in which case we don't want the
     alignment constraint to override them. */
  if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
    return 0;

  /* If the distance between the end of prev_field and the begining of
     curr_field is constant, then there is a gap if the value of this
     constant is not null. */
  if (offset && host_integerp (offset, 1))
    return (!integer_zerop (offset));

  /* If the size and position of the previous field are constant,
     then check the sum of this size and position. There will be a gap
     iff it is not multiple of the current field alignment. */
  if (host_integerp (DECL_SIZE (prev_field), 1)
      && host_integerp (bit_position (prev_field), 1))
    return ((tree_low_cst (bit_position (prev_field), 1)
	     + tree_low_cst (DECL_SIZE (prev_field), 1))
	    % DECL_ALIGN (curr_field) != 0);

  /* If both the position and size of the previous field are multiples
     of the current field alignment, there can not be any gap. */
  if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
      && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
    return 0;

  /* Fallback, return that there may be a potential gap */
  return 1;
}

/* Return nonzero if there are pending elaborations.  */

int
pending_elaborations_p (void)
{
  return TREE_CHAIN (pending_elaborations) != 0;
}

/* Save a copy of the current pending elaboration list and make a new
   one.  */

void
push_pending_elaborations (void)
{
  struct e_stack *p = (struct e_stack *) ggc_alloc (sizeof (struct e_stack));

  p->next = elist_stack;
  p->elab_list = pending_elaborations;
  elist_stack = p;
  pending_elaborations = build_tree_list (NULL_TREE, NULL_TREE);
}

/* Pop the stack of pending elaborations.  */

void
pop_pending_elaborations (void)
{
  struct e_stack *p = elist_stack;

  pending_elaborations = p->elab_list;
  elist_stack = p->next;
}

/* Return the current position in pending_elaborations so we can insert
   elaborations after that point.  */

tree
get_elaboration_location (void)
{
  return tree_last (pending_elaborations);
}

/* Insert the current elaborations after ELAB, which is in some elaboration
   list.  */

void
insert_elaboration_list (tree elab)
{
  tree next = TREE_CHAIN (elab);

  if (TREE_CHAIN (pending_elaborations))
    {
      TREE_CHAIN (elab) = TREE_CHAIN (pending_elaborations);
      TREE_CHAIN (tree_last (pending_elaborations)) = next;
      TREE_CHAIN (pending_elaborations) = 0;
    }
}

/* Returns a LABEL_DECL node for LABEL_NAME.  */

tree
create_label_decl (tree label_name)
{
  tree label_decl = build_decl (LABEL_DECL, label_name, void_type_node);

  DECL_CONTEXT (label_decl)     = current_function_decl;
  DECL_MODE (label_decl)        = VOIDmode;
  DECL_SOURCE_LOCATION (label_decl) = input_location;

  return label_decl;
}

/* Returns a FUNCTION_DECL node.  SUBPROG_NAME is the name of the subprogram,
   ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
   node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
   PARM_DECL nodes chained through the TREE_CHAIN field).

   INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
   appropriate fields in the FUNCTION_DECL.  */

tree
create_subprog_decl (tree subprog_name,
                     tree asm_name,
                     tree subprog_type,
                     tree param_decl_list,
                     int inline_flag,
                     int public_flag,
                     int extern_flag,
                     struct attrib *attr_list)
{
  tree return_type  = TREE_TYPE (subprog_type);
  tree subprog_decl = build_decl (FUNCTION_DECL, subprog_name, subprog_type);

  /* If this is a function nested inside an inlined external function, it
     means we aren't going to compile the outer function unless it is
     actually inlined, so do the same for us.  */
  if (current_function_decl != 0 && DECL_INLINE (current_function_decl)
      && DECL_EXTERNAL (current_function_decl))
    extern_flag = 1;

  DECL_EXTERNAL (subprog_decl)  = extern_flag;
  TREE_PUBLIC (subprog_decl)    = public_flag;
  DECL_INLINE (subprog_decl)    = inline_flag;
  TREE_READONLY (subprog_decl)  = TYPE_READONLY (subprog_type);
  TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
  TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
  DECL_ARGUMENTS (subprog_decl) = param_decl_list;
  DECL_RESULT (subprog_decl)    = build_decl (RESULT_DECL, 0, return_type);

  if (asm_name != 0)
    SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);

  process_attributes (subprog_decl, attr_list);

  /* Add this decl to the current binding level.  */
  subprog_decl = pushdecl (subprog_decl);

  /* Output the assembler code and/or RTL for the declaration.  */
  rest_of_decl_compilation (subprog_decl, 0, global_bindings_p (), 0);

  return subprog_decl;
}

/* Count how deep we are into nested functions.  This is because
   we shouldn't call the backend function context routines unless we
   are in a nested function.  */

static int function_nesting_depth;

/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
   body. This routine needs to be invoked before processing the declarations
   appearing in the subprogram.  */

void
begin_subprog_body (tree subprog_decl)
{
  tree param_decl_list;
  tree param_decl;
  tree next_param;

  if (function_nesting_depth++ != 0)
    push_function_context ();

  announce_function (subprog_decl);

  /* Make this field nonzero so further routines know that this is not
     tentative. error_mark_node is replaced below (in poplevel) with the
     adequate BLOCK.  */
  DECL_INITIAL (subprog_decl)  = error_mark_node;

  /* This function exists in static storage. This does not mean `static' in
     the C sense!  */
  TREE_STATIC (subprog_decl)   = 1;

  /* Enter a new binding level.  */
  current_function_decl = subprog_decl;
  pushlevel (0);

  /* Push all the PARM_DECL nodes onto the current scope (i.e. the scope of the
     subprogram body) so that they can be recognized as local variables in the
     subprogram.

     The list of PARM_DECL nodes is stored in the right order in
     DECL_ARGUMENTS.  Since ..._DECL nodes get stored in the reverse order in
     which they are transmitted to `pushdecl' we need to reverse the list of
     PARM_DECLs if we want it to be stored in the right order. The reason why
     we want to make sure the PARM_DECLs are stored in the correct order is
     that this list will be retrieved in a few lines with a call to `getdecl'
     to store it back into the DECL_ARGUMENTS field.  */
    param_decl_list = nreverse (DECL_ARGUMENTS (subprog_decl));

    for (param_decl = param_decl_list; param_decl; param_decl = next_param)
      {
	next_param = TREE_CHAIN (param_decl);
	TREE_CHAIN (param_decl) = NULL;
	pushdecl (param_decl);
      }

  /* Store back the PARM_DECL nodes. They appear in the right order. */
  DECL_ARGUMENTS (subprog_decl) = getdecls ();

  init_function_start (subprog_decl);
  expand_function_start (subprog_decl, 0);

  /* If this function is `main', emit a call to `__main'
     to run global initializers, etc.  */
  if (DECL_ASSEMBLER_NAME (subprog_decl) != 0
      && MAIN_NAME_P (DECL_ASSEMBLER_NAME (subprog_decl))
      && DECL_CONTEXT (subprog_decl) == NULL_TREE)
    expand_main_function ();
}

/* Finish the definition of the current subprogram and compile it all the way
   to assembler language output.  */

void
end_subprog_body (void)
{
  tree decl;
  tree cico_list;

  poplevel (1, 0, 1);
  BLOCK_SUPERCONTEXT (DECL_INITIAL (current_function_decl))
    = current_function_decl;

  /* Mark the RESULT_DECL as being in this subprogram. */
  DECL_CONTEXT (DECL_RESULT (current_function_decl)) = current_function_decl;

  expand_function_end ();

  /* If this is a nested function, push a new GC context.  That will keep
     local variables on the stack from being collected while we're doing
     the compilation of this function.  */
  if (function_nesting_depth > 1)
    ggc_push_context ();

  /* If we're only annotating types, don't actually compile this
     function.  */
  if (!type_annotate_only)
    {
      rest_of_compilation (current_function_decl);
      if (! DECL_DEFER_OUTPUT (current_function_decl))
	{
	  free_after_compilation (cfun);
	  DECL_STRUCT_FUNCTION (current_function_decl) = 0;
	}
      cfun = 0;
    }

  if (function_nesting_depth > 1)
    ggc_pop_context ();

  /* Throw away any VAR_DECLs we made for OUT parameters; they must
     not be seen when we call this function and will be in
     unallocated memory anyway.  */
  for (cico_list = TYPE_CI_CO_LIST (TREE_TYPE (current_function_decl));
       cico_list != 0; cico_list = TREE_CHAIN (cico_list))
    TREE_VALUE (cico_list) = 0;

  if (DECL_STRUCT_FUNCTION (current_function_decl) == 0)
    {
      /* Throw away DECL_RTL in any PARM_DECLs unless this function
	 was saved for inline, in which case the DECL_RTLs are in
	 preserved memory.  */
      for (decl = DECL_ARGUMENTS (current_function_decl);
	   decl != 0; decl = TREE_CHAIN (decl))
	{
	  SET_DECL_RTL (decl, 0);
	  DECL_INCOMING_RTL (decl) = 0;
	}

      /* Similarly, discard DECL_RTL of the return value.  */
      SET_DECL_RTL (DECL_RESULT (current_function_decl), 0);

      /* But DECL_INITIAL must remain nonzero so we know this
	 was an actual function definition unless toplev.c decided not
	 to inline it.  */
      if (DECL_INITIAL (current_function_decl) != 0)
	DECL_INITIAL (current_function_decl) = error_mark_node;

      DECL_ARGUMENTS (current_function_decl) = 0;
    }

  /* If we are not at the bottom of the function nesting stack, pop up to
     the containing function.  Otherwise show we aren't in any function.  */
  if (--function_nesting_depth != 0)
    pop_function_context ();
  else
    current_function_decl = 0;
}

/* Return a definition for a builtin function named NAME and whose data type
   is TYPE.  TYPE should be a function type with argument types.
   FUNCTION_CODE tells later passes how to compile calls to this function.
   See tree.h for its possible values.

   If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
   the name to be called if we can't opencode the function.  If
   ATTRS is nonzero, use that for the function attribute list.  */

tree
builtin_function (const char *name,
                  tree type,
                  int function_code,
                  enum built_in_class class,
                  const char *library_name,
                  tree attrs)
{
  tree decl = build_decl (FUNCTION_DECL, get_identifier (name), type);

  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  if (library_name)
    SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));

  pushdecl (decl);
  DECL_BUILT_IN_CLASS (decl) = class;
  DECL_FUNCTION_CODE (decl) = function_code;
  if (attrs)
      decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
  return decl;
}

/* Return an integer type with the number of bits of precision given by
   PRECISION.  UNSIGNEDP is nonzero if the type is unsigned; otherwise
   it is a signed type.  */

tree
gnat_type_for_size (unsigned precision, int unsignedp)
{
  tree t;
  char type_name[20];

  if (precision <= 2 * MAX_BITS_PER_WORD
      && signed_and_unsigned_types[precision][unsignedp] != 0)
    return signed_and_unsigned_types[precision][unsignedp];

 if (unsignedp)
    t = make_unsigned_type (precision);
  else
    t = make_signed_type (precision);

  if (precision <= 2 * MAX_BITS_PER_WORD)
    signed_and_unsigned_types[precision][unsignedp] = t;

  if (TYPE_NAME (t) == 0)
    {
      sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
      TYPE_NAME (t) = get_identifier (type_name);
    }

  return t;
}

/* Likewise for floating-point types.  */

static tree
float_type_for_precision (int precision, enum machine_mode mode)
{
  tree t;
  char type_name[20];

  if (float_types[(int) mode] != 0)
    return float_types[(int) mode];

  float_types[(int) mode] = t = make_node (REAL_TYPE);
  TYPE_PRECISION (t) = precision;
  layout_type (t);

  if (TYPE_MODE (t) != mode)
    gigi_abort (414);

  if (TYPE_NAME (t) == 0)
    {
      sprintf (type_name, "FLOAT_%d", precision);
      TYPE_NAME (t) = get_identifier (type_name);
    }

  return t;
}

/* Return a data type that has machine mode MODE.  UNSIGNEDP selects
   an unsigned type; otherwise a signed type is returned.  */

tree
gnat_type_for_mode (enum machine_mode mode, int unsignedp)
{
  if (mode == BLKmode)
    return NULL_TREE;
  else if (mode == VOIDmode)
    return void_type_node;
  else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
  else
    return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
}

/* Return the unsigned version of a TYPE_NODE, a scalar type.  */

tree
gnat_unsigned_type (tree type_node)
{
  tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);

  if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
    {
      type = copy_node (type);
      TREE_TYPE (type) = type_node;
    }
  else if (TREE_TYPE (type_node) != 0
	   && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
	   && TYPE_MODULAR_P (TREE_TYPE (type_node)))
    {
      type = copy_node (type);
      TREE_TYPE (type) = TREE_TYPE (type_node);
    }

  return type;
}

/* Return the signed version of a TYPE_NODE, a scalar type.  */

tree
gnat_signed_type (tree type_node)
{
  tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);

  if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
    {
      type = copy_node (type);
      TREE_TYPE (type) = type_node;
    }
  else if (TREE_TYPE (type_node) != 0
	   && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
	   && TYPE_MODULAR_P (TREE_TYPE (type_node)))
    {
      type = copy_node (type);
      TREE_TYPE (type) = TREE_TYPE (type_node);
    }

  return type;
}

/* Return a type the same as TYPE except unsigned or signed according to
   UNSIGNEDP.  */

tree
gnat_signed_or_unsigned_type (int unsignedp, tree type)
{
  if (! INTEGRAL_TYPE_P (type) || TYPE_UNSIGNED (type) == unsignedp)
    return type;
  else
    return gnat_type_for_size (TYPE_PRECISION (type), unsignedp);
}

/* EXP is an expression for the size of an object.  If this size contains
   discriminant references, replace them with the maximum (if MAX_P) or
   minimum (if ! MAX_P) possible value of the discriminant.  */

tree
max_size (tree exp, int max_p)
{
  enum tree_code code = TREE_CODE (exp);
  tree type = TREE_TYPE (exp);

  switch (TREE_CODE_CLASS (code))
    {
    case 'd':
    case 'c':
      return exp;

    case 'x':
      if (code == TREE_LIST)
	return tree_cons (TREE_PURPOSE (exp),
			  max_size (TREE_VALUE (exp), max_p),
			  TREE_CHAIN (exp) != 0
			  ? max_size (TREE_CHAIN (exp), max_p) : 0);
      break;

    case 'r':
      /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
	 modify.  Otherwise, we treat it like a variable.  */
      if (! CONTAINS_PLACEHOLDER_P (exp))
	return exp;

      type = TREE_TYPE (TREE_OPERAND (exp, 1));
      return
	max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), 1);

    case '<':
      return max_p ? size_one_node : size_zero_node;

    case '1':
    case '2':
    case 'e':
      switch (TREE_CODE_LENGTH (code))
	{
	case 1:
	  if (code == NON_LVALUE_EXPR)
	    return max_size (TREE_OPERAND (exp, 0), max_p);
	  else
	    return
	      fold (build1 (code, type,
			    max_size (TREE_OPERAND (exp, 0),
				      code == NEGATE_EXPR ? ! max_p : max_p)));

	case 2:
	  if (code == RTL_EXPR)
	    gigi_abort (407);
	  else if (code == COMPOUND_EXPR)
	    return max_size (TREE_OPERAND (exp, 1), max_p);

	  {
	    tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
	    tree rhs = max_size (TREE_OPERAND (exp, 1),
				 code == MINUS_EXPR ? ! max_p : max_p);

	    /* Special-case wanting the maximum value of a MIN_EXPR.
	       In that case, if one side overflows, return the other.
	       sizetype is signed, but we know sizes are non-negative.
	       Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
	       overflowing or the maximum possible value and the RHS
	       a variable.  */
	    if (max_p && code == MIN_EXPR && TREE_OVERFLOW (rhs))
	      return lhs;
	    else if (max_p && code == MIN_EXPR && TREE_OVERFLOW (lhs))
	      return rhs;
	    else if ((code == MINUS_EXPR || code == PLUS_EXPR)
		     && ((TREE_CONSTANT (lhs) && TREE_OVERFLOW (lhs))
			 || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
		     && ! TREE_CONSTANT (rhs))
	      return lhs;
	    else
	      return fold (build (code, type, lhs, rhs));
	  }

	case 3:
	  if (code == SAVE_EXPR)
	    return exp;
	  else if (code == COND_EXPR)
	    return fold (build (MAX_EXPR, type,
				max_size (TREE_OPERAND (exp, 1), max_p),
				max_size (TREE_OPERAND (exp, 2), max_p)));
	  else if (code == CALL_EXPR && TREE_OPERAND (exp, 1) != 0)
	    return build (CALL_EXPR, type, TREE_OPERAND (exp, 0),
			  max_size (TREE_OPERAND (exp, 1), max_p));
	}
    }

  gigi_abort (408);
}

/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
   EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
   Return a constructor for the template.  */

tree
build_template (tree template_type, tree array_type, tree expr)
{
  tree template_elts = NULL_TREE;
  tree bound_list = NULL_TREE;
  tree field;

  if (TREE_CODE (array_type) == RECORD_TYPE
      && (TYPE_IS_PADDING_P (array_type)
	  || TYPE_LEFT_JUSTIFIED_MODULAR_P (array_type)))
    array_type = TREE_TYPE (TYPE_FIELDS (array_type));

  if (TREE_CODE (array_type) == ARRAY_TYPE
      || (TREE_CODE (array_type) == INTEGER_TYPE
	  && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
    bound_list = TYPE_ACTUAL_BOUNDS (array_type);

  /* First make the list for a CONSTRUCTOR for the template.   Go down the
     field list of the template instead of the type chain because this
     array might be an Ada array of arrays and we can't tell where the
     nested arrays stop being the underlying object.  */

  for (field = TYPE_FIELDS (template_type); field;
       (bound_list != 0
	? (bound_list = TREE_CHAIN (bound_list))
	: (array_type = TREE_TYPE (array_type))),
       field = TREE_CHAIN (TREE_CHAIN (field)))
    {
      tree bounds, min, max;

      /* If we have a bound list, get the bounds from there.  Likewise
	 for an ARRAY_TYPE.  Otherwise, if expr is a PARM_DECL with
	 DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
	 This will give us a maximum range.  */
      if (bound_list != 0)
	bounds = TREE_VALUE (bound_list);
      else if (TREE_CODE (array_type) == ARRAY_TYPE)
	bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
      else if (expr != 0 && TREE_CODE (expr) == PARM_DECL
	       && DECL_BY_COMPONENT_PTR_P (expr))
	bounds = TREE_TYPE (field);
      else
	gigi_abort (411);

      min = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MIN_VALUE (bounds));
      max = convert (TREE_TYPE (field), TYPE_MAX_VALUE (bounds));

      /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
	 substitute it from OBJECT.  */
      min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
      max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);

      template_elts = tree_cons (TREE_CHAIN (field), max,
				 tree_cons (field, min, template_elts));
    }

  return gnat_build_constructor (template_type, nreverse (template_elts));
}

/* Build a VMS descriptor from a Mechanism_Type, which must specify
   a descriptor type, and the GCC type of an object.  Each FIELD_DECL
   in the type contains in its DECL_INITIAL the expression to use when
   a constructor is made for the type.  GNAT_ENTITY is a gnat node used
   to print out an error message if the mechanism cannot be applied to
   an object of that type and also for the name.  */

tree
build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
{
  tree record_type = make_node (RECORD_TYPE);
  tree field_list = 0;
  int class;
  int dtype = 0;
  tree inner_type;
  int ndim;
  int i;
  tree *idx_arr;
  tree tem;

  /* If TYPE is an unconstrained array, use the underlying array type.  */
  if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
    type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));

  /* If this is an array, compute the number of dimensions in the array,
     get the index types, and point to the inner type.  */
  if (TREE_CODE (type) != ARRAY_TYPE)
    ndim = 0;
  else
    for (ndim = 1, inner_type = type;
	 TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
	 && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
	 ndim++, inner_type = TREE_TYPE (inner_type))
      ;

  idx_arr = (tree *) alloca (ndim * sizeof (tree));

  if (mech != By_Descriptor_NCA
      && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
    for (i = ndim - 1, inner_type = type;
	 i >= 0;
	 i--, inner_type = TREE_TYPE (inner_type))
      idx_arr[i] = TYPE_DOMAIN (inner_type);
  else
    for (i = 0, inner_type = type;
	 i < ndim;
	 i++, inner_type = TREE_TYPE (inner_type))
      idx_arr[i] = TYPE_DOMAIN (inner_type);

  /* Now get the DTYPE value.  */
  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
      if (TYPE_VAX_FLOATING_POINT_P (type))
	switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
	  {
	  case 6:
	    dtype = 10;
	    break;
	  case 9:
	    dtype = 11;
	    break;
	  case 15:
	    dtype = 27;
	    break;
	  }
      else
	switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
	  {
	  case 8:
	    dtype = TYPE_UNSIGNED (type) ? 2 : 6;
	    break;
	  case 16:
	    dtype = TYPE_UNSIGNED (type) ? 3 : 7;
	    break;
	  case 32:
	    dtype = TYPE_UNSIGNED (type) ? 4 : 8;
	    break;
	  case 64:
	    dtype = TYPE_UNSIGNED (type) ? 5 : 9;
	    break;
	  case 128:
	    dtype = TYPE_UNSIGNED (type) ? 25 : 26;
	    break;
	  }
      break;

    case REAL_TYPE:
      dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
      break;

    case COMPLEX_TYPE:
      if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
	  && TYPE_VAX_FLOATING_POINT_P (type))
	switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
	  {
	  case 6:
	    dtype = 12;
	    break;
	  case 9:
	    dtype = 13;
	    break;
	  case 15:
	    dtype = 29;
	  }
      else
	dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
      break;

    case ARRAY_TYPE:
      dtype = 14;
      break;

    default:
      break;
    }

  /* Get the CLASS value.  */
  switch (mech)
    {
    case By_Descriptor_A:
      class = 4;
      break;
    case By_Descriptor_NCA:
      class = 10;
      break;
    case By_Descriptor_SB:
      class = 15;
      break;
    default:
      class = 1;
    }

  /* Make the type for a descriptor for VMS.  The first four fields
     are the same for all types.  */

  field_list
    = chainon (field_list,
	       make_descriptor_field
	       ("LENGTH", gnat_type_for_size (16, 1), record_type,
		size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));

  field_list = chainon (field_list,
			make_descriptor_field ("DTYPE",
					       gnat_type_for_size (8, 1),
					       record_type, size_int (dtype)));
  field_list = chainon (field_list,
			make_descriptor_field ("CLASS",
					       gnat_type_for_size (8, 1),
					       record_type, size_int (class)));

  field_list
    = chainon (field_list,
	       make_descriptor_field ("POINTER",
				      build_pointer_type (type),
				      record_type,
				      build1 (ADDR_EXPR,
					      build_pointer_type (type),
					      build (PLACEHOLDER_EXPR,
						     type))));

  switch (mech)
    {
    case By_Descriptor:
    case By_Descriptor_S:
      break;

    case By_Descriptor_SB:
      field_list
	= chainon (field_list,
		   make_descriptor_field
		   ("SB_L1", gnat_type_for_size (32, 1), record_type,
		    TREE_CODE (type) == ARRAY_TYPE
		    ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
      field_list
	= chainon (field_list,
		   make_descriptor_field
		   ("SB_L2", gnat_type_for_size (32, 1), record_type,
		    TREE_CODE (type) == ARRAY_TYPE
		    ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
      break;

    case By_Descriptor_A:
    case By_Descriptor_NCA:
      field_list = chainon (field_list,
			    make_descriptor_field ("SCALE",
						   gnat_type_for_size (8, 1),
						   record_type,
						   size_zero_node));

      field_list = chainon (field_list,
			    make_descriptor_field ("DIGITS",
						   gnat_type_for_size (8, 1),
						   record_type,
						   size_zero_node));

      field_list
	= chainon (field_list,
		   make_descriptor_field
		   ("AFLAGS", gnat_type_for_size (8, 1), record_type,
		    size_int (mech == By_Descriptor_NCA
			      ? 0
			      /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS.  */
			      : (TREE_CODE (type) == ARRAY_TYPE
				 && TYPE_CONVENTION_FORTRAN_P (type)
				 ? 224 : 192))));

      field_list = chainon (field_list,
			    make_descriptor_field ("DIMCT",
						   gnat_type_for_size (8, 1),
						   record_type,
						   size_int (ndim)));

      field_list = chainon (field_list,
			    make_descriptor_field ("ARSIZE",
						   gnat_type_for_size (32, 1),
						   record_type,
						   size_in_bytes (type)));

      /* Now build a pointer to the 0,0,0... element.  */
      tem = build (PLACEHOLDER_EXPR, type);
      for (i = 0, inner_type = type; i < ndim;
	   i++, inner_type = TREE_TYPE (inner_type))
	tem = build (ARRAY_REF, TREE_TYPE (inner_type), tem,
		     convert (TYPE_DOMAIN (inner_type), size_zero_node));

      field_list
	= chainon (field_list,
		   make_descriptor_field
		   ("A0", build_pointer_type (inner_type), record_type,
		    build1 (ADDR_EXPR, build_pointer_type (inner_type), tem)));

      /* Next come the addressing coefficients.  */
      tem = size_int (1);
      for (i = 0; i < ndim; i++)
	{
	  char fname[3];
	  tree idx_length
	    = size_binop (MULT_EXPR, tem,
			  size_binop (PLUS_EXPR,
				      size_binop (MINUS_EXPR,
						  TYPE_MAX_VALUE (idx_arr[i]),
						  TYPE_MIN_VALUE (idx_arr[i])),
				      size_int (1)));

	  fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
	  fname[1] = '0' + i, fname[2] = 0;
	  field_list
	    = chainon (field_list,
		       make_descriptor_field (fname,
					      gnat_type_for_size (32, 1),
					      record_type, idx_length));

	  if (mech == By_Descriptor_NCA)
	    tem = idx_length;
	}

      /* Finally here are the bounds.  */
      for (i = 0; i < ndim; i++)
	{
	  char fname[3];

	  fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
	  field_list
	    = chainon (field_list,
		       make_descriptor_field
		       (fname, gnat_type_for_size (32, 1), record_type,
			TYPE_MIN_VALUE (idx_arr[i])));

	  fname[0] = 'U';
	  field_list
	    = chainon (field_list,
		       make_descriptor_field
		       (fname, gnat_type_for_size (32, 1), record_type,
			TYPE_MAX_VALUE (idx_arr[i])));
	}
      break;

    default:
      post_error ("unsupported descriptor type for &", gnat_entity);
    }

  finish_record_type (record_type, field_list, 0, 1);
  pushdecl (build_decl (TYPE_DECL, create_concat_name (gnat_entity, "DESC"),
			record_type));

  return record_type;
}

/* Utility routine for above code to make a field.  */

static tree
make_descriptor_field (const char *name, tree type,
		       tree rec_type, tree initial)
{
  tree field
    = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);

  DECL_INITIAL (field) = initial;
  return field;
}

/* Build a type to be used to represent an aliased object whose nominal
   type is an unconstrained array.  This consists of a RECORD_TYPE containing
   a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
   ARRAY_TYPE.  If ARRAY_TYPE is that of the unconstrained array, this
   is used to represent an arbitrary unconstrained object.  Use NAME
   as the name of the record.  */

tree
build_unc_object_type (tree template_type, tree object_type, tree name)
{
  tree type = make_node (RECORD_TYPE);
  tree template_field = create_field_decl (get_identifier ("BOUNDS"),
					   template_type, type, 0, 0, 0, 1);
  tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
					type, 0, 0, 0, 1);

  TYPE_NAME (type) = name;
  TYPE_CONTAINS_TEMPLATE_P (type) = 1;
  finish_record_type (type,
		      chainon (chainon (NULL_TREE, template_field),
			       array_field),
		      0, 0);

  return type;
}

/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE.  In
   the normal case this is just two adjustments, but we have more to do
   if NEW is an UNCONSTRAINED_ARRAY_TYPE.  */

void
update_pointer_to (tree old_type, tree new_type)
{
  tree ptr = TYPE_POINTER_TO (old_type);
  tree ref = TYPE_REFERENCE_TO (old_type);
  tree type;

  /* If this is the main variant, process all the other variants first.  */
  if (TYPE_MAIN_VARIANT (old_type) == old_type)
    for (type = TYPE_NEXT_VARIANT (old_type); type != 0;
	 type = TYPE_NEXT_VARIANT (type))
      update_pointer_to (type, new_type);

  /* If no pointer or reference, we are done.  */
  if (ptr == 0 && ref == 0)
    return;

  /* Merge the old type qualifiers in the new type.

     Each old variant has qualifiers for specific reasons, and the new
     designated type as well. Each set of qualifiers represents useful
     information grabbed at some point, and merging the two simply unifies
     these inputs into the final type description.

     Consider for instance a volatile type frozen after an access to constant
     type designating it. After the designated type freeze, we get here with a
     volatile new_type and a dummy old_type with a readonly variant, created
     when the access type was processed. We shall make a volatile and readonly
     designated type, because that's what it really is.

     We might also get here for a non-dummy old_type variant with different
     qualifiers than the new_type ones, for instance in some cases of pointers
     to private record type elaboration (see the comments around the call to
     this routine from gnat_to_gnu_entity/E_Access_Type). We have to merge the
     qualifiers in thoses cases too, to avoid accidentally discarding the
     initial set, and will often end up with old_type == new_type then.  */
  new_type = build_qualified_type (new_type,
				   TYPE_QUALS (old_type)
				   | TYPE_QUALS (new_type));

  /* If the new type and the old one are identical, there is nothing to
     update.  */
  if (old_type == new_type)
    return;

  /* Otherwise, first handle the simple case.  */
  if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
    {
      TYPE_POINTER_TO (new_type) = ptr;
      TYPE_REFERENCE_TO (new_type) = ref;

      for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
	{
	  TREE_TYPE (ptr) = new_type;

	  if (TYPE_NAME (ptr) != 0
	      && TREE_CODE (TYPE_NAME (ptr)) == TYPE_DECL
	      && TREE_CODE (new_type) != ENUMERAL_TYPE)
	    rest_of_decl_compilation (TYPE_NAME (ptr), NULL,
				      global_bindings_p (), 0);
	}

      for (; ref; ref = TYPE_NEXT_PTR_TO (ref))
	{
	  TREE_TYPE (ref) = new_type;

	  if (TYPE_NAME (ref) != 0
	      && TREE_CODE (TYPE_NAME (ref)) == TYPE_DECL
	      && TREE_CODE (new_type) != ENUMERAL_TYPE)
	    rest_of_decl_compilation (TYPE_NAME (ref), NULL,
				      global_bindings_p (), 0);
	}
    }

  /* Now deal with the unconstrained array case. In this case the "pointer"
     is actually a RECORD_TYPE where the types of both fields are
     pointers to void.  In that case, copy the field list from the
     old type to the new one and update the fields' context. */
  else if (TREE_CODE (ptr) != RECORD_TYPE || ! TYPE_IS_FAT_POINTER_P (ptr))
    gigi_abort (412);

  else
    {
      tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
      tree ptr_temp_type;
      tree new_ref;
      tree var;

      TYPE_FIELDS (ptr) = TYPE_FIELDS (TYPE_POINTER_TO (new_type));
      DECL_CONTEXT (TYPE_FIELDS (ptr)) = ptr;
      DECL_CONTEXT (TREE_CHAIN (TYPE_FIELDS (ptr))) = ptr;

      /* Rework the PLACEHOLDER_EXPR inside the reference to the
	 template bounds.

	 ??? This is now the only use of gnat_substitute_in_type, which
	 is now a very "heavy" routine to do this, so it should be replaced
	 at some point.  */
      ptr_temp_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (ptr)));
      new_ref = build (COMPONENT_REF, ptr_temp_type,
		       build (PLACEHOLDER_EXPR, ptr),
		       TREE_CHAIN (TYPE_FIELDS (ptr)));

      update_pointer_to
	(TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
	 gnat_substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
				  TREE_CHAIN (TYPE_FIELDS (ptr)), new_ref));

      for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
	SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type);

      TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
	= TREE_TYPE (new_type) = ptr;

      /* Now handle updating the allocation record, what the thin pointer
	 points to.  Update all pointers from the old record into the new
	 one, update the types of the fields, and recompute the size.  */

      update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);

      TREE_TYPE (TYPE_FIELDS (new_obj_rec)) = TREE_TYPE (ptr_temp_type);
      TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
	= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr)));
      DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
	= TYPE_SIZE (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));
      DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
	= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));

      TYPE_SIZE (new_obj_rec)
	= size_binop (PLUS_EXPR,
		      DECL_SIZE (TYPE_FIELDS (new_obj_rec)),
		      DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
      TYPE_SIZE_UNIT (new_obj_rec)
	= size_binop (PLUS_EXPR,
		      DECL_SIZE_UNIT (TYPE_FIELDS (new_obj_rec)),
		      DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
      rest_of_type_compilation (ptr, global_bindings_p ());
    }
}

/* Convert a pointer to a constrained array into a pointer to a fat
   pointer.  This involves making or finding a template.  */

static tree
convert_to_fat_pointer (tree type, tree expr)
{
  tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))));
  tree template, template_addr;
  tree etype = TREE_TYPE (expr);

  /* If EXPR is a constant of zero, we make a fat pointer that has a null
     pointer to the template and array.  */
  if (integer_zerop (expr))
    return
      gnat_build_constructor
	(type,
	 tree_cons (TYPE_FIELDS (type),
		    convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
		    tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
			       convert (build_pointer_type (template_type),
					expr),
			       NULL_TREE)));

  /* If EXPR is a thin pointer, make the template and data from the record.  */

  else if (TYPE_THIN_POINTER_P (etype))
    {
      tree fields = TYPE_FIELDS (TREE_TYPE (etype));

      expr = save_expr (expr);
      if (TREE_CODE (expr) == ADDR_EXPR)
	expr = TREE_OPERAND (expr, 0);
      else
	expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr);

      template = build_component_ref (expr, NULL_TREE, fields, 0);
      expr = build_unary_op (ADDR_EXPR, NULL_TREE,
			     build_component_ref (expr, NULL_TREE,
						  TREE_CHAIN (fields), 0));
    }
  else
    /* Otherwise, build the constructor for the template.  */
    template = build_template (template_type, TREE_TYPE (etype), expr);

  template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);

  /* The result is a CONSTRUCTOR for the fat pointer.

     If expr is an argument of a foreign convention subprogram, the type it
     points to is directly the component type. In this case, the expression
     type may not match the corresponding FIELD_DECL type at this point, so we
     call "convert" here to fix that up if necessary. This type consistency is
     required, for instance because it ensures that possible later folding of
     component_refs against this constructor always yields something of the
     same type as the initial reference.

     Note that the call to "build_template" above is still fine, because it
     will only refer to the provided template_type in this case.  */
   return
     gnat_build_constructor
     (type, tree_cons (TYPE_FIELDS (type),
 		      convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
 		      tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
 				 template_addr, NULL_TREE)));
}

/* Convert to a thin pointer type, TYPE.  The only thing we know how to convert
   is something that is a fat pointer, so convert to it first if it EXPR
   is not already a fat pointer.  */

static tree
convert_to_thin_pointer (tree type, tree expr)
{
  if (! TYPE_FAT_POINTER_P (TREE_TYPE (expr)))
    expr
      = convert_to_fat_pointer
	(TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr);

  /* We get the pointer to the data and use a NOP_EXPR to make it the
     proper GCC type.  */
  expr
    = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)), 0);
  expr = build1 (NOP_EXPR, type, expr);

  return expr;
}

/* Create an expression whose value is that of EXPR,
   converted to type TYPE.  The TREE_TYPE of the value
   is always TYPE.  This function implements all reasonable
   conversions; callers should filter out those that are
   not permitted by the language being compiled.  */

tree
convert (tree type, tree expr)
{
  enum tree_code code = TREE_CODE (type);
  tree etype = TREE_TYPE (expr);
  enum tree_code ecode = TREE_CODE (etype);
  tree tem;

  /* If EXPR is already the right type, we are done.  */
  if (type == etype)
    return expr;
  /* If we're converting between two aggregate types that have the same main
     variant, just make a NOP_EXPR.  */
  else if (AGGREGATE_TYPE_P (type)
	   && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype))
    return build1 (NOP_EXPR, type, expr);

  /* If the input type has padding, remove it by doing a component reference
     to the field.  If the output type has padding, make a constructor
     to build the record.  If both input and output have padding and are
     of variable size, do this as an unchecked conversion.  */
  else if (ecode == RECORD_TYPE && code == RECORD_TYPE
      && TYPE_IS_PADDING_P (type) && TYPE_IS_PADDING_P (etype)
      && (! TREE_CONSTANT (TYPE_SIZE (type))
	  || ! TREE_CONSTANT (TYPE_SIZE (etype))))
    ;
  else if (ecode == RECORD_TYPE && TYPE_IS_PADDING_P (etype))
    {
      /* If we have just converted to this padded type, just get
	 the inner expression.  */
      if (TREE_CODE (expr) == CONSTRUCTOR
	  && CONSTRUCTOR_ELTS (expr) != 0
	  && TREE_PURPOSE (CONSTRUCTOR_ELTS (expr)) == TYPE_FIELDS (etype))
	return TREE_VALUE (CONSTRUCTOR_ELTS (expr));
      else
	return convert (type, build_component_ref (expr, NULL_TREE,
						   TYPE_FIELDS (etype), 0));
    }
  else if (code == RECORD_TYPE && TYPE_IS_PADDING_P (type))
    {
      /* If we previously converted from another type and our type is
	 of variable size, remove the conversion to avoid the need for
	 variable-size temporaries.  */
      if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
	  && ! TREE_CONSTANT (TYPE_SIZE (type)))
	expr = TREE_OPERAND (expr, 0);

      /* If we are just removing the padding from expr, convert the original
	 object if we have variable size.  That will avoid the need
	 for some variable-size temporaries.  */
      if (TREE_CODE (expr) == COMPONENT_REF
	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE
	  && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
	  && ! TREE_CONSTANT (TYPE_SIZE (type)))
	return convert (type, TREE_OPERAND (expr, 0));

      /* If the result type is a padded type with a self-referentially-sized
	 field and the expression type is a record, do this as an
	 unchecked converstion.  */
      else if (TREE_CODE (etype) == RECORD_TYPE
	       && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
	return unchecked_convert (type, expr, 0);

      else
	return
	  gnat_build_constructor (type,
			     tree_cons (TYPE_FIELDS (type),
					convert (TREE_TYPE
						 (TYPE_FIELDS (type)),
						 expr),
					NULL_TREE));
    }

  /* If the input is a biased type, adjust first.  */
  if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
    return convert (type, fold (build (PLUS_EXPR, TREE_TYPE (etype),
				       fold (build1 (GNAT_NOP_EXPR,
						     TREE_TYPE (etype), expr)),
				       TYPE_MIN_VALUE (etype))));

  /* If the input is a left-justified modular type, we need to extract
     the actual object before converting it to any other type with the
     exception of an unconstrained array.  */
  if (ecode == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype)
      && code != UNCONSTRAINED_ARRAY_TYPE)
    return convert (type, build_component_ref (expr, NULL_TREE,
					       TYPE_FIELDS (etype), 0));

  /* If converting to a type that contains a template, convert to the data
     type and then build the template. */
  if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
    {
      tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)));

      /* If the source already has a template, get a reference to the
	 associated array only, as we are going to rebuild a template
	 for the target type anyway.  */
      expr = maybe_unconstrained_array (expr);

      return
	gnat_build_constructor
	  (type,
	   tree_cons (TYPE_FIELDS (type),
		      build_template (TREE_TYPE (TYPE_FIELDS (type)),
				      obj_type, NULL_TREE),
		      tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
				 convert (obj_type, expr), NULL_TREE)));
    }

  /* There are some special cases of expressions that we process
     specially.  */
  switch (TREE_CODE (expr))
    {
    case ERROR_MARK:
      return expr;

    case TRANSFORM_EXPR:
    case NULL_EXPR:
      /* Just set its type here.  For TRANSFORM_EXPR, we will do the actual
	 conversion in gnat_expand_expr.  NULL_EXPR does not represent
	 and actual value, so no conversion is needed.  */
      expr = copy_node (expr);
      TREE_TYPE (expr) = type;
      return expr;

    case STRING_CST:
    case CONSTRUCTOR:
      /* If we are converting a STRING_CST to another constrained array type,
	 just make a new one in the proper type.  Likewise for a
	 CONSTRUCTOR.  */
      if (code == ecode && AGGREGATE_TYPE_P (etype)
	  && ! (TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
		&& TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
	{
	  expr = copy_node (expr);
	  TREE_TYPE (expr) = type;
	  return expr;
	}
      break;

    case COMPONENT_REF:
      /* If we are converting between two aggregate types of the same
	 kind, size, mode, and alignment, just make a new COMPONENT_REF.
	 This avoid unneeded conversions which makes reference computations
	 more complex.  */
      if (code == ecode && TYPE_MODE (type) == TYPE_MODE (etype)
	  && AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)
	  && TYPE_ALIGN (type) == TYPE_ALIGN (etype)
	  && operand_equal_p (TYPE_SIZE (type), TYPE_SIZE (etype), 0))
	return build (COMPONENT_REF, type, TREE_OPERAND (expr, 0),
		      TREE_OPERAND (expr, 1));

      break;

    case UNCONSTRAINED_ARRAY_REF:
      /* Convert this to the type of the inner array by getting the address of
	 the array from the template.  */
      expr = build_unary_op (INDIRECT_REF, NULL_TREE,
			     build_component_ref (TREE_OPERAND (expr, 0),
						  get_identifier ("P_ARRAY"),
						  NULL_TREE, 0));
      etype = TREE_TYPE (expr);
      ecode = TREE_CODE (etype);
      break;

    case VIEW_CONVERT_EXPR:
      if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)
	  && ! TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
	return convert (type, TREE_OPERAND (expr, 0));
      break;

    case INDIRECT_REF:
      /* If both types are record types, just convert the pointer and
	 make a new INDIRECT_REF.

	 ??? Disable this for now since it causes problems with the
	 code in build_binary_op for MODIFY_EXPR which wants to
	 strip off conversions.  But that code really is a mess and
	 we need to do this a much better way some time.  */
      if (0
	  && (TREE_CODE (type) == RECORD_TYPE
	      || TREE_CODE (type) == UNION_TYPE)
	  && (TREE_CODE (etype) == RECORD_TYPE
	      || TREE_CODE (etype) == UNION_TYPE)
	  && ! TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
	return build_unary_op (INDIRECT_REF, NULL_TREE,
			       convert (build_pointer_type (type),
					TREE_OPERAND (expr, 0)));
      break;

    default:
      break;
    }

  /* Check for converting to a pointer to an unconstrained array.  */
  if (TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
    return convert_to_fat_pointer (type, expr);

  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
      || (code == INTEGER_CST && ecode == INTEGER_CST
	  && (type == TREE_TYPE (etype) || etype == TREE_TYPE (type))))
    return fold (build1 (NOP_EXPR, type, expr));

  switch (code)
    {
    case VOID_TYPE:
      return build1 (CONVERT_EXPR, type, expr);

    case INTEGER_TYPE:
      if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
	  && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
	      || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
	return unchecked_convert (type, expr, 0);
      else if (TYPE_BIASED_REPRESENTATION_P (type))
	return fold (build1 (CONVERT_EXPR, type,
			     fold (build (MINUS_EXPR, TREE_TYPE (type),
					  convert (TREE_TYPE (type), expr),
					  TYPE_MIN_VALUE (type)))));

      /* ... fall through ... */

    case ENUMERAL_TYPE:
      return fold (convert_to_integer (type, expr));

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      /* If converting between two pointers to records denoting
	 both a template and type, adjust if needed to account
	 for any differing offsets, since one might be negative.  */
      if (TYPE_THIN_POINTER_P (etype) && TYPE_THIN_POINTER_P (type))
	{
	  tree bit_diff
	    = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))),
			   bit_position (TYPE_FIELDS (TREE_TYPE (type))));
	  tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff,
				       sbitsize_int (BITS_PER_UNIT));

	  expr = build1 (NOP_EXPR, type, expr);
	  TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0));
	  if (integer_zerop (byte_diff))
	    return expr;

	  return build_binary_op (PLUS_EXPR, type, expr,
				  fold (convert_to_pointer (type, byte_diff)));
	}

      /* If converting to a thin pointer, handle specially.  */
      if (TYPE_THIN_POINTER_P (type)
	  && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)) != 0)
	return convert_to_thin_pointer (type, expr);

      /* If converting fat pointer to normal pointer, get the pointer to the
	 array and then convert it.  */
      else if (TYPE_FAT_POINTER_P (etype))
	expr = build_component_ref (expr, get_identifier ("P_ARRAY"),
				    NULL_TREE, 0);

      return fold (convert_to_pointer (type, expr));

    case REAL_TYPE:
      return fold (convert_to_real (type, expr));

    case RECORD_TYPE:
      if (TYPE_LEFT_JUSTIFIED_MODULAR_P (type) && ! AGGREGATE_TYPE_P (etype))
	return
	  gnat_build_constructor
	    (type, tree_cons (TYPE_FIELDS (type),
			      convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
			      NULL_TREE));

      /* ... fall through ... */

    case ARRAY_TYPE:
      /* In these cases, assume the front-end has validated the conversion.
	 If the conversion is valid, it will be a bit-wise conversion, so
	 it can be viewed as an unchecked conversion.  */
      return unchecked_convert (type, expr, 0);

    case UNION_TYPE:
      /* Just validate that the type is indeed that of a field
	 of the type.  Then make the simple conversion.  */
      for (tem = TYPE_FIELDS (type); tem; tem = TREE_CHAIN (tem))
	{
	  if (TREE_TYPE (tem) == etype)
	    return build1 (CONVERT_EXPR, type, expr);
	  else if (TREE_CODE (TREE_TYPE (tem)) == RECORD_TYPE
		   && (TYPE_LEFT_JUSTIFIED_MODULAR_P (TREE_TYPE (tem))
		       || TYPE_IS_PADDING_P (TREE_TYPE (tem)))
		   && TREE_TYPE (TYPE_FIELDS (TREE_TYPE (tem))) == etype)
	    return build1 (CONVERT_EXPR, type,
			   convert (TREE_TYPE (tem), expr));
	}

      gigi_abort (413);

    case UNCONSTRAINED_ARRAY_TYPE:
      /* If EXPR is a constrained array, take its address, convert it to a
	 fat pointer, and then dereference it.  Likewise if EXPR is a
	 record containing both a template and a constrained array.
	 Note that a record representing a left justified modular type
	 always represents a packed constrained array.  */
      if (ecode == ARRAY_TYPE
	  || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
	  || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
	  || (ecode == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype)))
	return
	  build_unary_op
	    (INDIRECT_REF, NULL_TREE,
	     convert_to_fat_pointer (TREE_TYPE (type),
				     build_unary_op (ADDR_EXPR,
						     NULL_TREE, expr)));

      /* Do something very similar for converting one unconstrained
	 array to another.  */
      else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
	return
	  build_unary_op (INDIRECT_REF, NULL_TREE,
			  convert (TREE_TYPE (type),
				   build_unary_op (ADDR_EXPR,
						   NULL_TREE, expr)));
      else
	gigi_abort (409);

    case COMPLEX_TYPE:
      return fold (convert_to_complex (type, expr));

    default:
      gigi_abort (410);
    }
}

/* Remove all conversions that are done in EXP.  This includes converting
   from a padded type or to a left-justified modular type.  If TRUE_ADDRESS
   is nonzero, always return the address of the containing object even if
   the address is not bit-aligned.  */

tree
remove_conversions (tree exp, int true_address)
{
  switch (TREE_CODE (exp))
    {
    case CONSTRUCTOR:
      if (true_address
	  && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
	  && TYPE_LEFT_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
	return remove_conversions (TREE_VALUE (CONSTRUCTOR_ELTS (exp)), 1);
      break;

    case COMPONENT_REF:
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == RECORD_TYPE
	  && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
	return remove_conversions (TREE_OPERAND (exp, 0), true_address);
      break;

    case VIEW_CONVERT_EXPR:  case NON_LVALUE_EXPR:
    case NOP_EXPR:  case CONVERT_EXPR:  case GNAT_NOP_EXPR:
      return remove_conversions (TREE_OPERAND (exp, 0), true_address);

    default:
      break;
    }

  return exp;
}

/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
   refers to the underlying array.  If its type has TYPE_CONTAINS_TEMPLATE_P,
   likewise return an expression pointing to the underlying array.  */

tree
maybe_unconstrained_array (tree exp)
{
  enum tree_code code = TREE_CODE (exp);
  tree new;

  switch (TREE_CODE (TREE_TYPE (exp)))
    {
    case UNCONSTRAINED_ARRAY_TYPE:
      if (code == UNCONSTRAINED_ARRAY_REF)
	{
	  new
	    = build_unary_op (INDIRECT_REF, NULL_TREE,
			      build_component_ref (TREE_OPERAND (exp, 0),
						   get_identifier ("P_ARRAY"),
						   NULL_TREE, 0));
	  TREE_READONLY (new) = TREE_STATIC (new) = TREE_READONLY (exp);
	  return new;
	}

      else if (code == NULL_EXPR)
	return build1 (NULL_EXPR,
		       TREE_TYPE (TREE_TYPE (TYPE_FIELDS
					     (TREE_TYPE (TREE_TYPE (exp))))),
		       TREE_OPERAND (exp, 0));

    case RECORD_TYPE:
      /* If this is a padded type, convert to the unpadded type and see if
	 it contains a template.  */
      if (TYPE_IS_PADDING_P (TREE_TYPE (exp)))
	{
	  new = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
	  if (TREE_CODE (TREE_TYPE (new)) == RECORD_TYPE
	      && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (new)))
	    return
	      build_component_ref (new, NULL_TREE,
				   TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new))),
				   0);
	}
      else if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp)))
	return
	  build_component_ref (exp, NULL_TREE,
			       TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))), 0);
      break;

    default:
      break;
    }

  return exp;
}

/* Return an expression that does an unchecked converstion of EXPR to TYPE.
   If NOTRUNC_P is set, truncation operations should be suppressed.  */

tree
unchecked_convert (tree type, tree expr, int notrunc_p)
{
  tree etype = TREE_TYPE (expr);

  /* If the expression is already the right type, we are done.  */
  if (etype == type)
    return expr;

  /* If both types types are integral just do a normal conversion.
     Likewise for a conversion to an unconstrained array.  */
  if ((((INTEGRAL_TYPE_P (type)
	 && ! (TREE_CODE (type) == INTEGER_TYPE
	       && TYPE_VAX_FLOATING_POINT_P (type)))
	|| (POINTER_TYPE_P (type) && ! TYPE_THIN_POINTER_P (type))
	|| (TREE_CODE (type) == RECORD_TYPE
	    && TYPE_LEFT_JUSTIFIED_MODULAR_P (type)))
       && ((INTEGRAL_TYPE_P (etype)
	    && ! (TREE_CODE (etype) == INTEGER_TYPE
		  && TYPE_VAX_FLOATING_POINT_P (etype)))
	   || (POINTER_TYPE_P (etype) && ! TYPE_THIN_POINTER_P (etype))
	   || (TREE_CODE (etype) == RECORD_TYPE
	       && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype))))
      || TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
    {
      tree rtype = type;

      if (TREE_CODE (etype) == INTEGER_TYPE
	  && TYPE_BIASED_REPRESENTATION_P (etype))
	{
	  tree ntype = copy_type (etype);

	  TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
	  TYPE_MAIN_VARIANT (ntype) = ntype;
	  expr = build1 (GNAT_NOP_EXPR, ntype, expr);
	}

      if (TREE_CODE (type) == INTEGER_TYPE
	  && TYPE_BIASED_REPRESENTATION_P (type))
	{
	  rtype = copy_type (type);
	  TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
	  TYPE_MAIN_VARIANT (rtype) = rtype;
	}

      expr = convert (rtype, expr);
      if (type != rtype)
	expr = build1 (GNAT_NOP_EXPR, type, expr);
    }

  /* If we are converting TO an integral type whose precision is not the
     same as its size, first unchecked convert to a record that contains
     an object of the output type.  Then extract the field. */
  else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) != 0
	   && 0 != compare_tree_int (TYPE_RM_SIZE (type),
				     GET_MODE_BITSIZE (TYPE_MODE (type))))
    {
      tree rec_type = make_node (RECORD_TYPE);
      tree field = create_field_decl (get_identifier ("OBJ"), type,
				      rec_type, 1, 0, 0, 0);

      TYPE_FIELDS (rec_type) = field;
      layout_type (rec_type);

      expr = unchecked_convert (rec_type, expr, notrunc_p);
      expr = build_component_ref (expr, NULL_TREE, field, 0);
    }

  /* Similarly for integral input type whose precision is not equal to its
     size.  */
  else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype) != 0
      && 0 != compare_tree_int (TYPE_RM_SIZE (etype),
				GET_MODE_BITSIZE (TYPE_MODE (etype))))
    {
      tree rec_type = make_node (RECORD_TYPE);
      tree field
	= create_field_decl (get_identifier ("OBJ"), etype, rec_type,
			     1, 0, 0, 0);

      TYPE_FIELDS (rec_type) = field;
      layout_type (rec_type);

      expr = gnat_build_constructor (rec_type, build_tree_list (field, expr));
      expr = unchecked_convert (type, expr, notrunc_p);
    }

  /* We have a special case when we are converting between two
     unconstrained array types.  In that case, take the address,
     convert the fat pointer types, and dereference.  */
  else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE
	   && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
    expr = build_unary_op (INDIRECT_REF, NULL_TREE,
			   build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
				   build_unary_op (ADDR_EXPR, NULL_TREE,
						   expr)));
  else
    {
      expr = maybe_unconstrained_array (expr);
      etype = TREE_TYPE (expr);
      expr = build1 (VIEW_CONVERT_EXPR, type, expr);
    }

  /* If the result is an integral type whose size is not equal to
     the size of the underlying machine type, sign- or zero-extend
     the result.  We need not do this in the case where the input is
     an integral type of the same precision and signedness or if the output
     is a biased type or if both the input and output are unsigned.  */
  if (! notrunc_p
      && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) != 0
      && ! (TREE_CODE (type) == INTEGER_TYPE
	    && TYPE_BIASED_REPRESENTATION_P (type))
      && 0 != compare_tree_int (TYPE_RM_SIZE (type),
				GET_MODE_BITSIZE (TYPE_MODE (type)))
      && ! (INTEGRAL_TYPE_P (etype)
	    && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype)
	    && operand_equal_p (TYPE_RM_SIZE (type),
				(TYPE_RM_SIZE (etype) != 0
				 ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
				0))
      && ! (TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype)))
    {
      tree base_type = gnat_type_for_mode (TYPE_MODE (type),
					   TYPE_UNSIGNED (type));
      tree shift_expr
	= convert (base_type,
		   size_binop (MINUS_EXPR,
			       bitsize_int
			       (GET_MODE_BITSIZE (TYPE_MODE (type))),
			       TYPE_RM_SIZE (type)));
      expr
	= convert (type,
		   build_binary_op (RSHIFT_EXPR, base_type,
				    build_binary_op (LSHIFT_EXPR, base_type,
						     convert (base_type, expr),
						     shift_expr),
				    shift_expr));
    }

  /* An unchecked conversion should never raise Constraint_Error.  The code
     below assumes that GCC's conversion routines overflow the same way that
     the underlying hardware does.  This is probably true.  In the rare case
     when it is false, we can rely on the fact that such conversions are
     erroneous anyway.  */
  if (TREE_CODE (expr) == INTEGER_CST)
    TREE_OVERFLOW (expr) = TREE_CONSTANT_OVERFLOW (expr) = 0;

  /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
     show no longer constant.  */
  if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
      && ! operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype), 1))
    TREE_CONSTANT (expr) = 0;

  return expr;
}

#include "gt-ada-utils.h"
#include "gtype-ada.h"