1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
|
/* Perform branch target register load optimizations.
Copyright (C) 2001-2014 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "target.h"
#include "expr.h"
#include "flags.h"
#include "insn-attr.h"
#include "hashtab.h"
#include "hash-set.h"
#include "vec.h"
#include "machmode.h"
#include "input.h"
#include "function.h"
#include "except.h"
#include "tm_p.h"
#include "diagnostic-core.h"
#include "tree-pass.h"
#include "recog.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "cfgcleanup.h"
#include "predict.h"
#include "basic-block.h"
#include "df.h"
#include "cfgloop.h"
#include "rtl-iter.h"
#include "fibonacci_heap.h"
/* Target register optimizations - these are performed after reload. */
typedef struct btr_def_group_s
{
struct btr_def_group_s *next;
rtx src;
struct btr_def_s *members;
} *btr_def_group;
typedef struct btr_user_s
{
struct btr_user_s *next;
basic_block bb;
int luid;
rtx_insn *insn;
/* If INSN has a single use of a single branch register, then
USE points to it within INSN. If there is more than
one branch register use, or the use is in some way ambiguous,
then USE is NULL. */
rtx use;
int n_reaching_defs;
int first_reaching_def;
char other_use_this_block;
} *btr_user;
/* btr_def structs appear on three lists:
1. A list of all btr_def structures (head is
ALL_BTR_DEFS, linked by the NEXT field).
2. A list of branch reg definitions per basic block (head is
BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
3. A list of all branch reg definitions belonging to the same
group (head is in a BTR_DEF_GROUP struct, linked by
NEXT_THIS_GROUP field). */
typedef struct btr_def_s
{
struct btr_def_s *next_this_bb;
struct btr_def_s *next_this_group;
basic_block bb;
int luid;
rtx_insn *insn;
int btr;
int cost;
/* For a branch register setting insn that has a constant
source (i.e. a label), group links together all the
insns with the same source. For other branch register
setting insns, group is NULL. */
btr_def_group group;
btr_user uses;
/* If this def has a reaching use which is not a simple use
in a branch instruction, then has_ambiguous_use will be true,
and we will not attempt to migrate this definition. */
char has_ambiguous_use;
/* live_range is an approximation to the true live range for this
def/use web, because it records the set of blocks that contain
the live range. There could be other live ranges for the same
branch register in that set of blocks, either in the block
containing the def (before the def), or in a block containing
a use (after the use). If there are such other live ranges, then
other_btr_uses_before_def or other_btr_uses_after_use must be set true
as appropriate. */
char other_btr_uses_before_def;
char other_btr_uses_after_use;
/* We set own_end when we have moved a definition into a dominator.
Thus, when a later combination removes this definition again, we know
to clear out trs_live_at_end again. */
char own_end;
bitmap live_range;
} *btr_def;
typedef fibonacci_heap <long, btr_def_s> btr_heap_t;
typedef fibonacci_node <long, btr_def_s> btr_heap_node_t;
static int issue_rate;
static int basic_block_freq (const_basic_block);
static int insn_sets_btr_p (const rtx_insn *, int, int *);
static void find_btr_def_group (btr_def_group *, btr_def);
static btr_def add_btr_def (btr_heap_t *, basic_block, int, rtx_insn *,
unsigned int, int, btr_def_group *);
static btr_user new_btr_user (basic_block, int, rtx_insn *);
static void dump_hard_reg_set (HARD_REG_SET);
static void dump_btrs_live (int);
static void note_other_use_this_block (unsigned int, btr_user);
static void compute_defs_uses_and_gen (btr_heap_t *, btr_def *,btr_user *,
sbitmap *, sbitmap *, HARD_REG_SET *);
static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
static void build_btr_def_use_webs (btr_heap_t *);
static int block_at_edge_of_live_range_p (int, btr_def);
static void clear_btr_from_live_range (btr_def def);
static void add_btr_to_live_range (btr_def, int);
static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
basic_block, int);
static int choose_btr (HARD_REG_SET);
static void combine_btr_defs (btr_def, HARD_REG_SET *);
static void btr_def_live_range (btr_def, HARD_REG_SET *);
static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
static int migrate_btr_def (btr_def, int);
static void migrate_btr_defs (enum reg_class, int);
static int can_move_up (const_basic_block, const rtx_insn *, int);
static void note_btr_set (rtx, const_rtx, void *);
/* The following code performs code motion of target load instructions
(instructions that set branch target registers), to move them
forward away from the branch instructions and out of loops (or,
more generally, from a more frequently executed place to a less
frequently executed place).
Moving target load instructions further in front of the branch
instruction that uses the target register value means that the hardware
has a better chance of preloading the instructions at the branch
target by the time the branch is reached. This avoids bubbles
when a taken branch needs to flush out the pipeline.
Moving target load instructions out of loops means they are executed
less frequently. */
/* An obstack to hold the def-use web data structures built up for
migrating branch target load instructions. */
static struct obstack migrate_btrl_obstack;
/* Array indexed by basic block number, giving the set of registers
live in that block. */
static HARD_REG_SET *btrs_live;
/* Array indexed by basic block number, giving the set of registers live at
the end of that block, including any uses by a final jump insn, if any. */
static HARD_REG_SET *btrs_live_at_end;
/* Set of all target registers that we are willing to allocate. */
static HARD_REG_SET all_btrs;
/* Provide lower and upper bounds for target register numbers, so that
we don't need to search through all the hard registers all the time. */
static int first_btr, last_btr;
/* Return an estimate of the frequency of execution of block bb. */
static int
basic_block_freq (const_basic_block bb)
{
return bb->frequency;
}
/* If X references (sets or reads) any branch target register, return one
such register. If EXCLUDEP is set, disregard any references within
that location. */
static rtx *
find_btr_use (rtx x, rtx *excludep = 0)
{
subrtx_ptr_iterator::array_type array;
FOR_EACH_SUBRTX_PTR (iter, array, &x, NONCONST)
{
rtx *loc = *iter;
if (loc == excludep)
iter.skip_subrtxes ();
else
{
const_rtx x = *loc;
if (REG_P (x)
&& overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x)))
return loc;
}
}
return 0;
}
/* Return true if insn is an instruction that sets a target register.
if CHECK_CONST is true, only return true if the source is constant.
If such a set is found and REGNO is nonzero, assign the register number
of the destination register to *REGNO. */
static int
insn_sets_btr_p (const rtx_insn *insn, int check_const, int *regno)
{
rtx set;
if (NONJUMP_INSN_P (insn)
&& (set = single_set (insn)))
{
rtx dest = SET_DEST (set);
rtx src = SET_SRC (set);
if (GET_CODE (dest) == SUBREG)
dest = XEXP (dest, 0);
if (REG_P (dest)
&& TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
{
gcc_assert (!find_btr_use (src));
if (!check_const || CONSTANT_P (src))
{
if (regno)
*regno = REGNO (dest);
return 1;
}
}
}
return 0;
}
/* Find the group that the target register definition DEF belongs
to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
group exists, create one. Add def to the group. */
static void
find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
{
if (insn_sets_btr_p (def->insn, 1, NULL))
{
btr_def_group this_group;
rtx def_src = SET_SRC (single_set (def->insn));
/* ?? This linear search is an efficiency concern, particularly
as the search will almost always fail to find a match. */
for (this_group = *all_btr_def_groups;
this_group != NULL;
this_group = this_group->next)
if (rtx_equal_p (def_src, this_group->src))
break;
if (!this_group)
{
this_group = XOBNEW (&migrate_btrl_obstack, struct btr_def_group_s);
this_group->src = def_src;
this_group->members = NULL;
this_group->next = *all_btr_def_groups;
*all_btr_def_groups = this_group;
}
def->group = this_group;
def->next_this_group = this_group->members;
this_group->members = def;
}
else
def->group = NULL;
}
/* Create a new target register definition structure, for a definition in
block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
the new definition. */
static btr_def
add_btr_def (btr_heap_t *all_btr_defs, basic_block bb, int insn_luid,
rtx_insn *insn,
unsigned int dest_reg, int other_btr_uses_before_def,
btr_def_group *all_btr_def_groups)
{
btr_def this_def = XOBNEW (&migrate_btrl_obstack, struct btr_def_s);
this_def->bb = bb;
this_def->luid = insn_luid;
this_def->insn = insn;
this_def->btr = dest_reg;
this_def->cost = basic_block_freq (bb);
this_def->has_ambiguous_use = 0;
this_def->other_btr_uses_before_def = other_btr_uses_before_def;
this_def->other_btr_uses_after_use = 0;
this_def->next_this_bb = NULL;
this_def->next_this_group = NULL;
this_def->uses = NULL;
this_def->live_range = NULL;
find_btr_def_group (all_btr_def_groups, this_def);
all_btr_defs->insert (-this_def->cost, this_def);
if (dump_file)
fprintf (dump_file,
"Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
dest_reg, bb->index, INSN_UID (insn),
(this_def->group ? "" : ":not const"), this_def->cost);
return this_def;
}
/* Create a new target register user structure, for a use in block BB,
instruction INSN. Return the new user. */
static btr_user
new_btr_user (basic_block bb, int insn_luid, rtx_insn *insn)
{
/* This instruction reads target registers. We need
to decide whether we can replace all target register
uses easily.
*/
rtx *usep = find_btr_use (PATTERN (insn));
rtx use;
btr_user user = NULL;
if (usep)
{
int unambiguous_single_use;
/* We want to ensure that USE is the only use of a target
register in INSN, so that we know that to rewrite INSN to use
a different target register, all we have to do is replace USE. */
unambiguous_single_use = !find_btr_use (PATTERN (insn), usep);
if (!unambiguous_single_use)
usep = NULL;
}
use = usep ? *usep : NULL_RTX;
user = XOBNEW (&migrate_btrl_obstack, struct btr_user_s);
user->bb = bb;
user->luid = insn_luid;
user->insn = insn;
user->use = use;
user->other_use_this_block = 0;
user->next = NULL;
user->n_reaching_defs = 0;
user->first_reaching_def = -1;
if (dump_file)
{
fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
bb->index, INSN_UID (insn));
if (user->use)
fprintf (dump_file, ": unambiguous use of reg %d\n",
REGNO (user->use));
}
return user;
}
/* Write the contents of S to the dump file. */
static void
dump_hard_reg_set (HARD_REG_SET s)
{
int reg;
for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
if (TEST_HARD_REG_BIT (s, reg))
fprintf (dump_file, " %d", reg);
}
/* Write the set of target regs live in block BB to the dump file. */
static void
dump_btrs_live (int bb)
{
fprintf (dump_file, "BB%d live:", bb);
dump_hard_reg_set (btrs_live[bb]);
fprintf (dump_file, "\n");
}
/* REGNO is the number of a branch target register that is being used or
set. USERS_THIS_BB is a list of preceding branch target register users;
If any of them use the same register, set their other_use_this_block
flag. */
static void
note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
{
btr_user user;
for (user = users_this_bb; user != NULL; user = user->next)
if (user->use && REGNO (user->use) == regno)
user->other_use_this_block = 1;
}
typedef struct {
btr_user users_this_bb;
HARD_REG_SET btrs_written_in_block;
HARD_REG_SET btrs_live_in_block;
sbitmap bb_gen;
sbitmap *btr_defset;
} defs_uses_info;
/* Called via note_stores or directly to register stores into /
clobbers of a branch target register DEST that are not recognized as
straightforward definitions. DATA points to information about the
current basic block that needs updating. */
static void
note_btr_set (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data)
{
defs_uses_info *info = (defs_uses_info *) data;
int regno, end_regno;
if (!REG_P (dest))
return;
regno = REGNO (dest);
end_regno = END_HARD_REGNO (dest);
for (; regno < end_regno; regno++)
if (TEST_HARD_REG_BIT (all_btrs, regno))
{
note_other_use_this_block (regno, info->users_this_bb);
SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
bitmap_and_compl (info->bb_gen, info->bb_gen,
info->btr_defset[regno - first_btr]);
}
}
static void
compute_defs_uses_and_gen (btr_heap_t *all_btr_defs, btr_def *def_array,
btr_user *use_array, sbitmap *btr_defset,
sbitmap *bb_gen, HARD_REG_SET *btrs_written)
{
/* Scan the code building up the set of all defs and all uses.
For each target register, build the set of defs of that register.
For each block, calculate the set of target registers
written in that block.
Also calculate the set of btrs ever live in that block.
*/
int i;
int insn_luid = 0;
btr_def_group all_btr_def_groups = NULL;
defs_uses_info info;
bitmap_vector_clear (bb_gen, last_basic_block_for_fn (cfun));
for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
int reg;
btr_def defs_this_bb = NULL;
rtx_insn *insn;
rtx_insn *last;
int can_throw = 0;
info.users_this_bb = NULL;
info.bb_gen = bb_gen[i];
info.btr_defset = btr_defset;
CLEAR_HARD_REG_SET (info.btrs_live_in_block);
CLEAR_HARD_REG_SET (info.btrs_written_in_block);
for (reg = first_btr; reg <= last_btr; reg++)
if (TEST_HARD_REG_BIT (all_btrs, reg)
&& REGNO_REG_SET_P (df_get_live_in (bb), reg))
SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
insn != last;
insn = NEXT_INSN (insn), insn_luid++)
{
if (INSN_P (insn))
{
int regno;
int insn_uid = INSN_UID (insn);
if (insn_sets_btr_p (insn, 0, ®no))
{
btr_def def = add_btr_def (
all_btr_defs, bb, insn_luid, insn, regno,
TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
&all_btr_def_groups);
def_array[insn_uid] = def;
SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
bitmap_and_compl (bb_gen[i], bb_gen[i],
btr_defset[regno - first_btr]);
bitmap_set_bit (bb_gen[i], insn_uid);
def->next_this_bb = defs_this_bb;
defs_this_bb = def;
bitmap_set_bit (btr_defset[regno - first_btr], insn_uid);
note_other_use_this_block (regno, info.users_this_bb);
}
/* Check for the blockage emitted by expand_nl_goto_receiver. */
else if (cfun->has_nonlocal_label
&& GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE)
{
btr_user user;
/* Do the equivalent of calling note_other_use_this_block
for every target register. */
for (user = info.users_this_bb; user != NULL;
user = user->next)
if (user->use)
user->other_use_this_block = 1;
IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
bitmap_clear (info.bb_gen);
}
else
{
if (find_btr_use (PATTERN (insn)))
{
btr_user user = new_btr_user (bb, insn_luid, insn);
use_array[insn_uid] = user;
if (user->use)
SET_HARD_REG_BIT (info.btrs_live_in_block,
REGNO (user->use));
else
{
int reg;
for (reg = first_btr; reg <= last_btr; reg++)
if (TEST_HARD_REG_BIT (all_btrs, reg)
&& refers_to_regno_p (reg, reg + 1, user->insn,
NULL))
{
note_other_use_this_block (reg,
info.users_this_bb);
SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
}
note_stores (PATTERN (insn), note_btr_set, &info);
}
user->next = info.users_this_bb;
info.users_this_bb = user;
}
if (CALL_P (insn))
{
HARD_REG_SET *clobbered = &call_used_reg_set;
HARD_REG_SET call_saved;
rtx pat = PATTERN (insn);
int i;
/* Check for sibcall. */
if (GET_CODE (pat) == PARALLEL)
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
if (ANY_RETURN_P (XVECEXP (pat, 0, i)))
{
COMPL_HARD_REG_SET (call_saved,
call_used_reg_set);
clobbered = &call_saved;
}
for (regno = first_btr; regno <= last_btr; regno++)
if (TEST_HARD_REG_BIT (*clobbered, regno))
note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
}
}
}
}
COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], df_get_live_out (bb));
/* If this block ends in a jump insn, add any uses or even clobbers
of branch target registers that it might have. */
for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
insn = PREV_INSN (insn);
/* ??? for the fall-through edge, it would make sense to insert the
btr set on the edge, but that would require to split the block
early on so that we can distinguish between dominance from the fall
through edge - which can use the call-clobbered registers - from
dominance by the throw edge. */
if (can_throw_internal (insn))
{
HARD_REG_SET tmp;
COPY_HARD_REG_SET (tmp, call_used_reg_set);
AND_HARD_REG_SET (tmp, all_btrs);
IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
can_throw = 1;
}
if (can_throw || JUMP_P (insn))
{
int regno;
for (regno = first_btr; regno <= last_btr; regno++)
if (refers_to_regno_p (regno, regno+1, insn, NULL))
SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
}
if (dump_file)
dump_btrs_live (i);
}
}
static void
compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
HARD_REG_SET *btrs_written)
{
int i;
int regno;
/* For each basic block, form the set BB_KILL - the set
of definitions that the block kills. */
bitmap_vector_clear (bb_kill, last_basic_block_for_fn (cfun));
for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
{
for (regno = first_btr; regno <= last_btr; regno++)
if (TEST_HARD_REG_BIT (all_btrs, regno)
&& TEST_HARD_REG_BIT (btrs_written[i], regno))
bitmap_ior (bb_kill[i], bb_kill[i],
btr_defset[regno - first_btr]);
}
}
static void
compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
{
/* Perform iterative dataflow:
Initially, for all blocks, BB_OUT = BB_GEN.
For each block,
BB_IN = union over predecessors of BB_OUT(pred)
BB_OUT = (BB_IN - BB_KILL) + BB_GEN
Iterate until the bb_out sets stop growing. */
int i;
int changed;
sbitmap bb_in = sbitmap_alloc (max_uid);
for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
bitmap_copy (bb_out[i], bb_gen[i]);
changed = 1;
while (changed)
{
changed = 0;
for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
{
bitmap_union_of_preds (bb_in, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
changed |= bitmap_ior_and_compl (bb_out[i], bb_gen[i],
bb_in, bb_kill[i]);
}
}
sbitmap_free (bb_in);
}
static void
link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
sbitmap *btr_defset, int max_uid)
{
int i;
sbitmap reaching_defs = sbitmap_alloc (max_uid);
/* Link uses to the uses lists of all of their reaching defs.
Count up the number of reaching defs of each use. */
for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
rtx_insn *insn;
rtx_insn *last;
bitmap_union_of_preds (reaching_defs, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
insn != last;
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
int insn_uid = INSN_UID (insn);
btr_def def = def_array[insn_uid];
btr_user user = use_array[insn_uid];
if (def != NULL)
{
/* Remove all reaching defs of regno except
for this one. */
bitmap_and_compl (reaching_defs, reaching_defs,
btr_defset[def->btr - first_btr]);
bitmap_set_bit (reaching_defs, insn_uid);
}
if (user != NULL)
{
/* Find all the reaching defs for this use. */
sbitmap reaching_defs_of_reg = sbitmap_alloc (max_uid);
unsigned int uid = 0;
sbitmap_iterator sbi;
if (user->use)
bitmap_and (
reaching_defs_of_reg,
reaching_defs,
btr_defset[REGNO (user->use) - first_btr]);
else
{
int reg;
bitmap_clear (reaching_defs_of_reg);
for (reg = first_btr; reg <= last_btr; reg++)
if (TEST_HARD_REG_BIT (all_btrs, reg)
&& refers_to_regno_p (reg, reg + 1, user->insn,
NULL))
bitmap_or_and (reaching_defs_of_reg,
reaching_defs_of_reg,
reaching_defs,
btr_defset[reg - first_btr]);
}
EXECUTE_IF_SET_IN_BITMAP (reaching_defs_of_reg, 0, uid, sbi)
{
btr_def def = def_array[uid];
/* We now know that def reaches user. */
if (dump_file)
fprintf (dump_file,
"Def in insn %d reaches use in insn %d\n",
uid, insn_uid);
user->n_reaching_defs++;
if (!user->use)
def->has_ambiguous_use = 1;
if (user->first_reaching_def != -1)
{ /* There is more than one reaching def. This is
a rare case, so just give up on this def/use
web when it occurs. */
def->has_ambiguous_use = 1;
def_array[user->first_reaching_def]
->has_ambiguous_use = 1;
if (dump_file)
fprintf (dump_file,
"(use %d has multiple reaching defs)\n",
insn_uid);
}
else
user->first_reaching_def = uid;
if (user->other_use_this_block)
def->other_btr_uses_after_use = 1;
user->next = def->uses;
def->uses = user;
}
sbitmap_free (reaching_defs_of_reg);
}
if (CALL_P (insn))
{
int regno;
for (regno = first_btr; regno <= last_btr; regno++)
if (TEST_HARD_REG_BIT (all_btrs, regno)
&& TEST_HARD_REG_BIT (call_used_reg_set, regno))
bitmap_and_compl (reaching_defs, reaching_defs,
btr_defset[regno - first_btr]);
}
}
}
}
sbitmap_free (reaching_defs);
}
static void
build_btr_def_use_webs (btr_heap_t *all_btr_defs)
{
const int max_uid = get_max_uid ();
btr_def *def_array = XCNEWVEC (btr_def, max_uid);
btr_user *use_array = XCNEWVEC (btr_user, max_uid);
sbitmap *btr_defset = sbitmap_vector_alloc (
(last_btr - first_btr) + 1, max_uid);
sbitmap *bb_gen = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
max_uid);
HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET,
last_basic_block_for_fn (cfun));
sbitmap *bb_kill;
sbitmap *bb_out;
bitmap_vector_clear (btr_defset, (last_btr - first_btr) + 1);
compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
bb_gen, btrs_written);
bb_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
compute_kill (bb_kill, btr_defset, btrs_written);
free (btrs_written);
bb_out = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
compute_out (bb_out, bb_gen, bb_kill, max_uid);
sbitmap_vector_free (bb_gen);
sbitmap_vector_free (bb_kill);
link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
sbitmap_vector_free (bb_out);
sbitmap_vector_free (btr_defset);
free (use_array);
free (def_array);
}
/* Return true if basic block BB contains the start or end of the
live range of the definition DEF, AND there are other live
ranges of the same target register that include BB. */
static int
block_at_edge_of_live_range_p (int bb, btr_def def)
{
if (def->other_btr_uses_before_def
&& BASIC_BLOCK_FOR_FN (cfun, bb) == def->bb)
return 1;
else if (def->other_btr_uses_after_use)
{
btr_user user;
for (user = def->uses; user != NULL; user = user->next)
if (BASIC_BLOCK_FOR_FN (cfun, bb) == user->bb)
return 1;
}
return 0;
}
/* We are removing the def/use web DEF. The target register
used in this web is therefore no longer live in the live range
of this web, so remove it from the live set of all basic blocks
in the live range of the web.
Blocks at the boundary of the live range may contain other live
ranges for the same target register, so we have to be careful
to remove the target register from the live set of these blocks
only if they do not contain other live ranges for the same register. */
static void
clear_btr_from_live_range (btr_def def)
{
unsigned bb;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
{
if ((!def->other_btr_uses_before_def
&& !def->other_btr_uses_after_use)
|| !block_at_edge_of_live_range_p (bb, def))
{
CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
if (dump_file)
dump_btrs_live (bb);
}
}
if (def->own_end)
CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
}
/* We are adding the def/use web DEF. Add the target register used
in this web to the live set of all of the basic blocks that contain
the live range of the web.
If OWN_END is set, also show that the register is live from our
definitions at the end of the basic block where it is defined. */
static void
add_btr_to_live_range (btr_def def, int own_end)
{
unsigned bb;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
{
SET_HARD_REG_BIT (btrs_live[bb], def->btr);
SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
if (dump_file)
dump_btrs_live (bb);
}
if (own_end)
{
SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
def->own_end = 1;
}
}
/* Update a live range to contain the basic block NEW_BLOCK, and all
blocks on paths between the existing live range and NEW_BLOCK.
HEAD is a block contained in the existing live range that dominates
all other blocks in the existing live range.
Also add to the set BTRS_LIVE_IN_RANGE all target registers that
are live in the blocks that we add to the live range.
If FULL_RANGE is set, include the full live range of NEW_BB;
otherwise, if NEW_BB dominates HEAD_BB, only add registers that
are life at the end of NEW_BB for NEW_BB itself.
It is a precondition that either NEW_BLOCK dominates HEAD,or
HEAD dom NEW_BLOCK. This is used to speed up the
implementation of this function. */
static void
augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
basic_block head_bb, basic_block new_bb, int full_range)
{
basic_block *worklist, *tos;
tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
{
if (new_bb == head_bb)
{
if (full_range)
IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
free (tos);
return;
}
*tos++ = new_bb;
}
else
{
edge e;
edge_iterator ei;
int new_block = new_bb->index;
gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
bitmap_set_bit (live_range, new_block);
/* A previous btr migration could have caused a register to be
live just at the end of new_block which we need in full, so
use trs_live_at_end even if full_range is set. */
IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
if (full_range)
IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
if (dump_file)
{
fprintf (dump_file,
"Adding end of block %d and rest of %d to live range\n",
new_block, head_bb->index);
fprintf (dump_file,"Now live btrs are ");
dump_hard_reg_set (*btrs_live_in_range);
fprintf (dump_file, "\n");
}
FOR_EACH_EDGE (e, ei, head_bb->preds)
*tos++ = e->src;
}
while (tos != worklist)
{
basic_block bb = *--tos;
if (!bitmap_bit_p (live_range, bb->index))
{
edge e;
edge_iterator ei;
bitmap_set_bit (live_range, bb->index);
IOR_HARD_REG_SET (*btrs_live_in_range,
btrs_live[bb->index]);
/* A previous btr migration could have caused a register to be
live just at the end of a block which we need in full. */
IOR_HARD_REG_SET (*btrs_live_in_range,
btrs_live_at_end[bb->index]);
if (dump_file)
{
fprintf (dump_file,
"Adding block %d to live range\n", bb->index);
fprintf (dump_file,"Now live btrs are ");
dump_hard_reg_set (*btrs_live_in_range);
fprintf (dump_file, "\n");
}
FOR_EACH_EDGE (e, ei, bb->preds)
{
basic_block pred = e->src;
if (!bitmap_bit_p (live_range, pred->index))
*tos++ = pred;
}
}
}
free (worklist);
}
/* Return the most desirable target register that is not in
the set USED_BTRS. */
static int
choose_btr (HARD_REG_SET used_btrs)
{
int i;
if (!hard_reg_set_subset_p (all_btrs, used_btrs))
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
#ifdef REG_ALLOC_ORDER
int regno = reg_alloc_order[i];
#else
int regno = i;
#endif
if (TEST_HARD_REG_BIT (all_btrs, regno)
&& !TEST_HARD_REG_BIT (used_btrs, regno))
return regno;
}
return -1;
}
/* Calculate the set of basic blocks that contain the live range of
the def/use web DEF.
Also calculate the set of target registers that are live at time
in this live range, but ignore the live range represented by DEF
when calculating this set. */
static void
btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
{
if (!def->live_range)
{
btr_user user;
def->live_range = BITMAP_ALLOC (NULL);
bitmap_set_bit (def->live_range, def->bb->index);
COPY_HARD_REG_SET (*btrs_live_in_range,
(flag_btr_bb_exclusive
? btrs_live : btrs_live_at_end)[def->bb->index]);
for (user = def->uses; user != NULL; user = user->next)
augment_live_range (def->live_range, btrs_live_in_range,
def->bb, user->bb,
(flag_btr_bb_exclusive
|| user->insn != BB_END (def->bb)
|| !JUMP_P (user->insn)));
}
else
{
/* def->live_range is accurate, but we need to recompute
the set of target registers live over it, because migration
of other PT instructions may have affected it.
*/
unsigned bb;
unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
bitmap_iterator bi;
CLEAR_HARD_REG_SET (*btrs_live_in_range);
EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
{
IOR_HARD_REG_SET (*btrs_live_in_range,
(def_bb == bb
? btrs_live_at_end : btrs_live) [bb]);
}
}
if (!def->other_btr_uses_before_def &&
!def->other_btr_uses_after_use)
CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
}
/* Merge into the def/use web DEF any other def/use webs in the same
group that are dominated by DEF, provided that there is a target
register available to allocate to the merged web. */
static void
combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
{
btr_def other_def;
for (other_def = def->group->members;
other_def != NULL;
other_def = other_def->next_this_group)
{
if (other_def != def
&& other_def->uses != NULL
&& ! other_def->has_ambiguous_use
&& dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
{
/* def->bb dominates the other def, so def and other_def could
be combined. */
/* Merge their live ranges, and get the set of
target registers live over the merged range. */
int btr;
HARD_REG_SET combined_btrs_live;
bitmap combined_live_range = BITMAP_ALLOC (NULL);
btr_user user;
if (other_def->live_range == NULL)
{
HARD_REG_SET dummy_btrs_live_in_range;
btr_def_live_range (other_def, &dummy_btrs_live_in_range);
}
COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
bitmap_copy (combined_live_range, def->live_range);
for (user = other_def->uses; user != NULL; user = user->next)
augment_live_range (combined_live_range, &combined_btrs_live,
def->bb, user->bb,
(flag_btr_bb_exclusive
|| user->insn != BB_END (def->bb)
|| !JUMP_P (user->insn)));
btr = choose_btr (combined_btrs_live);
if (btr != -1)
{
/* We can combine them. */
if (dump_file)
fprintf (dump_file,
"Combining def in insn %d with def in insn %d\n",
INSN_UID (other_def->insn), INSN_UID (def->insn));
def->btr = btr;
user = other_def->uses;
while (user != NULL)
{
btr_user next = user->next;
user->next = def->uses;
def->uses = user;
user = next;
}
/* Combining def/use webs can make target registers live
after uses where they previously were not. This means
some REG_DEAD notes may no longer be correct. We could
be more precise about this if we looked at the combined
live range, but here I just delete any REG_DEAD notes
in case they are no longer correct. */
for (user = def->uses; user != NULL; user = user->next)
remove_note (user->insn,
find_regno_note (user->insn, REG_DEAD,
REGNO (user->use)));
clear_btr_from_live_range (other_def);
other_def->uses = NULL;
bitmap_copy (def->live_range, combined_live_range);
if (other_def->btr == btr && other_def->other_btr_uses_after_use)
def->other_btr_uses_after_use = 1;
COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
/* Delete the old target register initialization. */
delete_insn (other_def->insn);
}
BITMAP_FREE (combined_live_range);
}
}
}
/* Move the definition DEF from its current position to basic
block NEW_DEF_BB, and modify it to use branch target register BTR.
Delete the old defining insn, and insert a new one in NEW_DEF_BB.
Update all reaching uses of DEF in the RTL to use BTR.
If this new position means that other defs in the
same group can be combined with DEF then combine them. */
static void
move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
HARD_REG_SET *btrs_live_in_range)
{
/* We can move the instruction.
Set a target register in block NEW_DEF_BB to the value
needed for this target register definition.
Replace all uses of the old target register definition by
uses of the new definition. Delete the old definition. */
basic_block b = new_def_bb;
rtx_insn *insp = BB_HEAD (b);
rtx_insn *old_insn = def->insn;
rtx src;
rtx btr_rtx;
rtx_insn *new_insn;
machine_mode btr_mode;
btr_user user;
rtx set;
if (dump_file)
fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
new_def_bb->index, btr);
clear_btr_from_live_range (def);
def->btr = btr;
def->bb = new_def_bb;
def->luid = 0;
def->cost = basic_block_freq (new_def_bb);
bitmap_copy (def->live_range, live_range);
combine_btr_defs (def, btrs_live_in_range);
btr = def->btr;
def->other_btr_uses_before_def
= TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
add_btr_to_live_range (def, 1);
if (LABEL_P (insp))
insp = NEXT_INSN (insp);
/* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
optimizations can result in insp being both first and last insn of
its basic block. */
/* ?? some assertions to check that insp is sensible? */
if (def->other_btr_uses_before_def)
{
insp = BB_END (b);
for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
gcc_assert (insp != BB_HEAD (b));
if (JUMP_P (insp) || can_throw_internal (insp))
insp = PREV_INSN (insp);
}
set = single_set (old_insn);
src = SET_SRC (set);
btr_mode = GET_MODE (SET_DEST (set));
btr_rtx = gen_rtx_REG (btr_mode, btr);
new_insn = as_a <rtx_insn *> (gen_move_insn (btr_rtx, src));
/* Insert target register initialization at head of basic block. */
def->insn = emit_insn_after (new_insn, insp);
df_set_regs_ever_live (btr, true);
if (dump_file)
fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
INSN_UID (def->insn), INSN_UID (insp));
/* Delete the old target register initialization. */
delete_insn (old_insn);
/* Replace each use of the old target register by a use of the new target
register. */
for (user = def->uses; user != NULL; user = user->next)
{
/* Some extra work here to ensure consistent modes, because
it seems that a target register REG rtx can be given a different
mode depending on the context (surely that should not be
the case?). */
rtx replacement_rtx;
if (GET_MODE (user->use) == GET_MODE (btr_rtx)
|| GET_MODE (user->use) == VOIDmode)
replacement_rtx = btr_rtx;
else
replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
validate_replace_rtx (user->use, replacement_rtx, user->insn);
user->use = replacement_rtx;
}
}
/* We anticipate intra-block scheduling to be done. See if INSN could move
up within BB by N_INSNS. */
static int
can_move_up (const_basic_block bb, const rtx_insn *insn, int n_insns)
{
while (insn != BB_HEAD (bb) && n_insns > 0)
{
insn = PREV_INSN (insn);
/* ??? What if we have an anti-dependency that actually prevents the
scheduler from doing the move? We'd like to re-allocate the register,
but not necessarily put the load into another basic block. */
if (INSN_P (insn))
n_insns--;
}
return n_insns <= 0;
}
/* Attempt to migrate the target register definition DEF to an
earlier point in the flowgraph.
It is a precondition of this function that DEF is migratable:
i.e. it has a constant source, and all uses are unambiguous.
Only migrations that reduce the cost of DEF will be made.
MIN_COST is the lower bound on the cost of the DEF after migration.
If we migrate DEF so that its cost falls below MIN_COST,
then we do not attempt to migrate further. The idea is that
we migrate definitions in a priority order based on their cost,
when the cost of this definition falls below MIN_COST, then
there is another definition with cost == MIN_COST which now
has a higher priority than this definition.
Return nonzero if there may be benefit from attempting to
migrate this DEF further (i.e. we have reduced the cost below
MIN_COST, but we may be able to reduce it further).
Return zero if no further migration is possible. */
static int
migrate_btr_def (btr_def def, int min_cost)
{
bitmap live_range;
HARD_REG_SET btrs_live_in_range;
int btr_used_near_def = 0;
int def_basic_block_freq;
basic_block attempt;
int give_up = 0;
int def_moved = 0;
btr_user user;
int def_latency;
if (dump_file)
fprintf (dump_file,
"Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
INSN_UID (def->insn), def->cost, min_cost);
if (!def->group || def->has_ambiguous_use)
/* These defs are not migratable. */
{
if (dump_file)
fprintf (dump_file, "it's not migratable\n");
return 0;
}
if (!def->uses)
/* We have combined this def with another in the same group, so
no need to consider it further.
*/
{
if (dump_file)
fprintf (dump_file, "it's already combined with another pt\n");
return 0;
}
btr_def_live_range (def, &btrs_live_in_range);
live_range = BITMAP_ALLOC (NULL);
bitmap_copy (live_range, def->live_range);
#ifdef INSN_SCHEDULING
def_latency = insn_default_latency (def->insn) * issue_rate;
#else
def_latency = issue_rate;
#endif
for (user = def->uses; user != NULL; user = user->next)
{
if (user->bb == def->bb
&& user->luid > def->luid
&& (def->luid + def_latency) > user->luid
&& ! can_move_up (def->bb, def->insn,
(def->luid + def_latency) - user->luid))
{
btr_used_near_def = 1;
break;
}
}
def_basic_block_freq = basic_block_freq (def->bb);
for (attempt = get_immediate_dominator (CDI_DOMINATORS, def->bb);
!give_up && attempt && attempt != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& def->cost >= min_cost;
attempt = get_immediate_dominator (CDI_DOMINATORS, attempt))
{
/* Try to move the instruction that sets the target register into
basic block ATTEMPT. */
int try_freq = basic_block_freq (attempt);
edge_iterator ei;
edge e;
/* If ATTEMPT has abnormal edges, skip it. */
FOR_EACH_EDGE (e, ei, attempt->succs)
if (e->flags & EDGE_COMPLEX)
break;
if (e)
continue;
if (dump_file)
fprintf (dump_file, "trying block %d ...", attempt->index);
if (try_freq < def_basic_block_freq
|| (try_freq == def_basic_block_freq && btr_used_near_def))
{
int btr;
augment_live_range (live_range, &btrs_live_in_range, def->bb, attempt,
flag_btr_bb_exclusive);
if (dump_file)
{
fprintf (dump_file, "Now btrs live in range are: ");
dump_hard_reg_set (btrs_live_in_range);
fprintf (dump_file, "\n");
}
btr = choose_btr (btrs_live_in_range);
if (btr != -1)
{
move_btr_def (attempt, btr, def, live_range, &btrs_live_in_range);
bitmap_copy (live_range, def->live_range);
btr_used_near_def = 0;
def_moved = 1;
def_basic_block_freq = basic_block_freq (def->bb);
}
else
{
/* There are no free target registers available to move
this far forward, so give up */
give_up = 1;
if (dump_file)
fprintf (dump_file,
"giving up because there are no free target registers\n");
}
}
}
if (!def_moved)
{
give_up = 1;
if (dump_file)
fprintf (dump_file, "failed to move\n");
}
BITMAP_FREE (live_range);
return !give_up;
}
/* Attempt to move instructions that set target registers earlier
in the flowgraph, away from their corresponding uses. */
static void
migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
{
btr_heap_t all_btr_defs (LONG_MIN);
int reg;
gcc_obstack_init (&migrate_btrl_obstack);
if (dump_file)
{
int i;
for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
fprintf (dump_file,
"Basic block %d: count = %" PRId64
" loop-depth = %d idom = %d\n",
i, (int64_t) bb->count, bb_loop_depth (bb),
get_immediate_dominator (CDI_DOMINATORS, bb)->index);
}
}
CLEAR_HARD_REG_SET (all_btrs);
for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
&& (allow_callee_save || call_used_regs[reg]
|| df_regs_ever_live_p (reg)))
{
SET_HARD_REG_BIT (all_btrs, reg);
last_btr = reg;
if (first_btr < 0)
first_btr = reg;
}
btrs_live = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
btrs_live_at_end = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
build_btr_def_use_webs (&all_btr_defs);
while (!all_btr_defs.empty ())
{
int min_cost = -all_btr_defs.min_key ();
btr_def def = all_btr_defs.extract_min ();
if (migrate_btr_def (def, min_cost))
{
all_btr_defs.insert (-def->cost, def);
if (dump_file)
{
fprintf (dump_file,
"Putting insn %d back on queue with priority %d\n",
INSN_UID (def->insn), def->cost);
}
}
else
BITMAP_FREE (def->live_range);
}
free (btrs_live);
free (btrs_live_at_end);
obstack_free (&migrate_btrl_obstack, NULL);
}
static void
branch_target_load_optimize (bool after_prologue_epilogue_gen)
{
enum reg_class klass
= (enum reg_class) targetm.branch_target_register_class ();
if (klass != NO_REGS)
{
/* Initialize issue_rate. */
if (targetm.sched.issue_rate)
issue_rate = targetm.sched.issue_rate ();
else
issue_rate = 1;
if (!after_prologue_epilogue_gen)
{
/* Build the CFG for migrate_btr_defs. */
#if 1
/* This may or may not be needed, depending on where we
run this phase. */
cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
#endif
}
df_analyze ();
/* Dominator info is also needed for migrate_btr_def. */
calculate_dominance_info (CDI_DOMINATORS);
migrate_btr_defs (klass,
(targetm.branch_target_register_callee_saved
(after_prologue_epilogue_gen)));
free_dominance_info (CDI_DOMINATORS);
}
}
namespace {
const pass_data pass_data_branch_target_load_optimize1 =
{
RTL_PASS, /* type */
"btl1", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_branch_target_load_optimize1 : public rtl_opt_pass
{
public:
pass_branch_target_load_optimize1 (gcc::context *ctxt)
: rtl_opt_pass (pass_data_branch_target_load_optimize1, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_branch_target_load_optimize; }
virtual unsigned int execute (function *)
{
branch_target_load_optimize (epilogue_completed);
return 0;
}
}; // class pass_branch_target_load_optimize1
} // anon namespace
rtl_opt_pass *
make_pass_branch_target_load_optimize1 (gcc::context *ctxt)
{
return new pass_branch_target_load_optimize1 (ctxt);
}
namespace {
const pass_data pass_data_branch_target_load_optimize2 =
{
RTL_PASS, /* type */
"btl2", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_branch_target_load_optimize2 : public rtl_opt_pass
{
public:
pass_branch_target_load_optimize2 (gcc::context *ctxt)
: rtl_opt_pass (pass_data_branch_target_load_optimize2, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *)
{
return (optimize > 0 && flag_branch_target_load_optimize2);
}
virtual unsigned int execute (function *);
}; // class pass_branch_target_load_optimize2
unsigned int
pass_branch_target_load_optimize2::execute (function *)
{
static int warned = 0;
/* Leave this a warning for now so that it is possible to experiment
with running this pass twice. In 3.6, we should either make this
an error, or use separate dump files. */
if (flag_branch_target_load_optimize
&& flag_branch_target_load_optimize2
&& !warned)
{
warning (0, "branch target register load optimization is not intended "
"to be run twice");
warned = 1;
}
branch_target_load_optimize (epilogue_completed);
return 0;
}
} // anon namespace
rtl_opt_pass *
make_pass_branch_target_load_optimize2 (gcc::context *ctxt)
{
return new pass_branch_target_load_optimize2 (ctxt);
}
|