1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/* This file contains routines to construct and validate Cilk Plus
constructs within the C and C++ front ends.
Copyright (C) 2013-2015 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "c-common.h"
/* Validate the body of a _Cilk_for construct or a <#pragma simd> for
loop.
Returns true if there were no errors, false otherwise. */
bool
c_check_cilk_loop (location_t loc, tree decl)
{
if (TREE_THIS_VOLATILE (decl))
{
error_at (loc, "iteration variable cannot be volatile");
return false;
}
return true;
}
/* Validate and emit code for <#pragma simd> clauses. */
tree
c_finish_cilk_clauses (tree clauses)
{
for (tree c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
{
tree prev = clauses;
/* If a variable appears in a linear clause it cannot appear in
any other OMP clause. */
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINEAR)
for (tree c2 = clauses; c2; c2 = OMP_CLAUSE_CHAIN (c2))
{
if (c == c2)
continue;
enum omp_clause_code code = OMP_CLAUSE_CODE (c2);
switch (code)
{
case OMP_CLAUSE_LINEAR:
case OMP_CLAUSE_PRIVATE:
case OMP_CLAUSE_FIRSTPRIVATE:
case OMP_CLAUSE_LASTPRIVATE:
case OMP_CLAUSE_REDUCTION:
break;
case OMP_CLAUSE_SAFELEN:
goto next;
default:
gcc_unreachable ();
}
if (OMP_CLAUSE_DECL (c) == OMP_CLAUSE_DECL (c2))
{
error_at (OMP_CLAUSE_LOCATION (c2),
"variable appears in more than one clause");
inform (OMP_CLAUSE_LOCATION (c),
"other clause defined here");
// Remove problematic clauses.
OMP_CLAUSE_CHAIN (prev) = OMP_CLAUSE_CHAIN (c2);
}
next:
prev = c2;
}
}
return clauses;
}
/* Calculate number of iterations of CILK_FOR. */
tree
cilk_for_number_of_iterations (tree cilk_for)
{
tree t, v, n1, n2, step, type, init, cond, incr, itype;
enum tree_code cond_code;
location_t loc = EXPR_LOCATION (cilk_for);
init = TREE_VEC_ELT (OMP_FOR_INIT (cilk_for), 0);
v = TREE_OPERAND (init, 0);
cond = TREE_VEC_ELT (OMP_FOR_COND (cilk_for), 0);
incr = TREE_VEC_ELT (OMP_FOR_INCR (cilk_for), 0);
type = TREE_TYPE (v);
gcc_assert (TREE_CODE (TREE_TYPE (v)) == INTEGER_TYPE
|| TREE_CODE (TREE_TYPE (v)) == POINTER_TYPE);
n1 = TREE_OPERAND (init, 1);
cond_code = TREE_CODE (cond);
n2 = TREE_OPERAND (cond, 1);
switch (cond_code)
{
case LT_EXPR:
case GT_EXPR:
case NE_EXPR:
break;
case LE_EXPR:
if (POINTER_TYPE_P (TREE_TYPE (n2)))
n2 = fold_build_pointer_plus_hwi_loc (loc, n2, 1);
else
n2 = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (n2), n2,
build_int_cst (TREE_TYPE (n2), 1));
cond_code = LT_EXPR;
break;
case GE_EXPR:
if (POINTER_TYPE_P (TREE_TYPE (n2)))
n2 = fold_build_pointer_plus_hwi_loc (loc, n2, -1);
else
n2 = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (n2), n2,
build_int_cst (TREE_TYPE (n2), 1));
cond_code = GT_EXPR;
break;
default:
gcc_unreachable ();
}
step = NULL_TREE;
switch (TREE_CODE (incr))
{
case PREINCREMENT_EXPR:
case POSTINCREMENT_EXPR:
step = build_int_cst (TREE_TYPE (v), 1);
break;
case PREDECREMENT_EXPR:
case POSTDECREMENT_EXPR:
step = build_int_cst (TREE_TYPE (v), -1);
break;
case MODIFY_EXPR:
t = TREE_OPERAND (incr, 1);
gcc_assert (TREE_OPERAND (t, 0) == v);
switch (TREE_CODE (t))
{
case PLUS_EXPR:
step = TREE_OPERAND (t, 1);
break;
case POINTER_PLUS_EXPR:
step = fold_convert (ssizetype, TREE_OPERAND (t, 1));
break;
case MINUS_EXPR:
step = TREE_OPERAND (t, 1);
step = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (step), step);
break;
default:
gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
}
itype = type;
if (POINTER_TYPE_P (itype))
itype = signed_type_for (itype);
if (cond_code == NE_EXPR)
{
/* For NE_EXPR, we need to find out if the iterator increases
or decreases from whether step is positive or negative. */
tree stype = itype;
if (TYPE_UNSIGNED (stype))
stype = signed_type_for (stype);
cond = fold_build2_loc (loc, GE_EXPR, boolean_type_node,
fold_convert_loc (loc, stype, step),
build_int_cst (stype, 0));
t = fold_build3_loc (loc, COND_EXPR, itype, cond,
build_int_cst (itype, -1),
build_int_cst (itype, 1));
}
else
t = build_int_cst (itype, (cond_code == LT_EXPR ? -1 : 1));
t = fold_build2_loc (loc, PLUS_EXPR, itype,
fold_convert_loc (loc, itype, step), t);
t = fold_build2_loc (loc, PLUS_EXPR, itype, t,
fold_convert_loc (loc, itype, n2));
t = fold_build2_loc (loc, MINUS_EXPR, itype, t,
fold_convert_loc (loc, itype, n1));
if (TYPE_UNSIGNED (itype) && cond_code == GT_EXPR)
t = fold_build2_loc (loc, TRUNC_DIV_EXPR, itype,
fold_build1_loc (loc, NEGATE_EXPR, itype, t),
fold_build1_loc (loc, NEGATE_EXPR, itype,
fold_convert_loc (loc, itype,
step)));
else if (TYPE_UNSIGNED (itype) && cond_code == NE_EXPR)
{
tree t1
= fold_build2_loc (loc, TRUNC_DIV_EXPR, itype, t,
fold_convert_loc (loc, itype, step));
tree t2
= fold_build2_loc (loc, TRUNC_DIV_EXPR, itype,
fold_build1_loc (loc, NEGATE_EXPR, itype, t),
fold_build1_loc (loc, NEGATE_EXPR, itype,
fold_convert_loc (loc, itype,
step)));
t = fold_build3_loc (loc, COND_EXPR, itype, cond, t1, t2);
}
else
t = fold_build2_loc (loc, TRUNC_DIV_EXPR, itype, t,
fold_convert_loc (loc, itype, step));
cond = fold_build2_loc (loc, cond_code, boolean_type_node, n1, n2);
t = fold_build3_loc (loc, COND_EXPR, itype, cond, t,
build_int_cst (itype, 0));
return t;
}
|