1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
|
/* This file is part of the Intel(R) Cilk(TM) Plus support
This file contains routines to handle Array Notation expression
handling routines in the C Compiler.
Copyright (C) 2013-2014 Free Software Foundation, Inc.
Contributed by Balaji V. Iyer <balaji.v.iyer@intel.com>,
Intel Corporation.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The Array Notation Transformation Technique:
An array notation expression has 4 major components:
1. The array name
2. Start Index
3. Number of elements we need to acess (we call it length)
4. Stride
For example, A[0:5:2], implies that we are accessing A[0], A[2], A[4],
A[6] and A[8]. The user is responsible to make sure the access length does
not step outside the array's size.
In this section, I highlight the overall method on how array notations are
broken up into C/C++ code. Almost all the functions follows this overall
technique:
Let's say we have an array notation in a statement like this:
A[St1:Ln:Str1] = B[St2:Ln:Str2] + <NON ARRAY_NOTATION_STMT>
where St{1,2} = Starting index,
Ln = Number of elements we need to access,
and Str{1,2} = the stride.
Note: The length of both the array notation expressions must be the same.
The above expression is broken into the following
(with the help of c_finish_loop function from c-typeck.c):
Tmp_Var = 0;
goto compare_label:
body_label:
A[St1+Tmp_Var*Str1] = B[St1+Tmp_Var*Str2] + <NON ARRAY_NOTATION_STMT>;
Tmp_Var++;
compare_label:
if (Tmp_Var < Ln)
goto body_label;
else
goto exit_label;
exit_label:
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "c-tree.h"
#include "gimple-expr.h"
#include "tree-iterator.h"
#include "opts.h"
#include "c-family/c-common.h"
/* If *VALUE is not of type INTEGER_CST, PARM_DECL or VAR_DECL, then map it
to a variable and then set *VALUE to the new variable. */
static inline void
make_triplet_val_inv (location_t loc, tree *value)
{
tree var, new_exp;
if (TREE_CODE (*value) != INTEGER_CST
&& TREE_CODE (*value) != PARM_DECL
&& TREE_CODE (*value) != VAR_DECL)
{
var = build_decl (loc, VAR_DECL, NULL_TREE, integer_type_node);
new_exp = build_modify_expr (loc, var, TREE_TYPE (var), NOP_EXPR, loc,
*value, TREE_TYPE (*value));
add_stmt (new_exp);
*value = var;
}
}
/* Populates the INCR and CMP vectors with the increment (of type POSTINCREMENT
or POSTDECREMENT) and comparison (of TYPE GT_EXPR or LT_EXPR) expressions,
using data from LENGTH, COUNT_DOWN, and VAR. INCR and CMP vectors are of
size RANK. */
static void
create_cmp_incr (location_t loc, vec<an_loop_parts> *node, size_t rank,
vec<vec<an_parts> > an_info)
{
for (size_t ii = 0; ii < rank; ii++)
{
tree var = (*node)[ii].var;
tree length = an_info[0][ii].length;
(*node)[ii].incr = build_unary_op (loc, POSTINCREMENT_EXPR, var, 0);
(*node)[ii].cmp = build2 (LT_EXPR, boolean_type_node, var, length);
}
}
/* Returns a vector of size RANK that contains an array ref that is derived from
array notation triplet parameters stored in VALUE, START, STRIDE. IS_VECTOR
is used to check if the data stored at its corresponding location is an
array notation. VAR is the induction variable passed in by the caller.
For example: For an array notation A[5:10:2], the vector start will be
of size 1 holding '5', stride of same size as start but holding the value of
as 2, is_vector as true and count_down as false. Let's assume VAR is 'x'
This function returns a vector of size 1 with the following data:
A[5 + (x * 2)] .
*/
static vec<tree, va_gc> *
create_array_refs (location_t loc, vec<vec<an_parts> > an_info,
vec<an_loop_parts> an_loop_info, size_t size, size_t rank)
{
tree ind_mult, ind_incr;
vec<tree, va_gc> *array_operand = NULL;
for (size_t ii = 0; ii < size; ii++)
if (an_info[ii][0].is_vector)
{
tree array_opr = an_info[ii][rank - 1].value;
for (int s_jj = rank - 1; s_jj >= 0; s_jj--)
{
tree var = an_loop_info[s_jj].var;
tree stride = an_info[ii][s_jj].stride;
tree start = an_info[ii][s_jj].start;
ind_mult = build2 (MULT_EXPR, TREE_TYPE (var), var, stride);
ind_incr = build2 (PLUS_EXPR, TREE_TYPE (var), start, ind_mult);
array_opr = build_array_ref (loc, array_opr, ind_incr);
}
vec_safe_push (array_operand, array_opr);
}
else
/* This is just a dummy node to make sure both the list sizes for both
array list and array operand list are the same. */
vec_safe_push (array_operand, integer_one_node);
return array_operand;
}
/* Replaces all the scalar expressions in *NODE. Returns a STATEMENT_LIST that
holds the NODE along with variables that holds the results of the invariant
expressions. */
tree
replace_invariant_exprs (tree *node)
{
size_t ix = 0;
tree node_list = NULL_TREE;
tree t = NULL_TREE, new_var = NULL_TREE, new_node;
struct inv_list data;
data.list_values = NULL;
data.replacement = NULL;
data.additional_tcodes = NULL;
walk_tree (node, find_inv_trees, (void *)&data, NULL);
if (vec_safe_length (data.list_values))
{
node_list = push_stmt_list ();
for (ix = 0; vec_safe_iterate (data.list_values, ix, &t); ix++)
{
new_var = build_decl (EXPR_LOCATION (t), VAR_DECL, NULL_TREE,
TREE_TYPE (t));
gcc_assert (new_var != NULL_TREE && new_var != error_mark_node);
new_node = build2 (MODIFY_EXPR, TREE_TYPE (t), new_var, t);
add_stmt (new_node);
vec_safe_push (data.replacement, new_var);
}
walk_tree (node, replace_inv_trees, (void *)&data, NULL);
node_list = pop_stmt_list (node_list);
}
return node_list;
}
/* Given a CALL_EXPR to an array notation built-in function in
AN_BUILTIN_FN, replace the call with the appropriate loop and
computation. Return the computation in *NEW_VAR.
The return value in *NEW_VAR will always be a scalar. If the
built-in is __sec_reduce_mutating, *NEW_VAR is set to NULL_TREE. */
static tree
fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var)
{
tree new_var_type = NULL_TREE, func_parm, new_expr, new_yes_expr, new_no_expr;
tree array_ind_value = NULL_TREE, new_no_ind, new_yes_ind, new_no_list;
tree new_yes_list, new_cond_expr, new_var_init = NULL_TREE;
tree new_exp_init = NULL_TREE;
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree loop_init, array_op0;
tree identity_value = NULL_TREE, call_fn = NULL_TREE, new_call_expr, body;
location_t location = UNKNOWN_LOCATION;
tree loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
vec<an_loop_parts> an_loop_info = vNULL;
enum built_in_function an_type =
is_cilkplus_reduce_builtin (CALL_EXPR_FN (an_builtin_fn));
if (an_type == BUILT_IN_NONE)
return NULL_TREE;
/* Builtin call should contain at least one argument. */
if (call_expr_nargs (an_builtin_fn) == 0)
{
error_at (EXPR_LOCATION (an_builtin_fn), "Invalid builtin arguments");
return error_mark_node;
}
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
call_fn = CALL_EXPR_ARG (an_builtin_fn, 2);
if (TREE_CODE (call_fn) == ADDR_EXPR)
call_fn = TREE_OPERAND (call_fn, 0);
identity_value = CALL_EXPR_ARG (an_builtin_fn, 0);
func_parm = CALL_EXPR_ARG (an_builtin_fn, 1);
}
else
func_parm = CALL_EXPR_ARG (an_builtin_fn, 0);
/* Fully fold any EXCESSIVE_PRECISION EXPR that can occur in the function
parameter. */
func_parm = c_fully_fold (func_parm, false, NULL);
if (func_parm == error_mark_node)
return error_mark_node;
location = EXPR_LOCATION (an_builtin_fn);
if (!find_rank (location, an_builtin_fn, an_builtin_fn, true, &rank))
return error_mark_node;
if (rank == 0)
{
error_at (location, "Invalid builtin arguments");
return error_mark_node;
}
else if (rank > 1
&& (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND))
{
error_at (location, "__sec_reduce_min_ind or __sec_reduce_max_ind cannot"
" have arrays with dimension greater than 1");
return error_mark_node;
}
extract_array_notation_exprs (func_parm, true, &array_list);
list_size = vec_safe_length (array_list);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
new_var_type = integer_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_type = integer_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
if (call_fn && identity_value)
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_var_type = NULL_TREE;
break;
default:
gcc_unreachable ();
}
an_loop_info.safe_grow_cleared (rank);
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
loop_init = alloc_stmt_list ();
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node, NULL);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&func_parm, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
*new_var = build_decl (location, VAR_DECL, NULL_TREE, new_var_type);
gcc_assert (*new_var && *new_var != error_mark_node);
}
else
*new_var = NULL_TREE;
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
array_ind_value = build_decl (location, VAR_DECL, NULL_TREE,
TREE_TYPE (func_parm));
array_op0 = (*array_operand)[0];
if (TREE_CODE (array_op0) == INDIRECT_REF)
array_op0 = TREE_OPERAND (array_op0, 0);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), PLUS_EXPR,
location, func_parm, TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), MULT_EXPR,
location, func_parm, TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
/* Initially you assume everything is zero, now if we find a case where
it is NOT true, then we set the result to false. Otherwise
we just keep the previous value. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (*new_var)),
TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
/* Initially you assume everything is non-zero, now if we find a case
where it is NOT true, then we set the result to false. Otherwise
we just keep the previous value. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (*new_var)),
TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
/* Initially we assume there are NO zeros in the list. When we find
a non-zero, we keep the previous value. If we find a zero, we
set the value to true. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
/* Initially we assume there are NO non-zeros in the list. When we find
a zero, we keep the previous value. If we find a non-zero, we set
the value to true. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
if (TYPE_MIN_VALUE (new_var_type))
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TYPE_MIN_VALUE (new_var_type), new_var_type);
else
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, TREE_TYPE (*new_var));
new_expr = build_conditional_expr
(location,
build2 (LT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false,
new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
if (TYPE_MAX_VALUE (new_var_type))
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TYPE_MAX_VALUE (new_var_type), new_var_type);
else
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, TREE_TYPE (*new_var));
new_expr = build_conditional_expr
(location,
build2 (GT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false,
new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_exp_init = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR, location, func_parm, TREE_TYPE (func_parm));
new_no_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, array_ind_value, TREE_TYPE (array_ind_value));
if (list_size > 1)
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, an_loop_info[0].var, TREE_TYPE (an_loop_info[0].var));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE ((*array_operand)[0]));
}
else
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TREE_OPERAND (array_op0, 1),
TREE_TYPE (TREE_OPERAND (array_op0, 1)));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_OPERAND (array_op0, 1));
}
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_expr = build_conditional_expr
(location,
build2 (LE_EXPR, TREE_TYPE (array_ind_value), array_ind_value,
func_parm),
false,
new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_exp_init = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR, location, func_parm, TREE_TYPE (func_parm));
new_no_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, array_ind_value, TREE_TYPE (array_ind_value));
if (list_size > 1)
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, an_loop_info[0].var, TREE_TYPE (an_loop_info[0].var));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE (array_op0));
}
else
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TREE_OPERAND (array_op0, 1),
TREE_TYPE (TREE_OPERAND (array_op0, 1)));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_OPERAND (array_op0, 1));
}
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_expr = build_conditional_expr
(location,
build2 (GE_EXPR, TREE_TYPE (array_ind_value), array_ind_value,
func_parm),
false,
new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, identity_value, new_var_type);
new_call_expr = build_call_expr (call_fn, 2, *new_var, func_parm);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, new_call_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_expr = build_call_expr (call_fn, 2, identity_value, func_parm);
break;
default:
gcc_unreachable ();
break;
}
for (ii = 0; ii < rank; ii++)
append_to_statement_list (an_loop_info[ii].ind_init, &loop_init);
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
append_to_statement_list (new_exp_init, &loop_init);
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
append_to_statement_list (new_var_init, &loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = new_expr;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr,
body, NULL_TREE, NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
an_info.release ();
an_loop_info.release ();
return loop_with_init;
}
/* Returns a loop with ARRAY_REF inside it with an appropriate modify expr.
The LHS and/or RHS will be array notation expressions that have a MODIFYCODE
Their locations are specified by LHS_LOC, RHS_LOC. The location of the
modify expression is location. The original type of LHS and RHS are passed
in LHS_ORIGTYPE and RHS_ORIGTYPE. */
tree
build_array_notation_expr (location_t location, tree lhs, tree lhs_origtype,
enum tree_code modifycode, location_t rhs_loc,
tree rhs, tree rhs_origtype)
{
bool found_builtin_fn = false;
tree array_expr_lhs = NULL_TREE, array_expr_rhs = NULL_TREE;
tree array_expr = NULL_TREE;
tree an_init = NULL_TREE;
vec<tree> cond_expr = vNULL;
tree body, loop_with_init = alloc_stmt_list();
tree scalar_mods = NULL_TREE;
vec<tree, va_gc> *rhs_array_operand = NULL, *lhs_array_operand = NULL;
size_t lhs_rank = 0, rhs_rank = 0;
size_t ii = 0;
vec<tree, va_gc> *lhs_list = NULL, *rhs_list = NULL;
tree new_modify_expr, new_var = NULL_TREE, builtin_loop = NULL_TREE;
size_t rhs_list_size = 0, lhs_list_size = 0;
vec<vec<an_parts> > lhs_an_info = vNULL, rhs_an_info = vNULL;
vec<an_loop_parts> lhs_an_loop_info = vNULL, rhs_an_loop_info = vNULL;
/* If either of this is true, an error message must have been send out
already. Not necessary to send out multiple error messages. */
if (lhs == error_mark_node || rhs == error_mark_node)
return error_mark_node;
if (!find_rank (location, rhs, rhs, false, &rhs_rank))
return error_mark_node;
extract_array_notation_exprs (rhs, false, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
an_init = push_stmt_list ();
if (rhs_rank)
{
scalar_mods = replace_invariant_exprs (&rhs);
if (scalar_mods)
add_stmt (scalar_mods);
}
for (ii = 0; ii < rhs_list_size; ii++)
{
tree rhs_node = (*rhs_list)[ii];
if (TREE_CODE (rhs_node) == CALL_EXPR)
{
builtin_loop = fix_builtin_array_notation_fn (rhs_node, &new_var);
if (builtin_loop == error_mark_node)
{
pop_stmt_list (an_init);
return error_mark_node;
}
else if (builtin_loop)
{
add_stmt (builtin_loop);
found_builtin_fn = true;
if (new_var)
{
vec<tree, va_gc> *rhs_sub_list = NULL, *new_var_list = NULL;
vec_safe_push (rhs_sub_list, rhs_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&rhs, false, rhs_sub_list,
new_var_list);
}
}
}
}
lhs_rank = 0;
rhs_rank = 0;
if (!find_rank (location, lhs, lhs, true, &lhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (!find_rank (location, rhs, rhs, true, &rhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (lhs_rank == 0 && rhs_rank == 0)
{
if (found_builtin_fn)
{
new_modify_expr = build_modify_expr (location, lhs, lhs_origtype,
modifycode, rhs_loc, rhs,
rhs_origtype);
add_stmt (new_modify_expr);
pop_stmt_list (an_init);
return an_init;
}
else
{
pop_stmt_list (an_init);
return NULL_TREE;
}
}
rhs_list_size = 0;
rhs_list = NULL;
extract_array_notation_exprs (rhs, true, &rhs_list);
extract_array_notation_exprs (lhs, true, &lhs_list);
rhs_list_size = vec_safe_length (rhs_list);
lhs_list_size = vec_safe_length (lhs_list);
if (lhs_rank == 0 && rhs_rank != 0)
{
tree rhs_base = rhs;
if (TREE_CODE (rhs_base) == ARRAY_NOTATION_REF)
{
for (ii = 0; ii < (size_t) rhs_rank; ii++)
rhs_base = ARRAY_NOTATION_ARRAY (rhs);
error_at (location, "%qE cannot be scalar when %qE is not", lhs,
rhs_base);
return error_mark_node;
}
else
{
error_at (location, "%qE cannot be scalar when %qE is not", lhs,
rhs_base);
return error_mark_node;
}
}
if (lhs_rank != 0 && rhs_rank != 0 && lhs_rank != rhs_rank)
{
error_at (location, "rank mismatch between %qE and %qE", lhs, rhs);
pop_stmt_list (an_init);
return error_mark_node;
}
/* Here we assign the array notation components to variable so that we can
satisfy the exec once rule. */
for (ii = 0; ii < lhs_list_size; ii++)
{
tree array_node = (*lhs_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
for (ii = 0; ii < rhs_list_size; ii++)
if ((*rhs_list)[ii] && TREE_CODE ((*rhs_list)[ii]) == ARRAY_NOTATION_REF)
{
tree array_node = (*rhs_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
cond_expr.safe_grow_cleared (MAX (lhs_rank, rhs_rank));
lhs_an_loop_info.safe_grow_cleared (lhs_rank);
if (rhs_rank)
rhs_an_loop_info.safe_grow_cleared (rhs_rank);
cilkplus_extract_an_triplets (lhs_list, lhs_list_size, lhs_rank,
&lhs_an_info);
if (rhs_rank)
{
rhs_an_loop_info.safe_grow_cleared (rhs_rank);
cilkplus_extract_an_triplets (rhs_list, rhs_list_size, rhs_rank,
&rhs_an_info);
}
if (length_mismatch_in_expr_p (EXPR_LOCATION (lhs), lhs_an_info)
|| (rhs_rank
&& length_mismatch_in_expr_p (EXPR_LOCATION (rhs), rhs_an_info)))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (lhs_list_size > 0 && rhs_list_size > 0 && lhs_rank > 0 && rhs_rank > 0
&& TREE_CODE (lhs_an_info[0][0].length) == INTEGER_CST
&& rhs_an_info[0][0].length
&& TREE_CODE (rhs_an_info[0][0].length) == INTEGER_CST)
{
HOST_WIDE_INT l_length = int_cst_value (lhs_an_info[0][0].length);
HOST_WIDE_INT r_length = int_cst_value (rhs_an_info[0][0].length);
/* Length can be negative or positive. As long as the magnitude is OK,
then the array notation is valid. */
if (absu_hwi (l_length) != absu_hwi (r_length))
{
error_at (location, "length mismatch between LHS and RHS");
pop_stmt_list (an_init);
return error_mark_node;
}
}
for (ii = 0; ii < lhs_rank; ii++)
if (lhs_an_info[0][ii].is_vector)
{
lhs_an_loop_info[ii].var = create_tmp_var (integer_type_node,
NULL);
lhs_an_loop_info[ii].ind_init = build_modify_expr
(location, lhs_an_loop_info[ii].var,
TREE_TYPE (lhs_an_loop_info[ii].var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (lhs_an_loop_info[ii].var)),
TREE_TYPE (lhs_an_loop_info[ii].var));
}
for (ii = 0; ii < rhs_rank; ii++)
{
/* When we have a polynomial, we assume that the indices are of type
integer. */
rhs_an_loop_info[ii].var = create_tmp_var (integer_type_node,
NULL);
rhs_an_loop_info[ii].ind_init = build_modify_expr
(location, rhs_an_loop_info[ii].var,
TREE_TYPE (rhs_an_loop_info[ii].var), NOP_EXPR,
location, build_int_cst (TREE_TYPE (rhs_an_loop_info[ii].var), 0),
TREE_TYPE (rhs_an_loop_info[ii].var));
}
if (lhs_rank)
{
lhs_array_operand = create_array_refs
(location, lhs_an_info, lhs_an_loop_info, lhs_list_size, lhs_rank);
replace_array_notations (&lhs, true, lhs_list, lhs_array_operand);
array_expr_lhs = lhs;
}
if (rhs_array_operand)
vec_safe_truncate (rhs_array_operand, 0);
if (rhs_rank)
{
rhs_array_operand = create_array_refs
(location, rhs_an_info, rhs_an_loop_info, rhs_list_size, rhs_rank);
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
vec_safe_truncate (rhs_array_operand, 0);
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
rhs_an_loop_info, rhs_rank,
rhs);
if (!rhs_array_operand)
return error_mark_node;
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
}
else if (rhs_list_size > 0)
{
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
lhs_an_loop_info, lhs_rank,
lhs);
if (!rhs_array_operand)
return error_mark_node;
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
}
array_expr_lhs = lhs;
array_expr_rhs = rhs;
array_expr = build_modify_expr (location, array_expr_lhs, lhs_origtype,
modifycode, rhs_loc, array_expr_rhs,
rhs_origtype);
create_cmp_incr (location, &lhs_an_loop_info, lhs_rank, lhs_an_info);
if (rhs_rank)
create_cmp_incr (location, &rhs_an_loop_info, rhs_rank, rhs_an_info);
for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++)
if (ii < lhs_rank && ii < rhs_rank)
cond_expr[ii] = build2 (TRUTH_ANDIF_EXPR, boolean_type_node,
lhs_an_loop_info[ii].cmp,
rhs_an_loop_info[ii].cmp);
else if (ii < lhs_rank && ii >= rhs_rank)
cond_expr[ii] = lhs_an_loop_info[ii].cmp;
else
gcc_unreachable ();
an_init = pop_stmt_list (an_init);
append_to_statement_list_force (an_init, &loop_with_init);
body = array_expr;
for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++)
{
tree incr_list = alloc_stmt_list ();
tree new_loop = push_stmt_list ();
if (lhs_rank)
add_stmt (lhs_an_loop_info[ii].ind_init);
if (rhs_rank)
add_stmt (rhs_an_loop_info[ii].ind_init);
if (lhs_rank)
append_to_statement_list_force (lhs_an_loop_info[ii].incr, &incr_list);
if (rhs_rank && rhs_an_loop_info[ii].incr)
append_to_statement_list_force (rhs_an_loop_info[ii].incr, &incr_list);
c_finish_loop (location, cond_expr[ii], incr_list, body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
lhs_an_info.release ();
lhs_an_loop_info.release ();
if (rhs_rank)
{
rhs_an_info.release ();
rhs_an_loop_info.release ();
}
cond_expr.release ();
return loop_with_init;
}
/* Helper function for fix_conditional_array_notations. Encloses the
conditional statement passed in STMT with a loop around it
and replaces the condition in STMT with a ARRAY_REF tree-node to the array.
The condition must have an ARRAY_NOTATION_REF tree. An expansion of array
notation in STMT is returned in a STATEMENT_LIST. */
static tree
fix_conditional_array_notations_1 (tree stmt)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0;
tree cond = NULL_TREE, builtin_loop = NULL_TREE, new_var = NULL_TREE;
size_t rank = 0, ii = 0;
tree loop_init;
location_t location = EXPR_LOCATION (stmt);
tree body = NULL_TREE, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
vec<an_loop_parts> an_loop_info = vNULL;
if (TREE_CODE (stmt) == COND_EXPR)
cond = COND_EXPR_COND (stmt);
else if (TREE_CODE (stmt) == SWITCH_EXPR)
cond = SWITCH_COND (stmt);
else if (truth_value_p (TREE_CODE (stmt)))
cond = TREE_OPERAND (stmt, 0);
else
/* Otherwise dont even touch the statement. */
return stmt;
if (!find_rank (location, cond, cond, false, &rank))
return error_mark_node;
extract_array_notation_exprs (stmt, false, &array_list);
loop_init = push_stmt_list ();
for (ii = 0; ii < vec_safe_length (array_list); ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == CALL_EXPR)
{
builtin_loop = fix_builtin_array_notation_fn (array_node, &new_var);
if (builtin_loop == error_mark_node)
{
add_stmt (error_mark_node);
pop_stmt_list (loop_init);
return loop_init;
}
else if (builtin_loop)
{
vec <tree, va_gc>* sub_list = NULL, *new_var_list = NULL;
vec_safe_push (sub_list, array_node);
vec_safe_push (new_var_list, new_var);
add_stmt (builtin_loop);
replace_array_notations (&stmt, false, sub_list, new_var_list);
}
}
}
if (!find_rank (location, stmt, stmt, true, &rank))
{
pop_stmt_list (loop_init);
return error_mark_node;
}
if (rank == 0)
{
add_stmt (stmt);
pop_stmt_list (loop_init);
return loop_init;
}
extract_array_notation_exprs (stmt, true, &array_list);
if (vec_safe_length (array_list) == 0)
return stmt;
list_size = vec_safe_length (array_list);
an_loop_info.safe_grow_cleared (rank);
for (ii = 0; ii < list_size; ii++)
if ((*array_list)[ii]
&& TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF)
{
tree array_node = (*array_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node, NULL);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&stmt, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
loop_init = pop_stmt_list (loop_init);
body = stmt;
append_to_statement_list_force (loop_init, &loop_with_init);
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (an_loop_info[ii].ind_init);
c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr,
body, NULL_TREE, NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
an_loop_info.release ();
an_info.release ();
return loop_with_init;
}
/* Top-level function to replace ARRAY_NOTATION_REF in a conditional statement
in STMT. An expansion of array notation in STMT is returned as a
STATEMENT_LIST. */
tree
fix_conditional_array_notations (tree stmt)
{
if (TREE_CODE (stmt) == STATEMENT_LIST)
{
tree_stmt_iterator tsi;
for (tsi = tsi_start (stmt); !tsi_end_p (tsi); tsi_next (&tsi))
{
tree single_stmt = *tsi_stmt_ptr (tsi);
*tsi_stmt_ptr (tsi) =
fix_conditional_array_notations_1 (single_stmt);
}
return stmt;
}
else
return fix_conditional_array_notations_1 (stmt);
}
/* Create a struct c_expr that contains a loop with ARRAY_REF expr at location
LOCATION with the tree_code CODE and the array notation expr is
passed in ARG. Returns the fixed c_expr in ARG itself. */
struct c_expr
fix_array_notation_expr (location_t location, enum tree_code code,
struct c_expr arg)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree loop_init;
tree body, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
vec<an_loop_parts> an_loop_info = vNULL;
if (!find_rank (location, arg.value, arg.value, false, &rank))
{
/* If this function returns a NULL, we convert the tree value in the
structure to error_mark_node and the parser should take care of the
rest. */
arg.value = error_mark_node;
return arg;
}
if (rank == 0)
return arg;
extract_array_notation_exprs (arg.value, true, &array_list);
if (vec_safe_length (array_list) == 0)
return arg;
list_size = vec_safe_length (array_list);
an_loop_info.safe_grow_cleared (rank);
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
loop_init = push_stmt_list ();
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node, NULL);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));;
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&arg.value, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
arg = default_function_array_read_conversion (location, arg);
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
arg.value = build_unary_op (location, code, arg.value, 0);
else if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
arg = parser_build_unary_op (location, code, arg);
loop_init = pop_stmt_list (loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = arg.value;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (an_loop_info[ii].ind_init);
c_finish_loop (location, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
arg.value = loop_with_init;
an_info.release ();
an_loop_info.release ();
return arg;
}
/* Replaces array notations in a void function call arguments in ARG and returns
a STATEMENT_LIST. */
static tree
fix_array_notation_call_expr (tree arg)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
tree new_var = NULL_TREE;
size_t list_size = 0, rank = 0, ii = 0;
tree loop_init;
tree body, loop_with_init = alloc_stmt_list ();
location_t location = UNKNOWN_LOCATION;
vec<vec<an_parts> > an_info = vNULL;
vec<an_loop_parts> an_loop_info = vNULL;
if (TREE_CODE (arg) == CALL_EXPR
&& is_cilkplus_reduce_builtin (CALL_EXPR_FN (arg)))
{
loop_init = fix_builtin_array_notation_fn (arg, &new_var);
/* We are ignoring the new var because either the user does not want to
capture it OR he is using sec_reduce_mutating function. */
return loop_init;
}
if (!find_rank (location, arg, arg, false, &rank))
return error_mark_node;
if (rank == 0)
return arg;
extract_array_notation_exprs (arg, true, &array_list);
if (vec_safe_length (array_list) == 0)
return arg;
list_size = vec_safe_length (array_list);
location = EXPR_LOCATION (arg);
an_loop_info.safe_grow_cleared (rank);
loop_init = push_stmt_list ();
for (ii = 0; ii < list_size; ii++)
if ((*array_list)[ii]
&& TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF)
{
tree array_node = (*array_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
if (length_mismatch_in_expr_p (location, an_info))
{
pop_stmt_list (loop_init);
return error_mark_node;
}
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node, NULL);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR, location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&arg, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
loop_init = pop_stmt_list (loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = arg;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (an_loop_info[ii].ind_init);
c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr,
body, NULL_TREE, NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
an_loop_info.release ();
an_info.release ();
return loop_with_init;
}
/* Expands the built-in functions in a return. EXPR is a RETURN_EXPR with
a built-in reduction function. This function returns the expansion code for
the built-in function. */
static tree
fix_return_expr (tree expr)
{
tree new_mod_list, new_var, new_mod, retval_expr, retval_type;
location_t loc = EXPR_LOCATION (expr);
new_mod_list = alloc_stmt_list ();
retval_expr = TREE_OPERAND (expr, 0);
retval_type = TREE_TYPE (TREE_OPERAND (retval_expr, 1));
new_var = build_decl (loc, VAR_DECL, NULL_TREE, TREE_TYPE (retval_expr));
new_mod = build_array_notation_expr (loc, new_var, TREE_TYPE (new_var),
NOP_EXPR, loc,
TREE_OPERAND (retval_expr, 1),
retval_type);
TREE_OPERAND (retval_expr, 1) = new_var;
TREE_OPERAND (expr, 0) = retval_expr;
append_to_statement_list_force (new_mod, &new_mod_list);
append_to_statement_list_force (expr, &new_mod_list);
return new_mod_list;
}
/* Callback for walk_tree. Expands all array notations in *TP. *WALK_SUBTREES
is set to 1 unless *TP contains no array notation expressions. */
static tree
expand_array_notations (tree *tp, int *walk_subtrees, void *)
{
if (!contains_array_notation_expr (*tp))
{
*walk_subtrees = 0;
return NULL_TREE;
}
*walk_subtrees = 1;
switch (TREE_CODE (*tp))
{
case TRUTH_ORIF_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_NOT_EXPR:
case COND_EXPR:
*tp = fix_conditional_array_notations (*tp);
break;
case MODIFY_EXPR:
{
location_t loc = EXPR_HAS_LOCATION (*tp) ? EXPR_LOCATION (*tp) :
UNKNOWN_LOCATION;
tree lhs = TREE_OPERAND (*tp, 0);
tree rhs = TREE_OPERAND (*tp, 1);
location_t rhs_loc = EXPR_HAS_LOCATION (rhs) ? EXPR_LOCATION (rhs) :
UNKNOWN_LOCATION;
*tp = build_array_notation_expr (loc, lhs, TREE_TYPE (lhs), NOP_EXPR,
rhs_loc, rhs, TREE_TYPE (rhs));
}
break;
case DECL_EXPR:
{
tree x = DECL_EXPR_DECL (*tp);
if (DECL_INITIAL (x))
{
location_t loc = DECL_SOURCE_LOCATION (x);
tree lhs = x;
tree rhs = DECL_INITIAL (x);
DECL_INITIAL (x) = NULL;
tree new_modify_expr = build_modify_expr (loc, lhs,
TREE_TYPE (lhs),
NOP_EXPR,
loc, rhs,
TREE_TYPE(rhs));
expand_array_notations (&new_modify_expr, walk_subtrees, NULL);
*tp = new_modify_expr;
}
}
break;
case CALL_EXPR:
*tp = fix_array_notation_call_expr (*tp);
break;
case RETURN_EXPR:
*tp = fix_return_expr (*tp);
break;
case COMPOUND_EXPR:
if (TREE_CODE (TREE_OPERAND (*tp, 0)) == SAVE_EXPR)
{
/* In here we are calling expand_array_notations because
we need to be able to catch the return value and check if
it is an error_mark_node. */
expand_array_notations (&TREE_OPERAND (*tp, 1), walk_subtrees, NULL);
/* SAVE_EXPR cannot have an error_mark_node inside it. This check
will make sure that if there is an error in expanding of
array notations (e.g. rank mismatch) then replace the entire
SAVE_EXPR with an error_mark_node. */
if (TREE_OPERAND (*tp, 1) == error_mark_node)
*tp = error_mark_node;
}
break;
case ARRAY_NOTATION_REF:
/* If we are here, then we are dealing with cases like this:
A[:];
A[x:y:z];
A[x:y];
Replace those with just void zero node. */
*tp = void_node;
default:
break;
}
return NULL_TREE;
}
/* Walks through tree node T and expands all array notations in its subtrees.
The return value is the same type as T but with all array notations
replaced with appropriate ARRAY_REFS with a loop around it. */
tree
expand_array_notation_exprs (tree t)
{
walk_tree (&t, expand_array_notations, NULL, NULL);
return t;
}
/* This handles expression of the form "a[i:j:k]" or "a[:]" or "a[i:j]," which
denotes an array notation expression. If a is a variable or a member, then
we generate a ARRAY_NOTATION_REF front-end tree and return it.
This tree is broken down to ARRAY_REF toward the end of parsing.
ARRAY_NOTATION_REF tree holds the START_INDEX, LENGTH, STRIDE and the TYPE
of ARRAY_REF. Restrictions on START_INDEX, LENGTH and STRIDE is same as that
of the index field passed into ARRAY_REF. The only additional restriction
is that, unlike index in ARRAY_REF, stride, length and start_index cannot
contain ARRAY_NOTATIONS. */
tree
build_array_notation_ref (location_t loc, tree array, tree start_index,
tree length, tree stride, tree type)
{
tree array_ntn_tree = NULL_TREE;
size_t stride_rank = 0, length_rank = 0, start_rank = 0;
if (!INTEGRAL_TYPE_P (TREE_TYPE (start_index)))
{
error_at (loc,
"start-index of array notation triplet is not an integer");
return error_mark_node;
}
if (!INTEGRAL_TYPE_P (TREE_TYPE (length)))
{
error_at (loc, "length of array notation triplet is not an integer");
return error_mark_node;
}
/* The stride is an optional field. */
if (stride && !INTEGRAL_TYPE_P (TREE_TYPE (stride)))
{
error_at (loc, "stride of array notation triplet is not an integer");
return error_mark_node;
}
if (!stride)
{
if (TREE_CONSTANT (start_index) && TREE_CONSTANT (length)
&& tree_int_cst_lt (length, start_index))
stride = build_int_cst (TREE_TYPE (start_index), -1);
else
stride = build_int_cst (TREE_TYPE (start_index), 1);
}
if (!find_rank (loc, start_index, start_index, false, &start_rank))
return error_mark_node;
if (!find_rank (loc, length, length, false, &length_rank))
return error_mark_node;
if (!find_rank (loc, stride, stride, false, &stride_rank))
return error_mark_node;
if (start_rank != 0)
{
error_at (loc, "rank of an array notation triplet's start-index is not "
"zero");
return error_mark_node;
}
if (length_rank != 0)
{
error_at (loc, "rank of an array notation triplet's length is not zero");
return error_mark_node;
}
if (stride_rank != 0)
{
error_at (loc, "rank of array notation triplet's stride is not zero");
return error_mark_node;
}
array_ntn_tree = build4 (ARRAY_NOTATION_REF, NULL_TREE, NULL_TREE, NULL_TREE,
NULL_TREE, NULL_TREE);
ARRAY_NOTATION_ARRAY (array_ntn_tree) = array;
ARRAY_NOTATION_START (array_ntn_tree) = start_index;
ARRAY_NOTATION_LENGTH (array_ntn_tree) = length;
ARRAY_NOTATION_STRIDE (array_ntn_tree) = stride;
TREE_TYPE (array_ntn_tree) = type;
return array_ntn_tree;
}
|