summaryrefslogtreecommitdiff
path: root/gcc/cfgbuild.c
blob: 767b0dee0bc634b9a35f5c070dd430e8bbf1fa54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/* Control flow graph building code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* find_basic_blocks divides the current function's rtl into basic
   blocks and constructs the CFG.  The blocks are recorded in the
   basic_block_info array; the CFG exists in the edge structures
   referenced by the blocks.

   find_basic_blocks also finds any unreachable loops and deletes them.

   Available functionality:
     - CFG construction
         find_basic_blocks
     - Local CFG construction
         find_sub_basic_blocks		 */

#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "timevar.h"
#include "obstack.h"

static int count_basic_blocks		PARAMS ((rtx));
static void find_basic_blocks_1		PARAMS ((rtx));
static rtx find_label_refs		PARAMS ((rtx, rtx));
static void make_edges			PARAMS ((rtx, int, int, int));
static void make_label_edge		PARAMS ((sbitmap *, basic_block,
						 rtx, int));
static void make_eh_edge		PARAMS ((sbitmap *, basic_block, rtx));
static void find_bb_boundaries		PARAMS ((basic_block));
static void compute_outgoing_frequencies PARAMS ((basic_block));
static bool inside_basic_block_p	PARAMS ((rtx));
static bool control_flow_insn_p		PARAMS ((rtx));

/* Return true if insn is something that should be contained inside basic
   block.  */

static bool
inside_basic_block_p (insn)
     rtx insn;
{
  switch (GET_CODE (insn))
    {
    case CODE_LABEL:
      /* Avoid creating of basic block for jumptables.  */
      return (NEXT_INSN (insn) == 0
	      || GET_CODE (NEXT_INSN (insn)) != JUMP_INSN
	      || (GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_VEC
		  && GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_DIFF_VEC));

    case JUMP_INSN:
      return (GET_CODE (PATTERN (insn)) != ADDR_VEC
	      && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);

    case CALL_INSN:
    case INSN:
      return true;

    case BARRIER:
    case NOTE:
      return false;

    default:
      abort ();
    }
}

/* Return true if INSN may cause control flow transfer, so it should be last in
   the basic block.  */

static bool
control_flow_insn_p (insn)
     rtx insn;
{
  rtx note;

  switch (GET_CODE (insn))
    {
      case NOTE:
      case CODE_LABEL:
	return false;

      case JUMP_INSN:
	/* Jump insn always causes control transfer except for tablejumps.  */
	return (GET_CODE (PATTERN (insn)) != ADDR_VEC
		&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);

      case CALL_INSN:
	/* Call insn may return to the nonlocal goto handler.  */
	return ((nonlocal_goto_handler_labels
		 && (0 == (note = find_reg_note (insn, REG_EH_REGION,
						 NULL_RTX))
		     || INTVAL (XEXP (note, 0)) >= 0))
		/* Or may trap.  */
		|| can_throw_internal (insn));

      case INSN:
	return (flag_non_call_exceptions && can_throw_internal (insn));

      case BARRIER:
	/* It is nonsence to reach barrier when looking for the
	   end of basic block, but before dead code is eliminated
	   this may happen.  */
	return false;

      default:
	abort ();
    }
}

/* Count the basic blocks of the function.  */

static int
count_basic_blocks (f)
     rtx f;
{
  int count = 0;
  bool saw_insn = false;
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      /* Code labels and barriers causes curent basic block to be
         terminated at previous real insn.  */
      if ((GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == BARRIER)
	  && saw_insn)
	count++, saw_insn = false;

      /* Start basic block if needed.  */
      if (!saw_insn && inside_basic_block_p (insn))
	saw_insn = true;

      /* Control flow insn causes current basic block to be terminated.  */
      if (saw_insn && control_flow_insn_p (insn))
	count++, saw_insn = false;
    }

  if (saw_insn)
    count++;

  /* The rest of the compiler works a bit smoother when we don't have to
     check for the edge case of do-nothing functions with no basic blocks.  */
  if (count == 0)
    {
      emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
      count = 1;
    }

  return count;
}

/* Scan a list of insns for labels referred to other than by jumps.
   This is used to scan the alternatives of a call placeholder.  */

static rtx
find_label_refs (f, lvl)
     rtx f;
     rtx lvl;
{
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN)
      {
	rtx note;

	/* Make a list of all labels referred to other than by jumps
	   (which just don't have the REG_LABEL notes).

	   Make a special exception for labels followed by an ADDR*VEC,
	   as this would be a part of the tablejump setup code.

	   Make a special exception to registers loaded with label
	   values just before jump insns that use them.  */

	for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	  if (REG_NOTE_KIND (note) == REG_LABEL)
	    {
	      rtx lab = XEXP (note, 0), next;

	      if ((next = next_nonnote_insn (lab)) != NULL
		       && GET_CODE (next) == JUMP_INSN
		       && (GET_CODE (PATTERN (next)) == ADDR_VEC
			   || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
		;
	      else if (GET_CODE (lab) == NOTE)
		;
	      else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
		       && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
		;
	      else
		lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
	    }
      }

  return lvl;
}

/* Create an edge between two basic blocks.  FLAGS are auxiliary information
   about the edge that is accumulated between calls.  */

/* Create an edge from a basic block to a label.  */

static void
make_label_edge (edge_cache, src, label, flags)
     sbitmap *edge_cache;
     basic_block src;
     rtx label;
     int flags;
{
  if (GET_CODE (label) != CODE_LABEL)
    abort ();

  /* If the label was never emitted, this insn is junk, but avoid a
     crash trying to refer to BLOCK_FOR_INSN (label).  This can happen
     as a result of a syntax error and a diagnostic has already been
     printed.  */

  if (INSN_UID (label) == 0)
    return;

  cached_make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
}

/* Create the edges generated by INSN in REGION.  */

static void
make_eh_edge (edge_cache, src, insn)
     sbitmap *edge_cache;
     basic_block src;
     rtx insn;
{
  int is_call = GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0;
  rtx handlers, i;

  handlers = reachable_handlers (insn);

  for (i = handlers; i; i = XEXP (i, 1))
    make_label_edge (edge_cache, src, XEXP (i, 0),
		     EDGE_ABNORMAL | EDGE_EH | is_call);

  free_INSN_LIST_list (&handlers);
}

/* Identify the edges between basic blocks MIN to MAX.

   NONLOCAL_LABEL_LIST is a list of non-local labels in the function.  Blocks
   that are otherwise unreachable may be reachable with a non-local goto.

   BB_EH_END is an array indexed by basic block number in which we record
   the list of exception regions active at the end of the basic block.  */

static void
make_edges (label_value_list, min, max, update_p)
     rtx label_value_list;
     int min, max, update_p;
{
  int i;
  sbitmap *edge_cache = NULL;

  /* Assume no computed jump; revise as we create edges.  */
  current_function_has_computed_jump = 0;

  /* Heavy use of computed goto in machine-generated code can lead to
     nearly fully-connected CFGs.  In that case we spend a significant
     amount of time searching the edge lists for duplicates.  */
  if (forced_labels || label_value_list)
    {
      edge_cache = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
      sbitmap_vector_zero (edge_cache, n_basic_blocks);

      if (update_p)
	for (i = min; i <= max; ++i)
	  {
	    edge e;

	    for (e = BASIC_BLOCK (i)->succ; e ; e = e->succ_next)
	      if (e->dest != EXIT_BLOCK_PTR)
	        SET_BIT (edge_cache[i], e->dest->index);
	  }
    }

  /* By nature of the way these get numbered, block 0 is always the entry.  */
  if (min == 0)
    cached_make_edge (edge_cache, ENTRY_BLOCK_PTR, BASIC_BLOCK (0),
		      EDGE_FALLTHRU);

  for (i = min; i <= max; ++i)
    {
      basic_block bb = BASIC_BLOCK (i);
      rtx insn, x;
      enum rtx_code code;
      int force_fallthru = 0;

      if (GET_CODE (bb->head) == CODE_LABEL && LABEL_ALTERNATE_NAME (bb->head))
	cached_make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);

      /* Examine the last instruction of the block, and discover the
	 ways we can leave the block.  */

      insn = bb->end;
      code = GET_CODE (insn);

      /* A branch.  */
      if (code == JUMP_INSN)
	{
	  rtx tmp;

	  /* Recognize exception handling placeholders.  */
	  if (GET_CODE (PATTERN (insn)) == RESX)
	    make_eh_edge (edge_cache, bb, insn);

	  /* Recognize a non-local goto as a branch outside the
	     current function.  */
	  else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
	    ;

	  /* ??? Recognize a tablejump and do the right thing.  */
	  else if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
		   && (tmp = NEXT_INSN (tmp)) != NULL_RTX
		   && GET_CODE (tmp) == JUMP_INSN
		   && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
		       || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
	    {
	      rtvec vec;
	      int j;

	      if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
		vec = XVEC (PATTERN (tmp), 0);
	      else
		vec = XVEC (PATTERN (tmp), 1);

	      for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
		make_label_edge (edge_cache, bb,
				 XEXP (RTVEC_ELT (vec, j), 0), 0);

	      /* Some targets (eg, ARM) emit a conditional jump that also
		 contains the out-of-range target.  Scan for these and
		 add an edge if necessary.  */
	      if ((tmp = single_set (insn)) != NULL
		  && SET_DEST (tmp) == pc_rtx
		  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
		  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
		make_label_edge (edge_cache, bb,
				 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);

#ifdef CASE_DROPS_THROUGH
	      /* Silly VAXen.  The ADDR_VEC is going to be in the way of
		 us naturally detecting fallthru into the next block.  */
	      force_fallthru = 1;
#endif
	    }

	  /* If this is a computed jump, then mark it as reaching
	     everything on the label_value_list and forced_labels list.  */
	  else if (computed_jump_p (insn))
	    {
	      current_function_has_computed_jump = 1;

	      for (x = label_value_list; x; x = XEXP (x, 1))
		make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);

	      for (x = forced_labels; x; x = XEXP (x, 1))
		make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
	    }

	  /* Returns create an exit out.  */
	  else if (returnjump_p (insn))
	    cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);

	  /* Otherwise, we have a plain conditional or unconditional jump.  */
	  else
	    {
	      if (! JUMP_LABEL (insn))
		abort ();
	      make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
	    }
	}

      /* If this is a sibling call insn, then this is in effect a combined call
	 and return, and so we need an edge to the exit block.  No need to
	 worry about EH edges, since we wouldn't have created the sibling call
	 in the first place.  */
      if (code == CALL_INSN && SIBLING_CALL_P (insn))
	cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
		   EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);

      /* If this is a CALL_INSN, then mark it as reaching the active EH
	 handler for this CALL_INSN.  If we're handling non-call
	 exceptions then any insn can reach any of the active handlers.
	 Also mark the CALL_INSN as reaching any nonlocal goto handler.  */
      else if (code == CALL_INSN || flag_non_call_exceptions)
	{
	  /* Add any appropriate EH edges.  */
	  make_eh_edge (edge_cache, bb, insn);

	  if (code == CALL_INSN && nonlocal_goto_handler_labels)
	    {
	      /* ??? This could be made smarter: in some cases it's possible
		 to tell that certain calls will not do a nonlocal goto.
		 For example, if the nested functions that do the nonlocal
		 gotos do not have their addresses taken, then only calls to
		 those functions or to other nested functions that use them
		 could possibly do nonlocal gotos.  */

	      /* We do know that a REG_EH_REGION note with a value less
		 than 0 is guaranteed not to perform a non-local goto.  */
	      rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);

	      if (!note || INTVAL (XEXP (note, 0)) >=  0)
		for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
		  make_label_edge (edge_cache, bb, XEXP (x, 0),
				   EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
	    }
	}

      /* Find out if we can drop through to the next block.  */
      insn = next_nonnote_insn (insn);
      if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
	cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
      else if (i + 1 < n_basic_blocks)
	{
	  rtx tmp = BLOCK_HEAD (i + 1);
	  if (GET_CODE (tmp) == NOTE)
	    tmp = next_nonnote_insn (tmp);
	  if (force_fallthru || insn == tmp)
	    cached_make_edge (edge_cache, bb, BASIC_BLOCK (i + 1),
			      EDGE_FALLTHRU);
	}
    }

  if (edge_cache)
    sbitmap_vector_free (edge_cache);
}

/* Find all basic blocks of the function whose first insn is F.

   Collect and return a list of labels whose addresses are taken.  This
   will be used in make_edges for use with computed gotos.  */

static void
find_basic_blocks_1 (f)
     rtx f;
{
  rtx insn, next;
  int i = 0;
  rtx bb_note = NULL_RTX;
  rtx lvl = NULL_RTX;
  rtx trll = NULL_RTX;
  rtx head = NULL_RTX;
  rtx end = NULL_RTX;
  basic_block prev = ENTRY_BLOCK_PTR;

  /* We process the instructions in a slightly different way than we did
     previously.  This is so that we see a NOTE_BASIC_BLOCK after we have
     closed out the previous block, so that it gets attached at the proper
     place.  Since this form should be equivalent to the previous,
     count_basic_blocks continues to use the old form as a check.  */

  for (insn = f; insn; insn = next)
    {
      enum rtx_code code = GET_CODE (insn);

      next = NEXT_INSN (insn);

      if ((GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == BARRIER)
	  && head)
	{
	  prev = create_basic_block_structure (i++, head, end, bb_note, prev);
	  head = end = NULL_RTX;
	  bb_note = NULL_RTX;
	}

      if (inside_basic_block_p (insn))
	{
	  if (head == NULL_RTX)
	    head = insn;
	  end = insn;
	}

      if (head && control_flow_insn_p (insn))
	{
	  prev = create_basic_block_structure (i++, head, end, bb_note, prev);
	  head = end = NULL_RTX;
	  bb_note = NULL_RTX;
	}

      switch (code)
	{
	case NOTE:
	  {
	    int kind = NOTE_LINE_NUMBER (insn);

	    /* Look for basic block notes with which to keep the
	       basic_block_info pointers stable.  Unthread the note now;
	       we'll put it back at the right place in create_basic_block.
	       Or not at all if we've already found a note in this block.  */
	    if (kind == NOTE_INSN_BASIC_BLOCK)
	      {
		if (bb_note == NULL_RTX)
		  bb_note = insn;
		else
		  next = delete_insn (insn);
	      }
	    break;
	  }

	case CODE_LABEL:
	case JUMP_INSN:
	case INSN:
	case BARRIER:
	  break;

	case CALL_INSN:
	  if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	    {
	      /* Scan each of the alternatives for label refs.  */
	      lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl);
	      lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl);
	      lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl);
	      /* Record its tail recursion label, if any.  */
	      if (XEXP (PATTERN (insn), 3) != NULL_RTX)
		trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll);
	    }
	  break;

	default:
	  abort ();
	}

      if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
	{
	  rtx note;

	  /* Make a list of all labels referred to other than by jumps.

	     Make a special exception for labels followed by an ADDR*VEC,
	     as this would be a part of the tablejump setup code.

	     Make a special exception to registers loaded with label
	     values just before jump insns that use them.  */

	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_LABEL)
	      {
		rtx lab = XEXP (note, 0), next;

		if ((next = next_nonnote_insn (lab)) != NULL
			 && GET_CODE (next) == JUMP_INSN
			 && (GET_CODE (PATTERN (next)) == ADDR_VEC
			     || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
		  ;
		else if (GET_CODE (lab) == NOTE)
		  ;
		else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
			 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
		  ;
		else
		  lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
	      }
	}
    }

  if (head != NULL_RTX)
    create_basic_block_structure (i++, head, end, bb_note, prev);
  else if (bb_note)
    delete_insn (bb_note);

  if (i != n_basic_blocks)
    abort ();

  label_value_list = lvl;
  tail_recursion_label_list = trll;
  clear_aux_for_blocks ();
}


/* Find basic blocks of the current function.
   F is the first insn of the function and NREGS the number of register
   numbers in use.  */

void
find_basic_blocks (f, nregs, file)
     rtx f;
     int nregs ATTRIBUTE_UNUSED;
     FILE *file ATTRIBUTE_UNUSED;
{
  int max_uid;
  timevar_push (TV_CFG);

  basic_block_for_insn = 0;

  /* Flush out existing data.  */
  if (basic_block_info != NULL)
    {
      int i;

      clear_edges ();

      /* Clear bb->aux on all extant basic blocks.  We'll use this as a
	 tag for reuse during create_basic_block, just in case some pass
	 copies around basic block notes improperly.  */
      for (i = 0; i < n_basic_blocks; ++i)
	BASIC_BLOCK (i)->aux = NULL;

      VARRAY_FREE (basic_block_info);
    }

  n_basic_blocks = count_basic_blocks (f);
  ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
  EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;

  /* Size the basic block table.  The actual structures will be allocated
     by find_basic_blocks_1, since we want to keep the structure pointers
     stable across calls to find_basic_blocks.  */
  /* ??? This whole issue would be much simpler if we called find_basic_blocks
     exactly once, and thereafter we don't have a single long chain of
     instructions at all until close to the end of compilation when we
     actually lay them out.  */

  VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");

  find_basic_blocks_1 (f);

  /* Record the block to which an insn belongs.  */
  /* ??? This should be done another way, by which (perhaps) a label is
     tagged directly with the basic block that it starts.  It is used for
     more than that currently, but IMO that is the only valid use.  */

  max_uid = get_max_uid ();
#ifdef AUTO_INC_DEC
  /* Leave space for insns life_analysis makes in some cases for auto-inc.
     These cases are rare, so we don't need too much space.  */
  max_uid += max_uid / 10;
#endif

  compute_bb_for_insn (max_uid);

  /* Discover the edges of our cfg.  */
  make_edges (label_value_list, 0, n_basic_blocks - 1, 0);

  /* Do very simple cleanup now, for the benefit of code that runs between
     here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns.  */
  tidy_fallthru_edges ();

#ifdef ENABLE_CHECKING
  verify_flow_info ();
#endif
  timevar_pop (TV_CFG);
}

/* State of basic block as seen by find_sub_basic_blocks.  */
enum state {BLOCK_NEW = 0, BLOCK_ORIGINAL, BLOCK_TO_SPLIT};

#define STATE(BB) (enum state) ((size_t) (BB)->aux)
#define SET_STATE(BB, STATE) ((BB)->aux = (void *) (size_t) (STATE))

/* Scan basic block BB for possible BB boundaries inside the block
   and create new basic blocks in the progress.  */

static void
find_bb_boundaries (bb)
     basic_block bb;
{
  rtx insn = bb->head;
  rtx end = bb->end;
  rtx flow_transfer_insn = NULL_RTX;
  edge fallthru = NULL;

  if (insn == bb->end)
    return;

  if (GET_CODE (insn) == CODE_LABEL)
    insn = NEXT_INSN (insn);

  /* Scan insn chain and try to find new basic block boundaries.  */
  while (1)
    {
      enum rtx_code code = GET_CODE (insn);

      /* On code label, split current basic block.  */
      if (code == CODE_LABEL)
	{
	  fallthru = split_block (bb, PREV_INSN (insn));
	  if (flow_transfer_insn)
	    bb->end = flow_transfer_insn;

	  bb = fallthru->dest;
	  remove_edge (fallthru);
	  flow_transfer_insn = NULL_RTX;
	  if (LABEL_ALTERNATE_NAME (insn))
	    make_edge (ENTRY_BLOCK_PTR, bb, 0);
	}

      /* In case we've previously seen an insn that effects a control
	 flow transfer, split the block.  */
      if (flow_transfer_insn && inside_basic_block_p (insn))
	{
	  fallthru = split_block (bb, PREV_INSN (insn));
	  bb->end = flow_transfer_insn;
	  bb = fallthru->dest;
	  remove_edge (fallthru);
	  flow_transfer_insn = NULL_RTX;
	}

      if (control_flow_insn_p (insn))
	flow_transfer_insn = insn;
      if (insn == end)
	break;
      insn = NEXT_INSN (insn);
    }

  /* In case expander replaced normal insn by sequence terminating by
     return and barrier, or possibly other sequence not behaving like
     ordinary jump, we need to take care and move basic block boundary.  */
  if (flow_transfer_insn)
    bb->end = flow_transfer_insn;

  /* We've possibly replaced the conditional jump by conditional jump
     followed by cleanup at fallthru edge, so the outgoing edges may
     be dead.  */
  purge_dead_edges (bb);
}

/*  Assume that frequency of basic block B is known.  Compute frequencies
    and probabilities of outgoing edges.  */

static void
compute_outgoing_frequencies (b)
     basic_block b;
{
  edge e, f;

  if (b->succ && b->succ->succ_next && !b->succ->succ_next->succ_next)
    {
      rtx note = find_reg_note (b->end, REG_BR_PROB, NULL);
      int probability;

      if (!note)
	return;

      probability = INTVAL (XEXP (find_reg_note (b->end,
						 REG_BR_PROB, NULL),
				  0));
      e = BRANCH_EDGE (b);
      e->probability = probability;
      e->count = ((b->count * probability + REG_BR_PROB_BASE / 2)
		  / REG_BR_PROB_BASE);
      f = FALLTHRU_EDGE (b);
      f->probability = REG_BR_PROB_BASE - probability;
      f->count = b->count - e->count;
    }

  if (b->succ && !b->succ->succ_next)
    {
      e = b->succ;
      e->probability = REG_BR_PROB_BASE;
      e->count = b->count;
    }
}

/* Assume that someone emitted code with control flow instructions to the
   basic block.  Update the data structure.  */

void
find_many_sub_basic_blocks (blocks)
     sbitmap blocks;
{
  int i;
  int min, max;

  for (i = 0; i < n_basic_blocks; i++)
    SET_STATE (BASIC_BLOCK (i),
	       TEST_BIT (blocks, i) ? BLOCK_TO_SPLIT : BLOCK_ORIGINAL);

  for (i = 0; i < n_basic_blocks; i++)
    if (STATE (BASIC_BLOCK (i)) == BLOCK_TO_SPLIT)
      find_bb_boundaries (BASIC_BLOCK (i));

  for (i = 0; i < n_basic_blocks; i++)
    if (STATE (BASIC_BLOCK (i)) != BLOCK_ORIGINAL)
      break;

  min = max = i;
  for (; i < n_basic_blocks; i++)
    if (STATE (BASIC_BLOCK (i)) != BLOCK_ORIGINAL)
      max = i;

  /* Now re-scan and wire in all edges.  This expect simple (conditional)
     jumps at the end of each new basic blocks.  */
  make_edges (NULL, min, max, 1);

  /* Update branch probabilities.  Expect only (un)conditional jumps
     to be created with only the forward edges.  */
  for (i = min; i <= max; i++)
    {
      edge e;
      basic_block b = BASIC_BLOCK (i);

      if (STATE (b) == BLOCK_ORIGINAL)
	continue;
      if (STATE (b) == BLOCK_NEW)
	{
	  b->count = 0;
	  b->frequency = 0;
	  for (e = b->pred; e; e=e->pred_next)
	    {
	      b->count += e->count;
	      b->frequency += EDGE_FREQUENCY (e);
	    }
	}

      compute_outgoing_frequencies (b);
    }

  for (i = 0; i < n_basic_blocks; i++)
    SET_STATE (BASIC_BLOCK (i), 0);
}

/* Like above but for single basic block only.  */

void
find_sub_basic_blocks (bb)
    basic_block bb;
{
  int i;
  int min, max;
  basic_block next = (bb->index == n_basic_blocks - 1
		      ? NULL : BASIC_BLOCK (bb->index + 1));

  min = bb->index;
  find_bb_boundaries (bb);
  max = (next ? next->index : n_basic_blocks) - 1;

  /* Now re-scan and wire in all edges.  This expect simple (conditional)
     jumps at the end of each new basic blocks.  */
  make_edges (NULL, min, max, 1);

  /* Update branch probabilities.  Expect only (un)conditional jumps
     to be created with only the forward edges.  */
  for (i = min; i <= max; i++)
    {
      edge e;
      basic_block b = BASIC_BLOCK (i);

      if (i != min)
	{
	  b->count = 0;
	  b->frequency = 0;
	  for (e = b->pred; e; e=e->pred_next)
	    {
	      b->count += e->count;
	      b->frequency += EDGE_FREQUENCY (e);
	    }
	}

      compute_outgoing_frequencies (b);
    }
}