1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
|
/* Natural loop discovery code for GNU compiler.
Copyright (C) 2000, 2001 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "toplev.h"
/* Ratio of frequencies of edges so that one of more latch edges is
considered to belong to inner loop with same header. */
#define HEAVY_EDGE_RATIO 8
static void flow_loops_cfg_dump PARAMS ((const struct loops *,
FILE *));
static void flow_loop_entry_edges_find PARAMS ((struct loop *));
static void flow_loop_exit_edges_find PARAMS ((struct loop *));
static int flow_loop_nodes_find PARAMS ((basic_block, struct loop *));
static void flow_loop_pre_header_scan PARAMS ((struct loop *));
static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
dominance_info));
static int flow_loop_level_compute PARAMS ((struct loop *));
static int flow_loops_level_compute PARAMS ((struct loops *));
static basic_block make_forwarder_block PARAMS ((basic_block, int, int,
edge, int));
static void canonicalize_loop_headers PARAMS ((void));
static bool glb_enum_p PARAMS ((basic_block, void *));
static void redirect_edge_with_latch_update PARAMS ((edge, basic_block));
static void flow_loop_free PARAMS ((struct loop *));
/* Dump loop related CFG information. */
static void
flow_loops_cfg_dump (loops, file)
const struct loops *loops;
FILE *file;
{
int i;
basic_block bb;
if (! loops->num || ! file || ! loops->cfg.dom)
return;
FOR_EACH_BB (bb)
{
edge succ;
fprintf (file, ";; %d succs { ", bb->index);
for (succ = bb->succ; succ; succ = succ->succ_next)
fprintf (file, "%d ", succ->dest->index);
fprintf (file, "}\n");
}
/* Dump the DFS node order. */
if (loops->cfg.dfs_order)
{
fputs (";; DFS order: ", file);
for (i = 0; i < n_basic_blocks; i++)
fprintf (file, "%d ", loops->cfg.dfs_order[i]);
fputs ("\n", file);
}
/* Dump the reverse completion node order. */
if (loops->cfg.rc_order)
{
fputs (";; RC order: ", file);
for (i = 0; i < n_basic_blocks; i++)
fprintf (file, "%d ", loops->cfg.rc_order[i]);
fputs ("\n", file);
}
}
/* Return non-zero if the nodes of LOOP are a subset of OUTER. */
bool
flow_loop_nested_p (outer, loop)
const struct loop *outer;
const struct loop *loop;
{
return loop->depth > outer->depth
&& loop->pred[outer->depth] == outer;
}
/* Dump the loop information specified by LOOP to the stream FILE
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
void
flow_loop_dump (loop, file, loop_dump_aux, verbose)
const struct loop *loop;
FILE *file;
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
int verbose;
{
basic_block *bbs;
int i;
if (! loop || ! loop->header)
return;
fprintf (file, ";;\n;; Loop %d:%s\n", loop->num,
loop->invalid ? " invalid" : "");
fprintf (file, ";; header %d, latch %d, pre-header %d\n",
loop->header->index, loop->latch->index,
loop->pre_header ? loop->pre_header->index : -1);
fprintf (file, ";; depth %d, level %d, outer %ld\n",
loop->depth, loop->level,
(long) (loop->outer ? loop->outer->num : -1));
if (loop->pre_header_edges)
flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
loop->num_pre_header_edges, file);
flow_edge_list_print (";; entry edges", loop->entry_edges,
loop->num_entries, file);
fprintf (file, ";; nodes:");
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
fprintf (file, " %d", bbs[i]->index);
free (bbs);
fprintf (file, "\n");
flow_edge_list_print (";; exit edges", loop->exit_edges,
loop->num_exits, file);
if (loop_dump_aux)
loop_dump_aux (loop, file, verbose);
}
/* Dump the loop information specified by LOOPS to the stream FILE,
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
void
flow_loops_dump (loops, file, loop_dump_aux, verbose)
const struct loops *loops;
FILE *file;
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
int verbose;
{
int i;
int num_loops;
num_loops = loops->num;
if (! num_loops || ! file)
return;
fprintf (file, ";; %d loops found, %d levels\n",
num_loops, loops->levels);
for (i = 0; i < num_loops; i++)
{
struct loop *loop = loops->parray[i];
if (!loop)
continue;
flow_loop_dump (loop, file, loop_dump_aux, verbose);
}
if (verbose)
flow_loops_cfg_dump (loops, file);
}
/* Free data allocated for LOOP. */
static void
flow_loop_free (loop)
struct loop *loop;
{
if (loop->pre_header_edges)
free (loop->pre_header_edges);
if (loop->entry_edges)
free (loop->entry_edges);
if (loop->exit_edges)
free (loop->exit_edges);
if (loop->pred)
free (loop->pred);
free (loop);
}
/* Free all the memory allocated for LOOPS. */
void
flow_loops_free (loops)
struct loops *loops;
{
if (loops->parray)
{
int i;
if (! loops->num)
abort ();
/* Free the loop descriptors. */
for (i = 0; i < loops->num; i++)
{
struct loop *loop = loops->parray[i];
if (!loop)
continue;
flow_loop_free (loop);
}
free (loops->parray);
loops->parray = NULL;
if (loops->cfg.dom)
free_dominance_info (loops->cfg.dom);
if (loops->cfg.dfs_order)
free (loops->cfg.dfs_order);
if (loops->cfg.rc_order)
free (loops->cfg.rc_order);
}
}
/* Find the entry edges into the LOOP. */
static void
flow_loop_entry_edges_find (loop)
struct loop *loop;
{
edge e;
int num_entries;
num_entries = 0;
for (e = loop->header->pred; e; e = e->pred_next)
{
if (flow_loop_outside_edge_p (loop, e))
num_entries++;
}
if (! num_entries)
abort ();
loop->entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
num_entries = 0;
for (e = loop->header->pred; e; e = e->pred_next)
{
if (flow_loop_outside_edge_p (loop, e))
loop->entry_edges[num_entries++] = e;
}
loop->num_entries = num_entries;
}
/* Find the exit edges from the LOOP. */
static void
flow_loop_exit_edges_find (loop)
struct loop *loop;
{
edge e;
basic_block node, *bbs;
int num_exits, i;
loop->exit_edges = NULL;
loop->num_exits = 0;
/* Check all nodes within the loop to see if there are any
successors not in the loop. Note that a node may have multiple
exiting edges. */
num_exits = 0;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
node = bbs[i];
for (e = node->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
if (!flow_bb_inside_loop_p (loop, dest))
num_exits++;
}
}
if (! num_exits)
{
free (bbs);
return;
}
loop->exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
/* Store all exiting edges into an array. */
num_exits = 0;
for (i = 0; i < loop->num_nodes; i++)
{
node = bbs[i];
for (e = node->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
if (!flow_bb_inside_loop_p (loop, dest))
loop->exit_edges[num_exits++] = e;
}
}
free (bbs);
loop->num_exits = num_exits;
}
/* Find the nodes contained within the LOOP with header HEADER.
Return the number of nodes within the loop. */
static int
flow_loop_nodes_find (header, loop)
basic_block header;
struct loop *loop;
{
basic_block *stack;
int sp;
int num_nodes = 1;
int findex, lindex;
header->loop_father = loop;
header->loop_depth = loop->depth;
findex = lindex = header->index;
if (loop->latch->loop_father != loop)
{
stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
sp = 0;
num_nodes++;
stack[sp++] = loop->latch;
loop->latch->loop_father = loop;
loop->latch->loop_depth = loop->depth;
while (sp)
{
basic_block node;
edge e;
node = stack[--sp];
for (e = node->pred; e; e = e->pred_next)
{
basic_block ancestor = e->src;
if (ancestor != ENTRY_BLOCK_PTR
&& ancestor->loop_father != loop)
{
ancestor->loop_father = loop;
ancestor->loop_depth = loop->depth;
num_nodes++;
stack[sp++] = ancestor;
}
}
}
free (stack);
}
return num_nodes;
}
/* Find the root node of the loop pre-header extended basic block and
the edges along the trace from the root node to the loop header. */
static void
flow_loop_pre_header_scan (loop)
struct loop *loop;
{
int num;
basic_block ebb;
edge e;
loop->num_pre_header_edges = 0;
if (loop->num_entries != 1)
return;
ebb = loop->entry_edges[0]->src;
if (ebb == ENTRY_BLOCK_PTR)
return;
/* Count number of edges along trace from loop header to
root of pre-header extended basic block. Usually this is
only one or two edges. */
for (num = 1; ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next;
num++)
ebb = ebb->pred->src;
loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge));
loop->num_pre_header_edges = num;
/* Store edges in order that they are followed. The source of the first edge
is the root node of the pre-header extended basic block and the
destination of the last last edge is the loop header. */
for (e = loop->entry_edges[0]; num; e = e->src->pred)
loop->pre_header_edges[--num] = e;
}
/* Return the block for the pre-header of the loop with header
HEADER where DOM specifies the dominator information. Return NULL if
there is no pre-header. */
static basic_block
flow_loop_pre_header_find (header, dom)
basic_block header;
dominance_info dom;
{
basic_block pre_header;
edge e;
/* If block p is a predecessor of the header and is the only block
that the header does not dominate, then it is the pre-header. */
pre_header = NULL;
for (e = header->pred; e; e = e->pred_next)
{
basic_block node = e->src;
if (node != ENTRY_BLOCK_PTR
&& ! dominated_by_p (dom, node, header))
{
if (pre_header == NULL)
pre_header = node;
else
{
/* There are multiple edges into the header from outside
the loop so there is no pre-header block. */
pre_header = NULL;
break;
}
}
}
return pre_header;
}
/* Add LOOP to the loop hierarchy tree where FATHER is father of the
added loop. */
void
flow_loop_tree_node_add (father, loop)
struct loop *father;
struct loop *loop;
{
loop->next = father->inner;
father->inner = loop;
loop->outer = father;
loop->depth = father->depth + 1;
loop->pred = xmalloc (sizeof (struct loop *) * loop->depth);
memcpy (loop->pred, father->pred, sizeof (struct loop *) * father->depth);
loop->pred[father->depth] = father;
}
/* Remove LOOP from the loop hierarchy tree. */
void
flow_loop_tree_node_remove (loop)
struct loop *loop;
{
struct loop *prev, *father;
father = loop->outer;
loop->outer = NULL;
/* Remove loop from the list of sons. */
if (father->inner == loop)
father->inner = loop->next;
else
{
for (prev = father->inner; prev->next != loop; prev = prev->next);
prev->next = loop->next;
}
loop->depth = -1;
free (loop->pred);
loop->pred = NULL;
}
/* Helper function to compute loop nesting depth and enclosed loop level
for the natural loop specified by LOOP. Returns the loop level. */
static int
flow_loop_level_compute (loop)
struct loop *loop;
{
struct loop *inner;
int level = 1;
if (! loop)
return 0;
/* Traverse loop tree assigning depth and computing level as the
maximum level of all the inner loops of this loop. The loop
level is equivalent to the height of the loop in the loop tree
and corresponds to the number of enclosed loop levels (including
itself). */
for (inner = loop->inner; inner; inner = inner->next)
{
int ilevel = flow_loop_level_compute (inner) + 1;
if (ilevel > level)
level = ilevel;
}
loop->level = level;
return level;
}
/* Compute the loop nesting depth and enclosed loop level for the loop
hierarchy tree specified by LOOPS. Return the maximum enclosed loop
level. */
static int
flow_loops_level_compute (loops)
struct loops *loops;
{
return flow_loop_level_compute (loops->tree_root);
}
/* Scan a single natural loop specified by LOOP collecting information
about it specified by FLAGS. */
int
flow_loop_scan (loops, loop, flags)
struct loops *loops;
struct loop *loop;
int flags;
{
if (flags & LOOP_ENTRY_EDGES)
{
/* Find edges which enter the loop header.
Note that the entry edges should only
enter the header of a natural loop. */
flow_loop_entry_edges_find (loop);
}
if (flags & LOOP_EXIT_EDGES)
{
/* Find edges which exit the loop. */
flow_loop_exit_edges_find (loop);
}
if (flags & LOOP_PRE_HEADER)
{
/* Look to see if the loop has a pre-header node. */
loop->pre_header
= flow_loop_pre_header_find (loop->header, loops->cfg.dom);
/* Find the blocks within the extended basic block of
the loop pre-header. */
flow_loop_pre_header_scan (loop);
}
return 1;
}
#define HEADER_BLOCK(B) (* (int *) (B)->aux)
#define LATCH_EDGE(E) (*(int *) (E)->aux)
/* Redirect edge and update latch and header info. */
static void
redirect_edge_with_latch_update (e, to)
edge e;
basic_block to;
{
basic_block jump;
jump = redirect_edge_and_branch_force (e, to);
if (jump)
{
alloc_aux_for_block (jump, sizeof (int));
HEADER_BLOCK (jump) = 0;
alloc_aux_for_edge (jump->pred, sizeof (int));
LATCH_EDGE (jump->succ) = LATCH_EDGE (e);
LATCH_EDGE (jump->pred) = 0;
}
}
/* Split BB into entry part and rest; if REDIRECT_LATCH, redirect edges
marked as latch into entry part, analogically for REDIRECT_NONLATCH.
In both of these cases, ignore edge EXCEPT. If CONN_LATCH, set edge
between created entry part and BB as latch one. Return created entry
part. */
static basic_block
make_forwarder_block (bb, redirect_latch, redirect_nonlatch, except,
conn_latch)
basic_block bb;
int redirect_latch;
int redirect_nonlatch;
edge except;
int conn_latch;
{
edge e, next_e, fallthru;
basic_block dummy;
rtx insn;
insn = PREV_INSN (first_insn_after_basic_block_note (bb));
fallthru = split_block (bb, insn);
dummy = fallthru->src;
bb = fallthru->dest;
bb->aux = xmalloc (sizeof (int));
HEADER_BLOCK (dummy) = 0;
HEADER_BLOCK (bb) = 1;
/* Redirect back edges we want to keep. */
for (e = dummy->pred; e; e = next_e)
{
next_e = e->pred_next;
if (e == except
|| !((redirect_latch && LATCH_EDGE (e))
|| (redirect_nonlatch && !LATCH_EDGE (e))))
{
dummy->frequency -= EDGE_FREQUENCY (e);
dummy->count -= e->count;
if (dummy->frequency < 0)
dummy->frequency = 0;
if (dummy->count < 0)
dummy->count = 0;
redirect_edge_with_latch_update (e, bb);
}
}
alloc_aux_for_edge (fallthru, sizeof (int));
LATCH_EDGE (fallthru) = conn_latch;
return dummy;
}
/* Takes care of merging natural loops with shared headers. */
static void
canonicalize_loop_headers ()
{
dominance_info dom;
basic_block header;
edge e;
/* Compute the dominators. */
dom = calculate_dominance_info (CDI_DOMINATORS);
alloc_aux_for_blocks (sizeof (int));
alloc_aux_for_edges (sizeof (int));
/* Split blocks so that each loop has only single latch. */
FOR_EACH_BB (header)
{
int num_latches = 0;
int have_abnormal_edge = 0;
for (e = header->pred; e; e = e->pred_next)
{
basic_block latch = e->src;
if (e->flags & EDGE_ABNORMAL)
have_abnormal_edge = 1;
if (latch != ENTRY_BLOCK_PTR
&& dominated_by_p (dom, latch, header))
{
num_latches++;
LATCH_EDGE (e) = 1;
}
}
if (have_abnormal_edge)
HEADER_BLOCK (header) = 0;
else
HEADER_BLOCK (header) = num_latches;
}
if (HEADER_BLOCK (ENTRY_BLOCK_PTR->succ->dest))
{
basic_block bb;
/* We could not redirect edges freely here. On the other hand,
we can simply split the edge from entry block. */
bb = split_edge (ENTRY_BLOCK_PTR->succ);
alloc_aux_for_edge (bb->succ, sizeof (int));
LATCH_EDGE (bb->succ) = 0;
alloc_aux_for_block (bb, sizeof (int));
HEADER_BLOCK (bb) = 0;
}
FOR_EACH_BB (header)
{
int num_latch;
int want_join_latch;
int max_freq, is_heavy;
edge heavy;
if (!HEADER_BLOCK (header))
continue;
num_latch = HEADER_BLOCK (header);
want_join_latch = (num_latch > 1);
if (!want_join_latch)
continue;
/* Find a heavy edge. */
is_heavy = 1;
heavy = NULL;
max_freq = 0;
for (e = header->pred; e; e = e->pred_next)
if (LATCH_EDGE (e) &&
EDGE_FREQUENCY (e) > max_freq)
max_freq = EDGE_FREQUENCY (e);
for (e = header->pred; e; e = e->pred_next)
if (LATCH_EDGE (e) &&
EDGE_FREQUENCY (e) >= max_freq / HEAVY_EDGE_RATIO)
{
if (heavy)
{
is_heavy = 0;
break;
}
else
heavy = e;
}
if (is_heavy)
{
basic_block new_header =
make_forwarder_block (header, true, true, heavy, 0);
if (num_latch > 2)
make_forwarder_block (new_header, true, false, NULL, 1);
}
else
make_forwarder_block (header, true, false, NULL, 1);
}
free_aux_for_blocks ();
free_aux_for_edges ();
free_dominance_info (dom);
}
/* Find all the natural loops in the function and save in LOOPS structure and
recalculate loop_depth information in basic block structures. FLAGS
controls which loop information is collected. Return the number of natural
loops found. */
int
flow_loops_find (loops, flags)
struct loops *loops;
int flags;
{
int i;
int b;
int num_loops;
edge e;
sbitmap headers;
dominance_info dom;
int *dfs_order;
int *rc_order;
basic_block header;
basic_block bb;
/* This function cannot be repeatedly called with different
flags to build up the loop information. The loop tree
must always be built if this function is called. */
if (! (flags & LOOP_TREE))
abort ();
memset (loops, 0, sizeof *loops);
/* Taking care of this degenerate case makes the rest of
this code simpler. */
if (n_basic_blocks == 0)
return 0;
dfs_order = NULL;
rc_order = NULL;
/* Join loops with shared headers. */
canonicalize_loop_headers ();
/* Compute the dominators. */
dom = loops->cfg.dom = calculate_dominance_info (CDI_DOMINATORS);
/* Count the number of loop headers. This should be the
same as the number of natural loops. */
headers = sbitmap_alloc (last_basic_block);
sbitmap_zero (headers);
num_loops = 0;
FOR_EACH_BB (header)
{
int more_latches = 0;
header->loop_depth = 0;
for (e = header->pred; e; e = e->pred_next)
{
basic_block latch = e->src;
if (e->flags & EDGE_ABNORMAL)
{
if (more_latches)
{
RESET_BIT (headers, header->index);
num_loops--;
}
break;
}
/* Look for back edges where a predecessor is dominated
by this block. A natural loop has a single entry
node (header) that dominates all the nodes in the
loop. It also has single back edge to the header
from a latch node. */
if (latch != ENTRY_BLOCK_PTR && dominated_by_p (dom, latch, header))
{
/* Shared headers should be eliminated by now. */
if (more_latches)
abort ();
more_latches = 1;
SET_BIT (headers, header->index);
num_loops++;
}
}
}
/* Allocate loop structures. */
loops->parray = (struct loop **) xcalloc (num_loops + 1, sizeof (struct loop *));
/* Dummy loop containing whole function. */
loops->parray[0] = xcalloc (1, sizeof (struct loop));
loops->parray[0]->next = NULL;
loops->parray[0]->inner = NULL;
loops->parray[0]->outer = NULL;
loops->parray[0]->depth = 0;
loops->parray[0]->pred = NULL;
loops->parray[0]->num_nodes = n_basic_blocks + 2;
loops->parray[0]->latch = EXIT_BLOCK_PTR;
loops->parray[0]->header = ENTRY_BLOCK_PTR;
ENTRY_BLOCK_PTR->loop_father = loops->parray[0];
EXIT_BLOCK_PTR->loop_father = loops->parray[0];
loops->tree_root = loops->parray[0];
/* Find and record information about all the natural loops
in the CFG. */
loops->num = 1;
FOR_EACH_BB (bb)
bb->loop_father = loops->tree_root;
if (num_loops)
{
/* Compute depth first search order of the CFG so that outer
natural loops will be found before inner natural loops. */
dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
flow_depth_first_order_compute (dfs_order, rc_order);
/* Save CFG derived information to avoid recomputing it. */
loops->cfg.dom = dom;
loops->cfg.dfs_order = dfs_order;
loops->cfg.rc_order = rc_order;
num_loops = 1;
for (b = 0; b < n_basic_blocks; b++)
{
struct loop *loop;
/* Search the nodes of the CFG in reverse completion order
so that we can find outer loops first. */
if (!TEST_BIT (headers, rc_order[b]))
continue;
header = BASIC_BLOCK (rc_order[b]);
loop = loops->parray[num_loops] = xcalloc (1, sizeof (struct loop));
loop->header = header;
loop->num = num_loops;
num_loops++;
/* Look for the latch for this header block. */
for (e = header->pred; e; e = e->pred_next)
{
basic_block latch = e->src;
if (latch != ENTRY_BLOCK_PTR
&& dominated_by_p (dom, latch, header))
{
loop->latch = latch;
break;
}
}
flow_loop_tree_node_add (header->loop_father, loop);
loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
}
sbitmap_free (headers);
/* Assign the loop nesting depth and enclosed loop level for each
loop. */
loops->levels = flow_loops_level_compute (loops);
/* Scan the loops. */
for (i = 1; i < num_loops; i++)
flow_loop_scan (loops, loops->parray[i], flags);
loops->num = num_loops;
}
else
{
loops->cfg.dom = NULL;
free_dominance_info (dom);
}
#ifdef ENABLE_CHECKING
verify_flow_info ();
verify_loop_structure (loops, 0);
#endif
return loops->num;
}
/* Update the information regarding the loops in the CFG
specified by LOOPS. */
int
flow_loops_update (loops, flags)
struct loops *loops;
int flags;
{
/* One day we may want to update the current loop data. For now
throw away the old stuff and rebuild what we need. */
if (loops->parray)
flow_loops_free (loops);
return flow_loops_find (loops, flags);
}
/* Return non-zero if basic block BB belongs to LOOP. */
bool
flow_bb_inside_loop_p (loop, bb)
const struct loop *loop;
const basic_block bb;
{
struct loop *source_loop;
if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
return 0;
source_loop = bb->loop_father;
return loop == source_loop || flow_loop_nested_p (loop, source_loop);
}
/* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
bool
flow_loop_outside_edge_p (loop, e)
const struct loop *loop;
edge e;
{
if (e->dest != loop->header)
abort ();
return !flow_bb_inside_loop_p (loop, e->src);
}
/* Enumeration predicate for get_loop_body. */
static bool
glb_enum_p (bb, glb_header)
basic_block bb;
void *glb_header;
{
return bb != (basic_block) glb_header;
}
/* Gets basic blocks of a loop. */
basic_block *
get_loop_body (loop)
const struct loop *loop;
{
basic_block *tovisit, bb;
int tv = 0;
if (!loop->num_nodes)
abort ();
tovisit = xcalloc (loop->num_nodes, sizeof (basic_block));
tovisit[tv++] = loop->header;
if (loop->latch == EXIT_BLOCK_PTR)
{
/* There may be blocks unreachable from EXIT_BLOCK. */
if (loop->num_nodes != n_basic_blocks + 2)
abort ();
FOR_EACH_BB (bb)
tovisit[tv++] = bb;
tovisit[tv++] = EXIT_BLOCK_PTR;
}
else if (loop->latch != loop->header)
{
tv = dfs_enumerate_from (loop->latch, 1, glb_enum_p,
tovisit + 1, loop->num_nodes - 1,
loop->header) + 1;
}
if (tv != loop->num_nodes)
abort ();
return tovisit;
}
/* Adds basic block BB to LOOP. */
void
add_bb_to_loop (bb, loop)
basic_block bb;
struct loop *loop;
{
int i;
bb->loop_father = loop;
bb->loop_depth = loop->depth;
loop->num_nodes++;
for (i = 0; i < loop->depth; i++)
loop->pred[i]->num_nodes++;
}
/* Remove basic block BB from loops. */
void
remove_bb_from_loops (bb)
basic_block bb;
{
int i;
struct loop *loop = bb->loop_father;
loop->num_nodes--;
for (i = 0; i < loop->depth; i++)
loop->pred[i]->num_nodes--;
bb->loop_father = NULL;
bb->loop_depth = 0;
}
/* Finds nearest common ancestor in loop tree for given loops. */
struct loop *
find_common_loop (loop_s, loop_d)
struct loop *loop_s;
struct loop *loop_d;
{
if (!loop_s) return loop_d;
if (!loop_d) return loop_s;
if (loop_s->depth < loop_d->depth)
loop_d = loop_d->pred[loop_s->depth];
else if (loop_s->depth > loop_d->depth)
loop_s = loop_s->pred[loop_d->depth];
while (loop_s != loop_d)
{
loop_s = loop_s->outer;
loop_d = loop_d->outer;
}
return loop_s;
}
/* Checks that LOOPS are allright:
-- sizes of loops are allright
-- results of get_loop_body really belong to the loop
-- loop header have just single entry edge and single latch edge
-- loop latches have only single successor that is header of their loop
*/
void
verify_loop_structure (loops, flags)
struct loops *loops;
int flags;
{
int *sizes, i, j;
basic_block *bbs, bb;
struct loop *loop;
int err = 0;
/* Check sizes. */
sizes = xcalloc (loops->num, sizeof (int));
sizes[0] = 2;
FOR_EACH_BB (bb)
for (loop = bb->loop_father; loop; loop = loop->outer)
sizes[loop->num]++;
for (i = 0; i < loops->num; i++)
{
if (!loops->parray[i])
continue;
if (loops->parray[i]->num_nodes != sizes[i])
{
error ("Size of loop %d should be %d, not %d.",
i, sizes[i], loops->parray[i]->num_nodes);
err = 1;
}
}
free (sizes);
/* Check get_loop_body. */
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (!loop)
continue;
bbs = get_loop_body (loop);
for (j = 0; j < loop->num_nodes; j++)
if (!flow_bb_inside_loop_p (loop, bbs[j]))
{
error ("Bb %d do not belong to loop %d.",
bbs[j]->index, i);
err = 1;
}
free (bbs);
}
/* Check headers and latches. */
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (!loop)
continue;
if ((flags & VLS_EXPECT_PREHEADERS)
&& (!loop->header->pred->pred_next
|| loop->header->pred->pred_next->pred_next))
{
error ("Loop %d's header does not have exactly 2 entries.", i);
err = 1;
}
if (flags & VLS_EXPECT_SIMPLE_LATCHES)
{
if (!loop->latch->succ
|| loop->latch->succ->succ_next)
{
error ("Loop %d's latch does not have exactly 1 successor.", i);
err = 1;
}
if (loop->latch->succ->dest != loop->header)
{
error ("Loop %d's latch does not have header as successor.", i);
err = 1;
}
if (loop->latch->loop_father != loop)
{
error ("Loop %d's latch does not belong directly to it.", i);
err = 1;
}
}
if (loop->header->loop_father != loop)
{
error ("Loop %d's header does not belong directly to it.", i);
err = 1;
}
}
if (err)
abort ();
}
/* Returns latch edge of LOOP. */
edge
loop_latch_edge (loop)
struct loop *loop;
{
edge e;
for (e = loop->header->pred; e->src != loop->latch; e = e->pred_next)
continue;
return e;
}
/* Returns preheader edge of LOOP. */
edge
loop_preheader_edge (loop)
struct loop *loop;
{
edge e;
for (e = loop->header->pred; e->src == loop->latch; e = e->pred_next)
continue;
return e;
}
|