summaryrefslogtreecommitdiff
path: root/gcc/cfgloopanal.c
blob: 0ec35ef65380593f3c10b9ff5f263e7eef1fbae7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
/* Natural loop analysis code for GNU compiler.
   Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "expr.h"
#include "output.h"

struct unmark_altered_insn_data;
static void unmark_altered (rtx, rtx, regset);
static void blocks_invariant_registers (basic_block *, int, regset);
static void unmark_altered_insn (rtx, rtx, struct unmark_altered_insn_data *);
static void blocks_single_set_registers (basic_block *, int, rtx *);
static int invariant_rtx_wrto_regs_p_helper (rtx *, regset);
static bool invariant_rtx_wrto_regs_p (rtx, regset);
static rtx test_for_iteration (struct loop_desc *desc, unsigned HOST_WIDE_INT);
static bool constant_iterations (struct loop_desc *, unsigned HOST_WIDE_INT *,
				 bool *);
static bool simple_loop_exit_p (struct loop *, edge, regset,
				rtx *, struct loop_desc *);
static rtx variable_initial_value (rtx, regset, rtx, rtx *, enum machine_mode);
static rtx variable_initial_values (edge, rtx, enum machine_mode);
static bool simple_condition_p (struct loop *, rtx, regset,
				struct loop_desc *);
static basic_block simple_increment (struct loop *, rtx *, struct loop_desc *);
static rtx count_strange_loop_iterations (rtx, rtx, enum rtx_code,
					  int, rtx, enum machine_mode,
					  enum machine_mode);
static unsigned HOST_WIDEST_INT inverse (unsigned HOST_WIDEST_INT, int);
static bool fits_in_mode_p (enum machine_mode mode, rtx expr);

/* Computes inverse to X modulo (1 << MOD).  */
static unsigned HOST_WIDEST_INT
inverse (unsigned HOST_WIDEST_INT x, int mod)
{
  unsigned HOST_WIDEST_INT mask =
	  ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
  unsigned HOST_WIDEST_INT rslt = 1;
  int i;

  for (i = 0; i < mod - 1; i++)
    {
      rslt = (rslt * x) & mask;
      x = (x * x) & mask;
    }

  return rslt;
}

/* Checks whether BB is executed exactly once in each LOOP iteration.  */
bool
just_once_each_iteration_p (struct loop *loop, basic_block bb)
{
  /* It must be executed at least once each iteration.  */
  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
    return false;

  /* And just once.  */
  if (bb->loop_father != loop)
    return false;

  /* But this was not enough.  We might have some irreducible loop here.  */
  if (bb->flags & BB_IRREDUCIBLE_LOOP)
    return false;

  return true;
}


/* Unmarks modified registers; helper to blocks_invariant_registers.  */
static void
unmark_altered (rtx what, rtx by ATTRIBUTE_UNUSED, regset regs)
{
  if (GET_CODE (what) == SUBREG)
    what = SUBREG_REG (what);
  if (!REG_P (what))
    return;
  CLEAR_REGNO_REG_SET (regs, REGNO (what));
}

/* Marks registers that are invariant inside blocks BBS.  */
static void
blocks_invariant_registers (basic_block *bbs, int nbbs, regset regs)
{
  rtx insn;
  int i;

  for (i = 0; i < max_reg_num (); i++)
    SET_REGNO_REG_SET (regs, i);
  for (i = 0; i < nbbs; i++)
    for (insn = BB_HEAD (bbs[i]);
	 insn != NEXT_INSN (BB_END (bbs[i]));
	 insn = NEXT_INSN (insn))
      if (INSN_P (insn))
	note_stores (PATTERN (insn),
		     (void (*) (rtx, rtx, void *)) unmark_altered,
		     regs);
}

/* Unmarks modified registers; helper to blocks_single_set_registers.  */
struct unmark_altered_insn_data
{
  rtx *regs;
  rtx insn;
};

static void
unmark_altered_insn (rtx what, rtx by ATTRIBUTE_UNUSED,
		     struct unmark_altered_insn_data *data)
{
  int rn;

  if (GET_CODE (what) == SUBREG)
    what = SUBREG_REG (what);
  if (!REG_P (what))
    return;
  rn = REGNO (what);
  if (data->regs[rn] == data->insn)
    return;
  data->regs[rn] = NULL;
}

/* Marks registers that have just single simple set in BBS; the relevant
   insn is returned in REGS.  */
static void
blocks_single_set_registers (basic_block *bbs, int nbbs, rtx *regs)
{
  rtx insn;
  int i;
  struct unmark_altered_insn_data data;

  for (i = 0; i < max_reg_num (); i++)
    regs[i] = NULL;

  for (i = 0; i < nbbs; i++)
    for (insn = BB_HEAD (bbs[i]);
	 insn != NEXT_INSN (BB_END (bbs[i]));
	 insn = NEXT_INSN (insn))
      {
	rtx set = single_set (insn);
	if (!set)
	  continue;
	if (!REG_P (SET_DEST (set)))
	  continue;
	regs[REGNO (SET_DEST (set))] = insn;
      }

  data.regs = regs;
  for (i = 0; i < nbbs; i++)
    for (insn = BB_HEAD (bbs[i]);
	 insn != NEXT_INSN (BB_END (bbs[i]));
	 insn = NEXT_INSN (insn))
      {
        if (!INSN_P (insn))
	  continue;
	data.insn = insn;
	note_stores (PATTERN (insn),
	    (void (*) (rtx, rtx, void *)) unmark_altered_insn,
	    &data);
      }
}

/* Helper for invariant_rtx_wrto_regs_p.  */
static int
invariant_rtx_wrto_regs_p_helper (rtx *expr, regset invariant_regs)
{
  switch (GET_CODE (*expr))
    {
    case CC0:
    case PC:
    case UNSPEC_VOLATILE:
      return 1;

    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case ASM_OPERANDS:
      return MEM_VOLATILE_P (*expr);

    case MEM:
      /* If the memory is not constant, assume it is modified.  If it is
	 constant, we still have to check the address.  */
      return !RTX_UNCHANGING_P (*expr);

    case REG:
      return !REGNO_REG_SET_P (invariant_regs, REGNO (*expr));

    default:
      return 0;
    }
}

/* Checks that EXPR is invariant provided that INVARIANT_REGS are invariant.  */
static bool
invariant_rtx_wrto_regs_p (rtx expr, regset invariant_regs)
{
  return !for_each_rtx (&expr, (rtx_function) invariant_rtx_wrto_regs_p_helper,
			invariant_regs);
}

/* Checks whether CONDITION is a simple comparison in that one of operands
   is register and the other one is invariant in the LOOP. Fills var, lim
   and cond fields in DESC.  */
static bool
simple_condition_p (struct loop *loop ATTRIBUTE_UNUSED, rtx condition,
		    regset invariant_regs, struct loop_desc *desc)
{
  rtx op0, op1;

  /* Check condition.  */
  switch (GET_CODE (condition))
    {
      case EQ:
      case NE:
      case LE:
      case LT:
      case GE:
      case GT:
      case GEU:
      case GTU:
      case LEU:
      case LTU:
	break;
      default:
	return false;
    }

  /* Of integers or pointers.  */
  if (GET_MODE_CLASS (GET_MODE (XEXP (condition, 0))) != MODE_INT
      && GET_MODE_CLASS (GET_MODE (XEXP (condition, 0))) != MODE_PARTIAL_INT)
    return false;

  /* One of operands must be a simple register.  */
  op0 = XEXP (condition, 0);
  op1 = XEXP (condition, 1);

  /* One of operands must be invariant.  */
  if (invariant_rtx_wrto_regs_p (op0, invariant_regs))
    {
      /* And the other one must be a register.  */
      if (!REG_P (op1))
	return false;
      desc->var = op1;
      desc->lim = op0;

      desc->cond = swap_condition (GET_CODE (condition));
      if (desc->cond == UNKNOWN)
	return false;
      return true;
    }

  /* Check the other operand.  */
  if (!invariant_rtx_wrto_regs_p (op1, invariant_regs))
    return false;
  if (!REG_P (op0))
    return false;

  desc->var = op0;
  desc->lim = op1;

  desc->cond = GET_CODE (condition);

  return true;
}

/* Checks whether DESC->var is incremented/decremented exactly once each
   iteration.  Fills in DESC->stride and returns block in that DESC->var is
   modified.  */
static basic_block
simple_increment (struct loop *loop, rtx *simple_increment_regs,
		  struct loop_desc *desc)
{
  rtx mod_insn, mod_insn1, set, set_src, set_add;
  basic_block mod_bb, mod_bb1;

  /* Find insn that modifies var.  */
  mod_insn = simple_increment_regs[REGNO (desc->var)];
  if (!mod_insn)
    return NULL;
  mod_bb = BLOCK_FOR_INSN (mod_insn);

  /* Check that it is executed exactly once each iteration.  */
  if (!just_once_each_iteration_p (loop, mod_bb))
    return NULL;

  /* mod_insn must be a simple increment/decrement.  */
  set = single_set (mod_insn);
  if (!set)
    abort ();
  if (!rtx_equal_p (SET_DEST (set), desc->var))
    abort ();

  set_src = find_reg_equal_equiv_note (mod_insn);
  if (!set_src)
    set_src = SET_SRC (set);

  /* Check for variables that iterate in narrower mode.  */
  if (GET_CODE (set_src) == SIGN_EXTEND
      || GET_CODE (set_src) == ZERO_EXTEND)
    {
      /* If we are sign extending variable that is then compared unsigned
	 or vice versa, there is something weird happening.  */
      if (desc->cond != EQ
	  && desc->cond != NE
	  && ((desc->cond == LEU
	       || desc->cond == LTU
	       || desc->cond == GEU
	       || desc->cond == GTU)
	      ^ (GET_CODE (set_src) == ZERO_EXTEND)))
	return NULL;

      if (GET_CODE (XEXP (set_src, 0)) != SUBREG
	  || SUBREG_BYTE (XEXP (set_src, 0)) != 0
	  || GET_MODE (SUBREG_REG (XEXP (set_src, 0))) != GET_MODE (desc->var))
	return NULL;

      desc->inner_mode = GET_MODE (XEXP (set_src, 0));
      desc->extend = GET_CODE (set_src);
      set_src = SUBREG_REG (XEXP (set_src, 0));

      if (GET_CODE (set_src) != REG)
	return NULL;

      /* Find where the reg is set.  */
      mod_insn1 = simple_increment_regs[REGNO (set_src)];
      if (!mod_insn1)
	return NULL;

      mod_bb1 = BLOCK_FOR_INSN (mod_insn1);
      if (!dominated_by_p (CDI_DOMINATORS, mod_bb, mod_bb1))
	return NULL;
      if (mod_bb1 == mod_bb)
	{
	  for (;
	       mod_insn != PREV_INSN (BB_HEAD (mod_bb));
	       mod_insn = PREV_INSN (mod_insn))
	    if (mod_insn == mod_insn1)
	      break;

	  if (mod_insn == PREV_INSN (BB_HEAD (mod_bb)))
	    return NULL;
	}

      /* Replace the source with the possible place of increment.  */
      set = single_set (mod_insn1);
      if (!set)
	abort ();
      if (!rtx_equal_p (SET_DEST (set), set_src))
	abort ();

      set_src = find_reg_equal_equiv_note (mod_insn1);
      if (!set_src)
	set_src = SET_SRC (set);
    }
  else
    {
      desc->inner_mode = GET_MODE (desc->var);
      desc->extend = NIL;
    }

  if (GET_CODE (set_src) != PLUS)
    return NULL;
  if (!rtx_equal_p (XEXP (set_src, 0), desc->var))
    return NULL;

  /* Set desc->stride.  */
  set_add = XEXP (set_src, 1);
  if (CONSTANT_P (set_add))
    desc->stride = set_add;
  else
    return NULL;

  return mod_bb;
}

/* Tries to find initial value of VAR in INSN.  This value must be invariant
   wrto INVARIANT_REGS.  If SET_INSN is not NULL, insn in that var is set is
   placed here.  INNER_MODE is mode in that induction variable VAR iterates.  */
static rtx
variable_initial_value (rtx insn, regset invariant_regs,
			rtx var, rtx *set_insn, enum machine_mode inner_mode)
{
  basic_block bb;
  rtx set;
  rtx ret = NULL;

  /* Go back through cfg.  */
  bb = BLOCK_FOR_INSN (insn);
  while (1)
    {
      for (; insn != BB_HEAD (bb); insn = PREV_INSN (insn))
	{
	  if (INSN_P (insn))
	    note_stores (PATTERN (insn),
		(void (*) (rtx, rtx, void *)) unmark_altered,
		invariant_regs);
	  if (modified_between_p (var, PREV_INSN (insn), NEXT_INSN (insn)))
	    break;
	}

      if (insn != BB_HEAD (bb))
	{
	  /* We found place where var is set.  */
	  rtx set_dest;
	  rtx val;
	  rtx note;

	  set = single_set (insn);
	  if (!set)
	    return NULL;
	  set_dest = SET_DEST (set);
	  if (!rtx_equal_p (set_dest, var))
	    return NULL;

	  note = find_reg_equal_equiv_note (insn);
	  if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
	    val = XEXP (note, 0);
	  else
	    val = SET_SRC (set);

	  /* If we know that the initial value is indeed in range of
	     the inner mode, record the fact even in case the value itself
	     is useless.  */
	  if ((GET_CODE (val) == SIGN_EXTEND
	       || GET_CODE (val) == ZERO_EXTEND)
	      && GET_MODE (XEXP (val, 0)) == inner_mode)
	    ret = gen_rtx_fmt_e (GET_CODE (val),
				 GET_MODE (var),
				 gen_rtx_fmt_ei (SUBREG,
						 inner_mode,
						 var, 0));

	  if (!invariant_rtx_wrto_regs_p (val, invariant_regs))
	    return ret;

	  if (set_insn)
	    *set_insn = insn;
	  return val;
	}


      if (bb->pred->pred_next || bb->pred->src == ENTRY_BLOCK_PTR)
	return NULL;

      bb = bb->pred->src;
      insn = BB_END (bb);
    }

  return NULL;
}

/* Returns list of definitions of initial value of VAR at edge E.  INNER_MODE
   is mode in that induction variable VAR really iterates.  */
static rtx
variable_initial_values (edge e, rtx var, enum machine_mode inner_mode)
{
  rtx set_insn, list;
  regset invariant_regs;
  regset_head invariant_regs_head;
  int i;

  invariant_regs = INITIALIZE_REG_SET (invariant_regs_head);
  for (i = 0; i < max_reg_num (); i++)
    SET_REGNO_REG_SET (invariant_regs, i);

  list = alloc_EXPR_LIST (0, copy_rtx (var), NULL);

  if (e->src == ENTRY_BLOCK_PTR)
    return list;

  set_insn = BB_END (e->src);
  while (REG_P (var)
	 && (var = variable_initial_value (set_insn, invariant_regs, var,
					   &set_insn, inner_mode)))
    list = alloc_EXPR_LIST (0, copy_rtx (var), list);

  FREE_REG_SET (invariant_regs);
  return list;
}

/* Counts constant number of iterations of the loop described by DESC;
   returns false if impossible.  */
static bool
constant_iterations (struct loop_desc *desc, unsigned HOST_WIDE_INT *niter,
		     bool *may_be_zero)
{
  rtx test, expr;
  rtx ainit, alim;

  test = test_for_iteration (desc, 0);
  if (test == const0_rtx)
    {
      *niter = 0;
      *may_be_zero = false;
      return true;
    }

  *may_be_zero = (test != const_true_rtx);

  /* It would make a little sense to check every with every when we
     know that all but the first alternative are simply registers.  */
  for (ainit = desc->var_alts; ainit; ainit = XEXP (ainit, 1))
    {
      alim = XEXP (desc->lim_alts, 0);
      if (!(expr = count_loop_iterations (desc, XEXP (ainit, 0), alim)))
	continue;
      if (GET_CODE (expr) == CONST_INT)
	{
	  *niter = INTVAL (expr);
	  return true;
	}
    }
  for (alim = XEXP (desc->lim_alts, 1); alim; alim = XEXP (alim, 1))
    {
      ainit = XEXP (desc->var_alts, 0);
      if (!(expr = count_loop_iterations (desc, ainit, XEXP (alim, 0))))
	continue;
      if (GET_CODE (expr) == CONST_INT)
	{
	  *niter = INTVAL (expr);
	  return true;
	}
    }

  return false;
}

/* Attempts to determine a number of iterations of a "strange" loop.
   Its induction variable starts with value INIT, is compared by COND
   with LIM.  If POSTINCR, it is incremented after the test.  It is incremented
   by STRIDE each iteration, has mode MODE but iterates in INNER_MODE.

   By "strange" we mean loops where induction variable increases in the wrong
   direction wrto comparison, i.e. for (i = 6; i > 5; i++).  */
static rtx
count_strange_loop_iterations (rtx init, rtx lim, enum rtx_code cond,
			       int postincr, rtx stride, enum machine_mode mode,
			       enum machine_mode inner_mode)
{
  rtx rqmt, n_to_wrap, before_wrap, after_wrap;
  rtx mode_min, mode_max;
  int size;

  /* This could be handled, but it is not important enough to lose time with
     it just now.  */
  if (mode != inner_mode)
    return NULL_RTX;

  if (!postincr)
    init = simplify_gen_binary (PLUS, mode, init, stride);

  /* If we are able to prove that we don't pass the first test, we are
     done.  */
  rqmt = simplify_relational_operation (cond, mode, init, lim);
  if (rqmt == const0_rtx)
    return const0_rtx;

  /* And if we don't know we pass it, the things are too complicated for us.  */
  if (rqmt != const_true_rtx)
    return NULL_RTX;

  switch (cond)
    {
    case GE:
    case GT:
    case LE:
    case LT:
      size = GET_MODE_BITSIZE (mode);
      mode_min = GEN_INT (-((unsigned HOST_WIDEST_INT) 1 << (size - 1)));
      mode_max = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1)) - 1);
			      
      break;

    case GEU:
    case GTU:
    case LEU:
    case LTU:
    case EQ:
      mode_min = const0_rtx;
      mode_max = simplify_gen_binary (MINUS, mode, const0_rtx, const1_rtx);
      break;

    default:
      abort ();
    }

  switch (cond)
    {
    case EQ:
      /* This iterates once, as init == lim.  */
      return const1_rtx;

      /* The behavior is undefined in signed cases.  Never mind, we still
	 try to behave sanely.  */
    case GE:
    case GT:
    case GEU:
    case GTU:
      if (INTVAL (stride) <= 0)
	abort ();
      n_to_wrap = simplify_gen_binary (MINUS, mode, mode_max, copy_rtx (init));
      n_to_wrap = simplify_gen_binary (UDIV, mode, n_to_wrap, stride);
      before_wrap = simplify_gen_binary (MULT, mode,
					 copy_rtx (n_to_wrap), stride);
      before_wrap = simplify_gen_binary (PLUS, mode,
					 before_wrap, copy_rtx (init));
      after_wrap = simplify_gen_binary (PLUS, mode,
					before_wrap, stride);
      if (GET_CODE (after_wrap) != CONST_INT)
	{
	  after_wrap = simplify_gen_binary (PLUS, mode, mode_min, stride);
	  after_wrap = simplify_gen_binary (MINUS, mode, after_wrap, const1_rtx);
	}
      break;

    case LE:
    case LT:
    case LEU:
    case LTU:
      if (INTVAL (stride) >= 0)
	abort ();
      stride = simplify_gen_unary (NEG, mode, stride, mode);
      n_to_wrap = simplify_gen_binary (MINUS, mode, copy_rtx (init), mode_min);
      n_to_wrap = simplify_gen_binary (UDIV, mode, n_to_wrap, stride);
      before_wrap = simplify_gen_binary (MULT, mode,
					 copy_rtx (n_to_wrap), stride);
      before_wrap = simplify_gen_binary (MINUS, mode,
					 copy_rtx (init), before_wrap);
      after_wrap = simplify_gen_binary (MINUS, mode,
					before_wrap, stride);
      if (GET_CODE (after_wrap) != CONST_INT)
	{
	  after_wrap = simplify_gen_binary (MINUS, mode, mode_max, stride);
	  after_wrap = simplify_gen_binary (PLUS, mode, after_wrap, const1_rtx);
	}
      break;
    default:
      abort ();
    }

  /* If this is const_true_rtx and we did not take a conservative approximation
     of after_wrap above, we might iterate the calculation (but of course we
     would have to take care about infinite cases).  Ignore this for now.  */
  rqmt = simplify_relational_operation (cond, mode, after_wrap, lim);
  if (rqmt != const0_rtx)
    return NULL_RTX;

  return simplify_gen_binary (PLUS, mode, n_to_wrap, const1_rtx);
}

/* Checks whether value of EXPR fits into range of MODE.  */
static bool
fits_in_mode_p (enum machine_mode mode, rtx expr)
{
  unsigned HOST_WIDEST_INT val;
  int n_bits = 0;

  if (GET_CODE (expr) == CONST_INT)
    {
      for (val = INTVAL (expr); val; val >>= 1)
	n_bits++;

      return n_bits <= GET_MODE_BITSIZE (mode);
    }

  if (GET_CODE (expr) == SIGN_EXTEND
      || GET_CODE (expr) == ZERO_EXTEND)
    return GET_MODE (XEXP (expr, 0)) == mode;

  return false;
}

/* Return RTX expression representing number of iterations of loop as bounded
   by test described by DESC (in the case loop really has multiple exit
   edges, fewer iterations may happen in the practice).

   Return NULL if it is unknown.  Additionally the value may be invalid for
   paradoxical loop (lets define paradoxical loops as loops whose test is
   failing at -1th iteration, for instance "for (i=5;i<1;i++);").

   These cases needs to be either cared by copying the loop test in the front
   of loop or keeping the test in first iteration of loop.

   When INIT/LIM are set, they are used instead of var/lim of DESC.  */
rtx
count_loop_iterations (struct loop_desc *desc, rtx init, rtx lim)
{
  enum rtx_code cond = desc->cond;
  rtx stride = desc->stride;
  rtx mod, exp, ainit, bound;
  rtx overflow_check, mx, mxp;
  enum machine_mode mode = GET_MODE (desc->var);
  unsigned HOST_WIDEST_INT s, size, d;

  /* Give up on floating point modes and friends.  It can be possible to do
     the job for constant loop bounds, but it is probably not worthwhile.  */
  if (!INTEGRAL_MODE_P (mode))
    return NULL;

  init = copy_rtx (init ? init : desc->var);
  lim = copy_rtx (lim ? lim : desc->lim);

  /* Ensure that we always handle the condition to stay inside loop.  */
  if (desc->neg)
    cond = reverse_condition (cond);

  if (desc->inner_mode != mode)
    {
      /* We have a case when the variable in fact iterates in the narrower
	 mode.  This has following consequences:
	 
	 For induction variable itself, if !desc->postincr, it does not mean
	 anything too special, since we know the variable is already in range
	 of the inner mode when we compare it (so it is just needed to shorten
	 it into the mode before calculations are done, so that we don't risk
	 wrong results).  More complicated case is when desc->postincr; then
	 the first two iterations are special (the first one because the value
	 may be out of range, the second one because after shortening it to the
	 range it may have absolutely any value), and we do not handle this in
	 unrolling.  So if we aren't able to prove that the initial value is in
	 the range, we fail in this case.
	 
	 Step is just moduled to fit into inner mode.

	 If lim is out of range, then either the loop is infinite (and then
	 we may unroll however we like to), or exits in the first iteration
	 (this is also ok, since we handle it specially for this case anyway).
	 So we may safely assume that it fits into the inner mode.  */

      for (ainit = desc->var_alts; ainit; ainit = XEXP (ainit, 1))
	if (fits_in_mode_p (desc->inner_mode, XEXP (ainit, 0)))
	  break;

      if (!ainit)
	{
	  if (desc->postincr)
	    return NULL_RTX;

	  init = simplify_gen_unary (desc->extend,
				     mode,
				     simplify_gen_subreg (desc->inner_mode,
							  init,
							  mode,
							  0),
				     desc->inner_mode);
	}

      stride = simplify_gen_subreg (desc->inner_mode, stride, mode, 0);
      if (stride == const0_rtx)
	return NULL_RTX;
    }

  /* Prepare condition to verify that we do not risk overflow.  */
  if (stride == const1_rtx
      || stride == constm1_rtx
      || cond == NE
      || cond == EQ)
    {
      /* Overflow at NE conditions does not occur.  EQ condition
	 is weird and is handled in count_strange_loop_iterations.
	 If stride is 1, overflow may occur only for <= and >= conditions,
	 and then they are infinite, so it does not bother us.  */
      overflow_check = const0_rtx;
    }
  else
    {
      if (cond == LT || cond == LTU)
	mx = simplify_gen_binary (MINUS, mode, lim, const1_rtx);
      else if (cond == GT || cond == GTU)
	mx = simplify_gen_binary (PLUS, mode, lim, const1_rtx);
      else
	mx = lim;
      if (mode != desc->inner_mode)
	mxp = simplify_gen_subreg (desc->inner_mode, mx, mode, 0);
      else
	mxp = mx;
      mxp = simplify_gen_binary (PLUS, desc->inner_mode, mxp, stride);
      if (mode != desc->inner_mode)
	mxp = simplify_gen_unary (desc->extend, mode, mxp, desc->inner_mode);
      overflow_check = simplify_gen_relational (cond, SImode, mode, mx, mxp);
    }
    
  /* Compute absolute value of the difference of initial and final value.  */
  if (INTVAL (stride) > 0)
    {
      /* Handle strange tests specially.  */
      if (cond == EQ || cond == GE || cond == GT || cond == GEU
	  || cond == GTU)
	return count_strange_loop_iterations (init, lim, cond, desc->postincr,
					      stride, mode, desc->inner_mode);
      exp = simplify_gen_binary (MINUS, mode, lim, init);
    }
  else
    {
      if (cond == EQ || cond == LE || cond == LT || cond == LEU
	  || cond == LTU)
	return count_strange_loop_iterations (init, lim, cond, desc->postincr,
					      stride, mode, desc->inner_mode);
      exp = simplify_gen_binary (MINUS, mode, init, lim);
      stride = simplify_gen_unary (NEG, mode, stride, mode);
    }

  /* If there is a risk of overflow (i.e. when we increment value satisfying
     a condition, we may again obtain a value satisfying the condition),
     fail.  */
  if (overflow_check != const0_rtx)
    return NULL_RTX;

  /* Normalize difference so the value is always first examined
     and later incremented.  */
  if (!desc->postincr)
    exp = simplify_gen_binary (MINUS, mode, exp, stride);

  /* Determine delta caused by exit condition.  */
  switch (cond)
    {
    case NE:
      /* NE tests are easy to handle, because we just perform simple
	 arithmetics modulo power of 2.  Let's use the fact to compute the
	 number of iterations exactly.  We are now in situation when we want to
	 solve an equation stride * i = c (mod size of inner_mode).
	 Let nsd (stride, size of mode) = d.  If d does not divide c, the
	 loop is infinite.  Otherwise, the number of iterations is
	 (inverse(s/d) * (c/d)) mod (size of mode/d).  */
      size = GET_MODE_BITSIZE (desc->inner_mode);
      s = INTVAL (stride);
      d = 1;
      while (s % 2 != 1)
	{
	  s /= 2;
	  d *= 2;
	  size--;
	}
      bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
      exp = simplify_gen_binary (UDIV, mode, exp, GEN_INT (d));
      exp = simplify_gen_binary (MULT, mode,
				 exp, GEN_INT (inverse (s, size)));
      exp = simplify_gen_binary (AND, mode, exp, bound);
      break;

    case LT:
    case GT:
    case LTU:
    case GTU:
      break;
    case LE:
    case GE:
    case LEU:
    case GEU:
      exp = simplify_gen_binary (PLUS, mode, exp, const1_rtx);
      break;
    default:
      abort ();
    }

  if (cond != NE && stride != const1_rtx)
    {
      /* Number of iterations is now (EXP + STRIDE - 1 / STRIDE),
	 but we need to take care for overflows.  */

      mod = simplify_gen_binary (UMOD, mode, exp, stride);

      /* This is dirty trick.  When we can't compute number of iterations
	 to be constant, we simply ignore the possible overflow, as
	 runtime unroller always use power of 2 amounts and does not
	 care about possible lost bits.  */

      if (GET_CODE (mod) != CONST_INT)
	{
	  rtx stridem1 = simplify_gen_binary (PLUS, mode, stride, constm1_rtx);
	  exp = simplify_gen_binary (PLUS, mode, exp, stridem1);
	  exp = simplify_gen_binary (UDIV, mode, exp, stride);
	}
      else
	{
	  exp = simplify_gen_binary (UDIV, mode, exp, stride);
	  if (mod != const0_rtx)
	    exp = simplify_gen_binary (PLUS, mode, exp, const1_rtx);
	}
    }

  if (rtl_dump_file)
    {
      fprintf (rtl_dump_file, ";  Number of iterations: ");
      print_simple_rtl (rtl_dump_file, exp);
      fprintf (rtl_dump_file, "\n");
    }

  return exp;
}

/* Return simplified RTX expression representing the value of test
   described of DESC at given iteration of loop.  */

static rtx
test_for_iteration (struct loop_desc *desc, unsigned HOST_WIDE_INT iter)
{
  enum rtx_code cond = desc->cond;
  rtx exp = XEXP (desc->var_alts, 0);
  rtx addval;

  /* Give up on floating point modes and friends.  It can be possible to do
     the job for constant loop bounds, but it is probably not worthwhile.  */
  if (!INTEGRAL_MODE_P (GET_MODE (desc->var)))
    return NULL;

  /* Ensure that we always handle the condition to stay inside loop.  */
  if (desc->neg)
    cond = reverse_condition (cond);

  /* Compute the value of induction variable.  */
  addval = simplify_gen_binary (MULT, GET_MODE (desc->var),
				desc->stride,
				gen_int_mode (desc->postincr
					      ? iter : iter + 1,
					      GET_MODE (desc->var)));
  exp = simplify_gen_binary (PLUS, GET_MODE (desc->var), exp, addval);
  /* Test at given condition.  */
  exp = simplify_gen_relational (cond, SImode,
				 GET_MODE (desc->var), exp, desc->lim);

  if (rtl_dump_file)
    {
      fprintf (rtl_dump_file, ";  Conditional to continue loop at "
	       HOST_WIDE_INT_PRINT_UNSIGNED "th iteration: ", iter);
      print_simple_rtl (rtl_dump_file, exp);
      fprintf (rtl_dump_file, "\n");
    }
  return exp;
}


/* Tests whether exit at EXIT_EDGE from LOOP is simple.  Returns simple loop
   description joined to it in in DESC.  INVARIANT_REGS and SINGLE_SET_REGS
   are results of blocks_{invariant,single_set}_regs over BODY.  */
static bool
simple_loop_exit_p (struct loop *loop, edge exit_edge,
		    regset invariant_regs, rtx *single_set_regs,
		    struct loop_desc *desc)
{
  basic_block mod_bb, exit_bb;
  int fallthru_out;
  rtx condition;
  edge ei, e;

  exit_bb = exit_edge->src;

  fallthru_out = (exit_edge->flags & EDGE_FALLTHRU);

  if (!exit_bb)
    return false;

  /* It must be tested (at least) once during any iteration.  */
  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
    return false;

  /* It must end in a simple conditional jump.  */
  if (!any_condjump_p (BB_END (exit_bb)))
    return false;

  ei = exit_bb->succ;
  if (ei == exit_edge)
    ei = ei->succ_next;

  desc->out_edge = exit_edge;
  desc->in_edge = ei;

  /* Condition must be a simple comparison in that one of operands
     is register and the other one is invariant.  */
  if (!(condition = get_condition (BB_END (exit_bb), NULL, false)))
    return false;

  if (!simple_condition_p (loop, condition, invariant_regs, desc))
    return false;

  /*  Var must be simply incremented or decremented in exactly one insn that
     is executed just once every iteration.  */
  if (!(mod_bb = simple_increment (loop, single_set_regs, desc)))
    return false;

  /* OK, it is simple loop.  Now just fill in remaining info.  */
  desc->postincr = !dominated_by_p (CDI_DOMINATORS, exit_bb, mod_bb);
  desc->neg = !fallthru_out;

  /* Find initial value of var and alternative values for lim.  */
  e = loop_preheader_edge (loop);
  desc->var_alts = variable_initial_values (e, desc->var, desc->inner_mode);
  desc->lim_alts = variable_initial_values (e, desc->lim, desc->inner_mode);

  /* Number of iterations.  */
  desc->const_iter =
    constant_iterations (desc, &desc->niter, &desc->may_be_zero);
  if (!desc->const_iter && !count_loop_iterations (desc, NULL, NULL))
    return false;
  return true;
}

/* Tests whether LOOP is simple for loop.  Returns simple loop description
   in DESC.  */
bool
simple_loop_p (struct loop *loop, struct loop_desc *desc)
{
  unsigned i;
  basic_block *body;
  edge e;
  struct loop_desc act;
  bool any = false;
  regset invariant_regs;
  regset_head invariant_regs_head;
  rtx *single_set_regs;
  int n_branches;

  body = get_loop_body (loop);

  invariant_regs = INITIALIZE_REG_SET (invariant_regs_head);
  single_set_regs = xmalloc (max_reg_num () * sizeof (rtx));

  blocks_invariant_registers (body, loop->num_nodes, invariant_regs);
  blocks_single_set_registers (body, loop->num_nodes, single_set_regs);

  n_branches = 0;
  for (i = 0; i < loop->num_nodes; i++)
    {
      for (e = body[i]->succ; e; e = e->succ_next)
	if (!flow_bb_inside_loop_p (loop, e->dest)
	    && simple_loop_exit_p (loop, e,
		   invariant_regs, single_set_regs, &act))
	  {
	    /* Prefer constant iterations; the less the better.  */
	    if (!any)
	      any = true;
	    else if (!act.const_iter
		     || (desc->const_iter && act.niter >= desc->niter))
	      continue;
	    *desc = act;
	  }

      if (body[i]->succ && body[i]->succ->succ_next)
	n_branches++;
    }
  desc->n_branches = n_branches;

  if (rtl_dump_file && any)
    {
      fprintf (rtl_dump_file, "; Simple loop %i\n", loop->num);
      if (desc->postincr)
	fprintf (rtl_dump_file,
		 ";  does postincrement after loop exit condition\n");

      fprintf (rtl_dump_file, ";  Induction variable:");
      print_simple_rtl (rtl_dump_file, desc->var);
      fputc ('\n', rtl_dump_file);

      fprintf (rtl_dump_file, ";  Initial values:");
      print_simple_rtl (rtl_dump_file, desc->var_alts);
      fputc ('\n', rtl_dump_file);

      fprintf (rtl_dump_file, ";  Stride:");
      print_simple_rtl (rtl_dump_file, desc->stride);
      fputc ('\n', rtl_dump_file);

      fprintf (rtl_dump_file, ";  Compared with:");
      print_simple_rtl (rtl_dump_file, desc->lim);
      fputc ('\n', rtl_dump_file);

      fprintf (rtl_dump_file, ";  Alternative values:");
      print_simple_rtl (rtl_dump_file, desc->lim_alts);
      fputc ('\n', rtl_dump_file);

      fprintf (rtl_dump_file, ";  Exit condition:");
      if (desc->neg)
	fprintf (rtl_dump_file, "(negated)");
      fprintf (rtl_dump_file, "%s\n", GET_RTX_NAME (desc->cond));

      fprintf (rtl_dump_file, ";  Number of branches:");
      fprintf (rtl_dump_file, "%d\n", desc->n_branches);

      fputc ('\n', rtl_dump_file);
    }

  free (body);
  FREE_REG_SET (invariant_regs);
  free (single_set_regs);
  return any;
}

/* Structure representing edge of a graph.  */

struct edge
{
  int src, dest;	/* Source and destination.  */
  struct edge *pred_next, *succ_next;
			/* Next edge in predecessor and successor lists.  */
  void *data;		/* Data attached to the edge.  */
};

/* Structure representing vertex of a graph.  */

struct vertex
{
  struct edge *pred, *succ;
			/* Lists of predecessors and successors.  */
  int component;	/* Number of dfs restarts before reaching the
			   vertex.  */
  int post;		/* Postorder number.  */
};

/* Structure representing a graph.  */

struct graph
{
  int n_vertices;	/* Number of vertices.  */
  struct vertex *vertices;
			/* The vertices.  */
};

/* Dumps graph G into F.  */

extern void dump_graph (FILE *, struct graph *);
void dump_graph (FILE *f, struct graph *g)
{
  int i;
  struct edge *e;

  for (i = 0; i < g->n_vertices; i++)
    {
      if (!g->vertices[i].pred
	  && !g->vertices[i].succ)
	continue;

      fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
      for (e = g->vertices[i].pred; e; e = e->pred_next)
	fprintf (f, " %d", e->src);
      fprintf (f, "\n");

      fprintf (f, "\t->");
      for (e = g->vertices[i].succ; e; e = e->succ_next)
	fprintf (f, " %d", e->dest);
      fprintf (f, "\n");
    }
}

/* Creates a new graph with N_VERTICES vertices.  */

static struct graph *
new_graph (int n_vertices)
{
  struct graph *g = xmalloc (sizeof (struct graph));

  g->n_vertices = n_vertices;
  g->vertices = xcalloc (n_vertices, sizeof (struct vertex));

  return g;
}

/* Adds an edge from F to T to graph G, with DATA attached.  */

static void
add_edge (struct graph *g, int f, int t, void *data)
{
  struct edge *e = xmalloc (sizeof (struct edge));

  e->src = f;
  e->dest = t;
  e->data = data;

  e->pred_next = g->vertices[t].pred;
  g->vertices[t].pred = e;

  e->succ_next = g->vertices[f].succ;
  g->vertices[f].succ = e;
}

/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
   The vertices in postorder are stored into QT.  If FORWARD is false,
   backward dfs is run.  */

static void
dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
{
  int i, tick = 0, v, comp = 0, top;
  struct edge *e;
  struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);

  for (i = 0; i < g->n_vertices; i++)
    {
      g->vertices[i].component = -1;
      g->vertices[i].post = -1;
    }

#define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
#define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
#define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
#define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)

  for (i = 0; i < nq; i++)
    {
      v = qs[i];
      if (g->vertices[v].post != -1)
	continue;

      g->vertices[v].component = comp++;
      e = FST_EDGE (v);
      top = 0;

      while (1)
	{
	  while (e && g->vertices[EDGE_DEST (e)].component != -1)
	    e = NEXT_EDGE (e);

	  if (!e)
	    {
	      if (qt)
		qt[tick] = v;
 	      g->vertices[v].post = tick++;

	      if (!top)
		break;

	      e = stack[--top];
	      v = EDGE_SRC (e);
	      e = NEXT_EDGE (e);
	      continue;
	    }

	  stack[top++] = e;
	  v = EDGE_DEST (e);
	  e = FST_EDGE (v);
	  g->vertices[v].component = comp - 1;
	}
    }

  free (stack);
}

/* Marks the edge E in graph G irreducible if it connects two vertices in the
   same scc.  */

static void
check_irred (struct graph *g, struct edge *e)
{
  edge real = e->data;

  /* All edges should lead from a component with higher number to the
     one with lower one.  */
  if (g->vertices[e->src].component < g->vertices[e->dest].component)
    abort ();

  if (g->vertices[e->src].component != g->vertices[e->dest].component)
    return;

  real->flags |= EDGE_IRREDUCIBLE_LOOP;
  if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
    real->src->flags |= BB_IRREDUCIBLE_LOOP;
}

/* Runs CALLBACK for all edges in G.  */

static void
for_each_edge (struct graph *g,
	       void (callback) (struct graph *, struct edge *))
{
  struct edge *e;
  int i;

  for (i = 0; i < g->n_vertices; i++)
    for (e = g->vertices[i].succ; e; e = e->succ_next)
      callback (g, e);
}

/* Releases the memory occupied by G.  */

static void
free_graph (struct graph *g)
{
  struct edge *e, *n;
  int i;

  for (i = 0; i < g->n_vertices; i++)
    for (e = g->vertices[i].succ; e; e = n)
      {
	n = e->succ_next;
	free (e);
      }
  free (g->vertices);
  free (g);
}

/* Marks blocks and edges that are part of non-recognized loops; i.e. we
   throw away all latch edges and mark blocks inside any remaining cycle.
   Everything is a bit complicated due to fact we do not want to do this
   for parts of cycles that only "pass" through some loop -- i.e. for
   each cycle, we want to mark blocks that belong directly to innermost
   loop containing the whole cycle.
   
   LOOPS is the loop tree.  */

#define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
#define BB_REPR(BB) ((BB)->index + 1)

void
mark_irreducible_loops (struct loops *loops)
{
  basic_block act;
  edge e;
  int i, src, dest;
  struct graph *g;
  int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
  int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
  int nq, depth;
  struct loop *cloop;

  /* Reset the flags.  */
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
      act->flags &= ~BB_IRREDUCIBLE_LOOP;
      for (e = act->succ; e; e = e->succ_next)
	e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
    }

  /* Create the edge lists.  */
  g = new_graph (last_basic_block + loops->num);

  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    for (e = act->succ; e; e = e->succ_next)
      {
        /* Ignore edges to exit.  */
        if (e->dest == EXIT_BLOCK_PTR)
	  continue;

	/* And latch edges.  */
	if (e->dest->loop_father->header == e->dest
	    && e->dest->loop_father->latch == act)
	  continue;

	/* Edges inside a single loop should be left where they are.  Edges
	   to subloop headers should lead to representative of the subloop,
	   but from the same place.

	   Edges exiting loops should lead from representative
	   of the son of nearest common ancestor of the loops in that
	   act lays.  */

	src = BB_REPR (act);
	dest = BB_REPR (e->dest);

	if (e->dest->loop_father->header == e->dest)
	  dest = LOOP_REPR (e->dest->loop_father);

	if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
	  {
	    depth = find_common_loop (act->loop_father,
				      e->dest->loop_father)->depth + 1;
	    if (depth == act->loop_father->depth)
	      cloop = act->loop_father;
	    else
	      cloop = act->loop_father->pred[depth];

	    src = LOOP_REPR (cloop);
	  }

	add_edge (g, src, dest, e);
      }

  /* Find the strongly connected components.  Use the algorithm of Tarjan --
     first determine the postorder dfs numbering in reversed graph, then
     run the dfs on the original graph in the order given by decreasing
     numbers assigned by the previous pass.  */
  nq = 0;
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
      queue1[nq++] = BB_REPR (act);
    }
  for (i = 1; i < (int) loops->num; i++)
    if (loops->parray[i])
      queue1[nq++] = LOOP_REPR (loops->parray[i]);
  dfs (g, queue1, nq, queue2, false);
  for (i = 0; i < nq; i++)
    queue1[i] = queue2[nq - i - 1];
  dfs (g, queue1, nq, NULL, true);

  /* Mark the irreducible loops.  */
  for_each_edge (g, check_irred);

  free_graph (g);
  free (queue1);
  free (queue2);

  loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
}

/* Counts number of insns inside LOOP.  */
int
num_loop_insns (struct loop *loop)
{
  basic_block *bbs, bb;
  unsigned i, ninsns = 0;
  rtx insn;

  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
    {
      bb = bbs[i];
      ninsns++;
      for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
	if (INSN_P (insn))
	  ninsns++;
    }
  free(bbs);

  return ninsns;
}

/* Counts number of insns executed on average per iteration LOOP.  */
int
average_num_loop_insns (struct loop *loop)
{
  basic_block *bbs, bb;
  unsigned i, binsns, ninsns, ratio;
  rtx insn;

  ninsns = 0;
  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
    {
      bb = bbs[i];

      binsns = 1;
      for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
	if (INSN_P (insn))
	  binsns++;

      ratio = loop->header->frequency == 0
	      ? BB_FREQ_MAX
	      : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
      ninsns += binsns * ratio;
    }
  free(bbs);

  ninsns /= BB_FREQ_MAX;
  if (!ninsns)
    ninsns = 1; /* To avoid division by zero.  */

  return ninsns;
}

/* Returns expected number of LOOP iterations.
   Compute upper bound on number of iterations in case they do not fit integer
   to help loop peeling heuristics.  Use exact counts if at all possible.  */
unsigned
expected_loop_iterations (const struct loop *loop)
{
  edge e;

  if (loop->header->count)
    {
      gcov_type count_in, count_latch, expected;

      count_in = 0;
      count_latch = 0;

      for (e = loop->header->pred; e; e = e->pred_next)
	if (e->src == loop->latch)
	  count_latch = e->count;
	else
	  count_in += e->count;

      if (count_in == 0)
	return 0;

      expected = (count_latch + count_in - 1) / count_in;

      /* Avoid overflows.  */
      return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
    }
  else
    {
      int freq_in, freq_latch;

      freq_in = 0;
      freq_latch = 0;

      for (e = loop->header->pred; e; e = e->pred_next)
	if (e->src == loop->latch)
	  freq_latch = EDGE_FREQUENCY (e);
	else
	  freq_in += EDGE_FREQUENCY (e);

      if (freq_in == 0)
	return 0;

      return (freq_latch + freq_in - 1) / freq_in;
    }
}