1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
|
/* Subroutines used for code generation on the DEC Alpha.
Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "reload.h"
#include "tree.h"
#include "expr.h"
#include "obstack.h"
#include "except.h"
#include "function.h"
#include "toplev.h"
/* External data. */
extern char *version_string;
extern int rtx_equal_function_value_matters;
/* Specify which cpu to schedule for. */
enum processor_type alpha_cpu;
static char* const alpha_cpu_name[] =
{
"ev4", "ev5", "ev6"
};
/* Specify how accurate floating-point traps need to be. */
enum alpha_trap_precision alpha_tp;
/* Specify the floating-point rounding mode. */
enum alpha_fp_rounding_mode alpha_fprm;
/* Specify which things cause traps. */
enum alpha_fp_trap_mode alpha_fptm;
/* Strings decoded into the above options. */
char *alpha_cpu_string; /* -mcpu= */
char *alpha_tp_string; /* -mtrap-precision=[p|s|i] */
char *alpha_fprm_string; /* -mfp-rounding-mode=[n|m|c|d] */
char *alpha_fptm_string; /* -mfp-trap-mode=[n|u|su|sui] */
char *alpha_mlat_string; /* -mmemory-latency= */
/* Save information from a "cmpxx" operation until the branch or scc is
emitted. */
rtx alpha_compare_op0, alpha_compare_op1;
int alpha_compare_fp_p;
/* Define the information needed to modify the epilogue for EH. */
rtx alpha_eh_epilogue_sp_ofs;
/* Non-zero if inside of a function, because the Alpha asm can't
handle .files inside of functions. */
static int inside_function = FALSE;
/* If non-null, this rtx holds the return address for the function. */
static rtx alpha_return_addr_rtx;
/* The number of cycles of latency we should assume on memory reads. */
int alpha_memory_latency = 3;
/* Whether the function needs the GP. */
static int alpha_function_needs_gp;
/* The alias set for prologue/epilogue register save/restore. */
static int alpha_sr_alias_set;
/* Declarations of static functions. */
static void alpha_set_memflags_1
PROTO((rtx, int, int, int));
static rtx alpha_emit_set_const_1
PROTO((rtx, enum machine_mode, HOST_WIDE_INT, int));
static void alpha_expand_unaligned_load_words
PROTO((rtx *out_regs, rtx smem, HOST_WIDE_INT words, HOST_WIDE_INT ofs));
static void alpha_expand_unaligned_store_words
PROTO((rtx *out_regs, rtx smem, HOST_WIDE_INT words, HOST_WIDE_INT ofs));
static void alpha_sa_mask
PROTO((unsigned long *imaskP, unsigned long *fmaskP));
static int alpha_does_function_need_gp
PROTO((void));
/* Get the number of args of a function in one of two ways. */
#ifdef OPEN_VMS
#define NUM_ARGS current_function_args_info.num_args
#else
#define NUM_ARGS current_function_args_info
#endif
#define REG_PV 27
#define REG_RA 26
/* Parse target option strings. */
void
override_options ()
{
alpha_cpu
= TARGET_CPU_DEFAULT & MASK_CPU_EV6 ? PROCESSOR_EV6
: (TARGET_CPU_DEFAULT & MASK_CPU_EV5 ? PROCESSOR_EV5 : PROCESSOR_EV4);
if (alpha_cpu_string)
{
if (! strcmp (alpha_cpu_string, "ev4")
|| ! strcmp (alpha_cpu_string, "21064"))
{
alpha_cpu = PROCESSOR_EV4;
target_flags &= ~ (MASK_BWX | MASK_CIX | MASK_MAX);
}
else if (! strcmp (alpha_cpu_string, "ev5")
|| ! strcmp (alpha_cpu_string, "21164"))
{
alpha_cpu = PROCESSOR_EV5;
target_flags &= ~ (MASK_BWX | MASK_CIX | MASK_MAX);
}
else if (! strcmp (alpha_cpu_string, "ev56")
|| ! strcmp (alpha_cpu_string, "21164a"))
{
alpha_cpu = PROCESSOR_EV5;
target_flags |= MASK_BWX;
target_flags &= ~ (MASK_CIX | MASK_MAX);
}
else if (! strcmp (alpha_cpu_string, "pca56")
|| ! strcmp (alpha_cpu_string, "21164PC")
|| ! strcmp (alpha_cpu_string, "21164pc"))
{
alpha_cpu = PROCESSOR_EV5;
target_flags |= MASK_BWX | MASK_MAX;
target_flags &= ~ MASK_CIX;
}
else if (! strcmp (alpha_cpu_string, "ev6")
|| ! strcmp (alpha_cpu_string, "21264"))
{
alpha_cpu = PROCESSOR_EV6;
target_flags |= MASK_BWX | MASK_CIX | MASK_MAX;
}
else
error ("bad value `%s' for -mcpu switch", alpha_cpu_string);
}
alpha_tp = ALPHA_TP_PROG;
alpha_fprm = ALPHA_FPRM_NORM;
alpha_fptm = ALPHA_FPTM_N;
if (TARGET_IEEE)
{
alpha_tp = ALPHA_TP_INSN;
alpha_fptm = ALPHA_FPTM_SU;
}
if (TARGET_IEEE_WITH_INEXACT)
{
alpha_tp = ALPHA_TP_INSN;
alpha_fptm = ALPHA_FPTM_SUI;
}
if (alpha_tp_string)
{
if (! strcmp (alpha_tp_string, "p"))
alpha_tp = ALPHA_TP_PROG;
else if (! strcmp (alpha_tp_string, "f"))
alpha_tp = ALPHA_TP_FUNC;
else if (! strcmp (alpha_tp_string, "i"))
alpha_tp = ALPHA_TP_INSN;
else
error ("bad value `%s' for -mtrap-precision switch", alpha_tp_string);
}
if (alpha_fprm_string)
{
if (! strcmp (alpha_fprm_string, "n"))
alpha_fprm = ALPHA_FPRM_NORM;
else if (! strcmp (alpha_fprm_string, "m"))
alpha_fprm = ALPHA_FPRM_MINF;
else if (! strcmp (alpha_fprm_string, "c"))
alpha_fprm = ALPHA_FPRM_CHOP;
else if (! strcmp (alpha_fprm_string,"d"))
alpha_fprm = ALPHA_FPRM_DYN;
else
error ("bad value `%s' for -mfp-rounding-mode switch",
alpha_fprm_string);
}
if (alpha_fptm_string)
{
if (strcmp (alpha_fptm_string, "n") == 0)
alpha_fptm = ALPHA_FPTM_N;
else if (strcmp (alpha_fptm_string, "u") == 0)
alpha_fptm = ALPHA_FPTM_U;
else if (strcmp (alpha_fptm_string, "su") == 0)
alpha_fptm = ALPHA_FPTM_SU;
else if (strcmp (alpha_fptm_string, "sui") == 0)
alpha_fptm = ALPHA_FPTM_SUI;
else
error ("bad value `%s' for -mfp-trap-mode switch", alpha_fptm_string);
}
/* Do some sanity checks on the above option. */
if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI)
&& alpha_tp != ALPHA_TP_INSN)
{
warning ("fp software completion requires -mtrap-precision=i");
alpha_tp = ALPHA_TP_INSN;
}
if (TARGET_FLOAT_VAX)
{
if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN)
{
warning ("rounding mode not supported for VAX floats");
alpha_fprm = ALPHA_FPRM_NORM;
}
if (alpha_fptm == ALPHA_FPTM_SUI)
{
warning ("trap mode not supported for VAX floats");
alpha_fptm = ALPHA_FPTM_SU;
}
}
{
char *end;
int lat;
if (!alpha_mlat_string)
alpha_mlat_string = "L1";
if (isdigit (alpha_mlat_string[0])
&& (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0'))
;
else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l')
&& isdigit (alpha_mlat_string[1])
&& alpha_mlat_string[2] == '\0')
{
static int const cache_latency[][4] =
{
{ 3, 30, -1 }, /* ev4 -- Bcache is a guess */
{ 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
{ 3, 13, -1 }, /* ev6 -- Ho hum, doesn't exist yet */
};
lat = alpha_mlat_string[1] - '0';
if (lat < 0 || lat > 3 || cache_latency[alpha_cpu][lat-1] == -1)
{
warning ("L%d cache latency unknown for %s",
lat, alpha_cpu_name[alpha_cpu]);
lat = 3;
}
else
lat = cache_latency[alpha_cpu][lat-1];
}
else if (! strcmp (alpha_mlat_string, "main"))
{
/* Most current memories have about 370ns latency. This is
a reasonable guess for a fast cpu. */
lat = 150;
}
else
{
warning ("bad value `%s' for -mmemory-latency", alpha_mlat_string);
lat = 3;
}
alpha_memory_latency = lat;
}
/* Default the definition of "small data" to 8 bytes. */
if (!g_switch_set)
g_switch_value = 8;
/* Acquire a unique set number for our register saves and restores. */
alpha_sr_alias_set = new_alias_set ();
}
/* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
int
zap_mask (value)
HOST_WIDE_INT value;
{
int i;
for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
i++, value >>= 8)
if ((value & 0xff) != 0 && (value & 0xff) != 0xff)
return 0;
return 1;
}
/* Returns 1 if OP is either the constant zero or a register. If a
register, it must be in the proper mode unless MODE is VOIDmode. */
int
reg_or_0_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return op == const0_rtx || register_operand (op, mode);
}
/* Return 1 if OP is a constant in the range of 0-63 (for a shift) or
any register. */
int
reg_or_6bit_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return ((GET_CODE (op) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 64)
|| GET_CODE (op) == CONSTANT_P_RTX
|| register_operand (op, mode));
}
/* Return 1 if OP is an 8-bit constant or any register. */
int
reg_or_8bit_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return ((GET_CODE (op) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100)
|| GET_CODE (op) == CONSTANT_P_RTX
|| register_operand (op, mode));
}
/* Return 1 if OP is an 8-bit constant. */
int
cint8_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return ((GET_CODE (op) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100)
|| GET_CODE (op) == CONSTANT_P_RTX);
}
/* Return 1 if the operand is a valid second operand to an add insn. */
int
add_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT)
return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'K')
|| CONST_OK_FOR_LETTER_P (INTVAL (op), 'L')
|| CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'));
else if (GET_CODE (op) == CONSTANT_P_RTX)
return 1;
return register_operand (op, mode);
}
/* Return 1 if the operand is a valid second operand to a sign-extending
add insn. */
int
sext_add_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT)
return ((unsigned HOST_WIDE_INT) INTVAL (op) < 255
|| (unsigned HOST_WIDE_INT) (- INTVAL (op)) < 255);
else if (GET_CODE (op) == CONSTANT_P_RTX)
return 1;
return register_operand (op, mode);
}
/* Return 1 if OP is the constant 4 or 8. */
int
const48_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT
&& (INTVAL (op) == 4 || INTVAL (op) == 8));
}
/* Return 1 if OP is a valid first operand to an AND insn. */
int
and_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
return (zap_mask (CONST_DOUBLE_LOW (op))
&& zap_mask (CONST_DOUBLE_HIGH (op)));
if (GET_CODE (op) == CONST_INT)
return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
|| (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100
|| zap_mask (INTVAL (op)));
else if (GET_CODE (op) == CONSTANT_P_RTX)
return 1;
return register_operand (op, mode);
}
/* Return 1 if OP is a valid first operand to an IOR or XOR insn. */
int
or_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT)
return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
|| (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100);
else if (GET_CODE (op) == CONSTANT_P_RTX)
return 1;
return register_operand (op, mode);
}
/* Return 1 if OP is a constant that is the width, in bits, of an integral
mode smaller than DImode. */
int
mode_width_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT
&& (INTVAL (op) == 8 || INTVAL (op) == 16
|| INTVAL (op) == 32 || INTVAL (op) == 64));
}
/* Return 1 if OP is a constant that is the width of an integral machine mode
smaller than an integer. */
int
mode_mask_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
#if HOST_BITS_PER_WIDE_INT == 32
if (GET_CODE (op) == CONST_DOUBLE)
return (CONST_DOUBLE_LOW (op) == -1
&& (CONST_DOUBLE_HIGH (op) == -1
|| CONST_DOUBLE_HIGH (op) == 0));
#else
if (GET_CODE (op) == CONST_DOUBLE)
return (CONST_DOUBLE_LOW (op) == -1 && CONST_DOUBLE_HIGH (op) == 0);
#endif
return (GET_CODE (op) == CONST_INT
&& (INTVAL (op) == 0xff
|| INTVAL (op) == 0xffff
|| INTVAL (op) == (HOST_WIDE_INT)0xffffffff
#if HOST_BITS_PER_WIDE_INT == 64
|| INTVAL (op) == -1
#endif
));
}
/* Return 1 if OP is a multiple of 8 less than 64. */
int
mul8_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 64
&& (INTVAL (op) & 7) == 0);
}
/* Return 1 if OP is the constant zero in floating-point. */
int
fp0_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return (GET_MODE (op) == mode
&& GET_MODE_CLASS (mode) == MODE_FLOAT && op == CONST0_RTX (mode));
}
/* Return 1 if OP is the floating-point constant zero or a register. */
int
reg_or_fp0_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return fp0_operand (op, mode) || register_operand (op, mode);
}
/* Return 1 if OP is a hard floating-point register. */
int
hard_fp_register_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return ((GET_CODE (op) == REG && REGNO_REG_CLASS (REGNO (op)) == FLOAT_REGS)
|| (GET_CODE (op) == SUBREG
&& hard_fp_register_operand (SUBREG_REG (op), mode)));
}
/* Return 1 if OP is a register or a constant integer. */
int
reg_or_cint_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_INT
|| GET_CODE (op) == CONSTANT_P_RTX
|| register_operand (op, mode));
}
/* Return 1 if OP is something that can be reloaded into a register;
if it is a MEM, it need not be valid. */
int
some_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
return 0;
switch (GET_CODE (op))
{
case REG: case MEM: case CONST_DOUBLE: case CONST_INT: case LABEL_REF:
case SYMBOL_REF: case CONST: case CONSTANT_P_RTX:
return 1;
case SUBREG:
return some_operand (SUBREG_REG (op), VOIDmode);
default:
break;
}
return 0;
}
/* Return 1 if OP is a valid operand for the source of a move insn. */
int
input_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_MODE_CLASS (mode) == MODE_FLOAT && GET_MODE (op) != mode)
return 0;
switch (GET_CODE (op))
{
case LABEL_REF:
case SYMBOL_REF:
case CONST:
/* This handles both the Windows/NT and OSF cases. */
return mode == ptr_mode || mode == DImode;
case REG:
return 1;
case SUBREG:
if (register_operand (op, mode))
return 1;
/* ... fall through ... */
case MEM:
return ((TARGET_BWX || (mode != HImode && mode != QImode))
&& general_operand (op, mode));
case CONST_DOUBLE:
return GET_MODE_CLASS (mode) == MODE_FLOAT && op == CONST0_RTX (mode);
case CONST_INT:
case CONSTANT_P_RTX:
return mode == QImode || mode == HImode || add_operand (op, mode);
default:
break;
}
return 0;
}
/* Return 1 if OP is a SYMBOL_REF for a function known to be in this
file. */
int
current_file_function_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == SYMBOL_REF
&& ! profile_flag && ! profile_block_flag
&& (SYMBOL_REF_FLAG (op)
|| op == XEXP (DECL_RTL (current_function_decl), 0)));
}
/* Return 1 if OP is a valid operand for the MEM of a CALL insn. */
int
call_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != Pmode)
return 0;
return (GET_CODE (op) == SYMBOL_REF
|| (GET_CODE (op) == REG
&& (TARGET_OPEN_VMS || TARGET_WINDOWS_NT || REGNO (op) == 27)));
}
/* Return 1 if OP is a valid Alpha comparison operator. Here we know which
comparisons are valid in which insn. */
int
alpha_comparison_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (op);
if (mode != GET_MODE (op) || GET_RTX_CLASS (code) != '<')
return 0;
return (code == EQ || code == LE || code == LT
|| (mode == DImode && (code == LEU || code == LTU)));
}
/* Return 1 if OP is a valid Alpha swapped comparison operator. */
int
alpha_swapped_comparison_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (op);
if (mode != GET_MODE (op) || GET_RTX_CLASS (code) != '<')
return 0;
code = swap_condition (code);
return (code == EQ || code == LE || code == LT
|| (mode == DImode && (code == LEU || code == LTU)));
}
/* Return 1 if OP is a signed comparison operation. */
int
signed_comparison_operator (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
switch (GET_CODE (op))
{
case EQ: case NE: case LE: case LT: case GE: case GT:
return 1;
default:
break;
}
return 0;
}
/* Return 1 if this is a divide or modulus operator. */
int
divmod_operator (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
switch (GET_CODE (op))
{
case DIV: case MOD: case UDIV: case UMOD:
return 1;
default:
break;
}
return 0;
}
/* Return 1 if this memory address is a known aligned register plus
a constant. It must be a valid address. This means that we can do
this as an aligned reference plus some offset.
Take into account what reload will do.
We could say that out-of-range stack slots are alignable, but that would
complicate get_aligned_mem and it isn't worth the trouble since few
functions have large stack space. */
int
aligned_memory_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SUBREG)
{
if (GET_MODE (op) != mode)
return 0;
op = SUBREG_REG (op);
mode = GET_MODE (op);
}
if (reload_in_progress && GET_CODE (op) == REG
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
op = reg_equiv_mem[REGNO (op)];
if (GET_CODE (op) != MEM || GET_MODE (op) != mode
|| ! memory_address_p (mode, XEXP (op, 0)))
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) == PLUS)
op = XEXP (op, 0);
return (GET_CODE (op) == REG
&& REGNO_POINTER_ALIGN (REGNO (op)) >= 4);
}
/* Similar, but return 1 if OP is a MEM which is not alignable. */
int
unaligned_memory_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SUBREG)
{
if (GET_MODE (op) != mode)
return 0;
op = SUBREG_REG (op);
mode = GET_MODE (op);
}
if (reload_in_progress && GET_CODE (op) == REG
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
op = reg_equiv_mem[REGNO (op)];
if (GET_CODE (op) != MEM || GET_MODE (op) != mode)
return 0;
op = XEXP (op, 0);
if (! memory_address_p (mode, op))
return 1;
if (GET_CODE (op) == PLUS)
op = XEXP (op, 0);
return (GET_CODE (op) != REG
|| REGNO_POINTER_ALIGN (REGNO (op)) < 4);
}
/* Return 1 if OP is either a register or an unaligned memory location. */
int
reg_or_unaligned_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return register_operand (op, mode) || unaligned_memory_operand (op, mode);
}
/* Return 1 if OP is any memory location. During reload a pseudo matches. */
int
any_memory_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == MEM
|| (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG)
|| (reload_in_progress && GET_CODE (op) == REG
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|| (reload_in_progress && GET_CODE (op) == SUBREG
&& GET_CODE (SUBREG_REG (op)) == REG
&& REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER));
}
/* Return 1 if this function can directly return via $26. */
int
direct_return ()
{
return (! TARGET_OPEN_VMS && reload_completed && alpha_sa_size () == 0
&& get_frame_size () == 0
&& current_function_outgoing_args_size == 0
&& current_function_pretend_args_size == 0);
}
/* REF is an alignable memory location. Place an aligned SImode
reference into *PALIGNED_MEM and the number of bits to shift into
*PBITNUM. */
void
get_aligned_mem (ref, paligned_mem, pbitnum)
rtx ref;
rtx *paligned_mem, *pbitnum;
{
rtx base;
HOST_WIDE_INT offset = 0;
if (GET_CODE (ref) == SUBREG)
{
offset = SUBREG_WORD (ref) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (ref)))
- MIN (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (SUBREG_REG (ref)))));
ref = SUBREG_REG (ref);
}
if (GET_CODE (ref) == REG)
ref = reg_equiv_mem[REGNO (ref)];
if (reload_in_progress)
base = find_replacement (&XEXP (ref, 0));
else
base = XEXP (ref, 0);
if (GET_CODE (base) == PLUS)
offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
*paligned_mem = gen_rtx_MEM (SImode, plus_constant (base, offset & ~3));
MEM_IN_STRUCT_P (*paligned_mem) = MEM_IN_STRUCT_P (ref);
MEM_VOLATILE_P (*paligned_mem) = MEM_VOLATILE_P (ref);
RTX_UNCHANGING_P (*paligned_mem) = RTX_UNCHANGING_P (ref);
/* Sadly, we cannot use alias sets here because we may overlap other
data in a different alias set. */
/* MEM_ALIAS_SET (*paligned_mem) = MEM_ALIAS_SET (ref); */
*pbitnum = GEN_INT ((offset & 3) * 8);
}
/* Similar, but just get the address. Handle the two reload cases.
Add EXTRA_OFFSET to the address we return. */
rtx
get_unaligned_address (ref, extra_offset)
rtx ref;
int extra_offset;
{
rtx base;
HOST_WIDE_INT offset = 0;
if (GET_CODE (ref) == SUBREG)
{
offset = SUBREG_WORD (ref) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (ref)))
- MIN (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (SUBREG_REG (ref)))));
ref = SUBREG_REG (ref);
}
if (GET_CODE (ref) == REG)
ref = reg_equiv_mem[REGNO (ref)];
if (reload_in_progress)
base = find_replacement (&XEXP (ref, 0));
else
base = XEXP (ref, 0);
if (GET_CODE (base) == PLUS)
offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
return plus_constant (base, offset + extra_offset);
}
/* Subfunction of the following function. Update the flags of any MEM
found in part of X. */
static void
alpha_set_memflags_1 (x, in_struct_p, volatile_p, unchanging_p)
rtx x;
int in_struct_p, volatile_p, unchanging_p;
{
int i;
switch (GET_CODE (x))
{
case SEQUENCE:
case PARALLEL:
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
alpha_set_memflags_1 (XVECEXP (x, 0, i), in_struct_p, volatile_p,
unchanging_p);
break;
case INSN:
alpha_set_memflags_1 (PATTERN (x), in_struct_p, volatile_p,
unchanging_p);
break;
case SET:
alpha_set_memflags_1 (SET_DEST (x), in_struct_p, volatile_p,
unchanging_p);
alpha_set_memflags_1 (SET_SRC (x), in_struct_p, volatile_p,
unchanging_p);
break;
case MEM:
MEM_IN_STRUCT_P (x) = in_struct_p;
MEM_VOLATILE_P (x) = volatile_p;
RTX_UNCHANGING_P (x) = unchanging_p;
/* Sadly, we cannot use alias sets because the extra aliasing
produced by the AND interferes. Given that two-byte quantities
are the only thing we would be able to differentiate anyway,
there does not seem to be any point in convoluting the early
out of the alias check. */
/* MEM_ALIAS_SET (x) = alias_set; */
break;
default:
break;
}
}
/* Given INSN, which is either an INSN or a SEQUENCE generated to
perform a memory operation, look for any MEMs in either a SET_DEST or
a SET_SRC and copy the in-struct, unchanging, and volatile flags from
REF into each of the MEMs found. If REF is not a MEM, don't do
anything. */
void
alpha_set_memflags (insn, ref)
rtx insn;
rtx ref;
{
int in_struct_p, volatile_p, unchanging_p;
if (GET_CODE (ref) != MEM)
return;
in_struct_p = MEM_IN_STRUCT_P (ref);
volatile_p = MEM_VOLATILE_P (ref);
unchanging_p = RTX_UNCHANGING_P (ref);
/* This is only called from alpha.md, after having had something
generated from one of the insn patterns. So if everything is
zero, the pattern is already up-to-date. */
if (! in_struct_p && ! volatile_p && ! unchanging_p)
return;
alpha_set_memflags_1 (insn, in_struct_p, volatile_p, unchanging_p);
}
/* Try to output insns to set TARGET equal to the constant C if it can be
done in less than N insns. Do all computations in MODE. Returns the place
where the output has been placed if it can be done and the insns have been
emitted. If it would take more than N insns, zero is returned and no
insns and emitted. */
rtx
alpha_emit_set_const (target, mode, c, n)
rtx target;
enum machine_mode mode;
HOST_WIDE_INT c;
int n;
{
rtx pat;
int i;
/* Try 1 insn, then 2, then up to N. */
for (i = 1; i <= n; i++)
if ((pat = alpha_emit_set_const_1 (target, mode, c, i)) != 0)
return pat;
return 0;
}
/* Internal routine for the above to check for N or below insns. */
static rtx
alpha_emit_set_const_1 (target, mode, c, n)
rtx target;
enum machine_mode mode;
HOST_WIDE_INT c;
int n;
{
HOST_WIDE_INT new = c;
int i, bits;
/* Use a pseudo if highly optimizing and still generating RTL. */
rtx subtarget
= (flag_expensive_optimizations && rtx_equal_function_value_matters
? 0 : target);
rtx temp;
#if HOST_BITS_PER_WIDE_INT == 64
/* We are only called for SImode and DImode. If this is SImode, ensure that
we are sign extended to a full word. This does not make any sense when
cross-compiling on a narrow machine. */
if (mode == SImode)
c = (c & 0xffffffff) - 2 * (c & 0x80000000);
#endif
/* If this is a sign-extended 32-bit constant, we can do this in at most
three insns, so do it if we have enough insns left. We always have
a sign-extended 32-bit constant when compiling on a narrow machine. */
if (HOST_BITS_PER_WIDE_INT != 64
|| c >> 31 == -1 || c >> 31 == 0)
{
HOST_WIDE_INT low = (c & 0xffff) - 2 * (c & 0x8000);
HOST_WIDE_INT tmp1 = c - low;
HOST_WIDE_INT high
= ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
HOST_WIDE_INT extra = 0;
/* If HIGH will be interpreted as negative but the constant is
positive, we must adjust it to do two ldha insns. */
if ((high & 0x8000) != 0 && c >= 0)
{
extra = 0x4000;
tmp1 -= 0x40000000;
high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
}
if (c == low || (low == 0 && extra == 0))
{
/* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
but that meant that we can't handle INT_MIN on 32-bit machines
(like NT/Alpha), because we recurse indefinitely through
emit_move_insn to gen_movdi. So instead, since we know exactly
what we want, create it explicitly. */
if (target == NULL)
target = gen_reg_rtx (mode);
emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c)));
return target;
}
else if (n >= 2 + (extra != 0))
{
temp = copy_to_suggested_reg (GEN_INT (low), subtarget, mode);
if (extra != 0)
temp = expand_binop (mode, add_optab, temp, GEN_INT (extra << 16),
subtarget, 0, OPTAB_WIDEN);
return expand_binop (mode, add_optab, temp, GEN_INT (high << 16),
target, 0, OPTAB_WIDEN);
}
}
/* If we couldn't do it that way, try some other methods. But if we have
no instructions left, don't bother. Likewise, if this is SImode and
we can't make pseudos, we can't do anything since the expand_binop
and expand_unop calls will widen and try to make pseudos. */
if (n == 1
|| (mode == SImode && ! rtx_equal_function_value_matters))
return 0;
#if HOST_BITS_PER_WIDE_INT == 64
/* First, see if can load a value into the target that is the same as the
constant except that all bytes that are 0 are changed to be 0xff. If we
can, then we can do a ZAPNOT to obtain the desired constant. */
for (i = 0; i < 64; i += 8)
if ((new & ((HOST_WIDE_INT) 0xff << i)) == 0)
new |= (HOST_WIDE_INT) 0xff << i;
/* We are only called for SImode and DImode. If this is SImode, ensure that
we are sign extended to a full word. */
if (mode == SImode)
new = (new & 0xffffffff) - 2 * (new & 0x80000000);
if (new != c
&& (temp = alpha_emit_set_const (subtarget, mode, new, n - 1)) != 0)
return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new),
target, 0, OPTAB_WIDEN);
#endif
/* Next, see if we can load a related constant and then shift and possibly
negate it to get the constant we want. Try this once each increasing
numbers of insns. */
for (i = 1; i < n; i++)
{
/* First try complementing. */
if ((temp = alpha_emit_set_const (subtarget, mode, ~ c, i)) != 0)
return expand_unop (mode, one_cmpl_optab, temp, target, 0);
/* Next try to form a constant and do a left shift. We can do this
if some low-order bits are zero; the exact_log2 call below tells
us that information. The bits we are shifting out could be any
value, but here we'll just try the 0- and sign-extended forms of
the constant. To try to increase the chance of having the same
constant in more than one insn, start at the highest number of
bits to shift, but try all possibilities in case a ZAPNOT will
be useful. */
if ((bits = exact_log2 (c & - c)) > 0)
for (; bits > 0; bits--)
if ((temp = (alpha_emit_set_const
(subtarget, mode,
(unsigned HOST_WIDE_INT) c >> bits, i))) != 0
|| ((temp = (alpha_emit_set_const
(subtarget, mode,
((unsigned HOST_WIDE_INT) c) >> bits, i)))
!= 0))
return expand_binop (mode, ashl_optab, temp, GEN_INT (bits),
target, 0, OPTAB_WIDEN);
/* Now try high-order zero bits. Here we try the shifted-in bits as
all zero and all ones. Be careful to avoid shifting outside the
mode and to avoid shifting outside the host wide int size. */
/* On narrow hosts, don't shift a 1 into the high bit, since we'll
confuse the recursive call and set all of the high 32 bits. */
if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
- floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64))) > 0)
for (; bits > 0; bits--)
if ((temp = alpha_emit_set_const (subtarget, mode,
c << bits, i)) != 0
|| ((temp = (alpha_emit_set_const
(subtarget, mode,
((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
i)))
!= 0))
return expand_binop (mode, lshr_optab, temp, GEN_INT (bits),
target, 1, OPTAB_WIDEN);
/* Now try high-order 1 bits. We get that with a sign-extension.
But one bit isn't enough here. Be careful to avoid shifting outside
the mode and to avoid shifting outside the host wide int size. */
if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
- floor_log2 (~ c) - 2)) > 0)
for (; bits > 0; bits--)
if ((temp = alpha_emit_set_const (subtarget, mode,
c << bits, i)) != 0
|| ((temp = (alpha_emit_set_const
(subtarget, mode,
((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
i)))
!= 0))
return expand_binop (mode, ashr_optab, temp, GEN_INT (bits),
target, 0, OPTAB_WIDEN);
}
return 0;
}
/* Having failed to find a 3 insn sequence in alpha_emit_set_const,
fall back to a straight forward decomposition. We do this to avoid
exponential run times encountered when looking for longer sequences
with alpha_emit_set_const. */
rtx
alpha_emit_set_long_const (target, c1, c2)
rtx target;
HOST_WIDE_INT c1, c2;
{
HOST_WIDE_INT d1, d2, d3, d4;
/* Decompose the entire word */
#if HOST_BITS_PER_WIDE_INT >= 64
if (c2 != -(c1 < 0))
abort ();
d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
c1 -= d1;
d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
c1 = (c1 - d2) >> 32;
d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
c1 -= d3;
d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
if (c1 != d4)
abort ();
#else
d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
c1 -= d1;
d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
if (c1 != d2)
abort ();
c2 += (d2 < 0);
d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000;
c2 -= d3;
d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000;
if (c2 != d4)
abort ();
#endif
/* Construct the high word */
if (d4)
{
emit_move_insn (target, GEN_INT (d4));
if (d3)
emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3)));
}
else
emit_move_insn (target, GEN_INT (d3));
/* Shift it into place */
emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32)));
/* Add in the low bits. */
if (d2)
emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2)));
if (d1)
emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1)));
return target;
}
/* Generate the comparison for a conditional branch. */
rtx
alpha_emit_conditional_branch (code)
enum rtx_code code;
{
enum rtx_code cmp_code, branch_code;
enum machine_mode cmp_mode, branch_mode = VOIDmode;
rtx op0 = alpha_compare_op0, op1 = alpha_compare_op1;
rtx tem;
/* The general case: fold the comparison code to the types of compares
that we have, choosing the branch as necessary. */
switch (code)
{
case EQ: case LE: case LT: case LEU: case LTU:
/* We have these compares: */
cmp_code = code, branch_code = NE;
break;
case NE:
/* This must be reversed. */
cmp_code = EQ, branch_code = EQ;
break;
case GE: case GT: case GEU: case GTU:
/* For FP, we swap them, for INT, we reverse them. */
if (alpha_compare_fp_p)
{
cmp_code = swap_condition (code);
branch_code = NE;
tem = op0, op0 = op1, op1 = tem;
}
else
{
cmp_code = reverse_condition (code);
branch_code = EQ;
}
break;
default:
abort ();
}
if (alpha_compare_fp_p)
{
cmp_mode = DFmode;
if (flag_fast_math)
{
/* When we are not as concerned about non-finite values, and we
are comparing against zero, we can branch directly. */
if (op1 == CONST0_RTX (DFmode))
cmp_code = NIL, branch_code = code;
else if (op0 == CONST0_RTX (DFmode))
{
/* Undo the swap we probably did just above. */
tem = op0, op0 = op1, op1 = tem;
branch_code = swap_condition (cmp_code);
cmp_code = NIL;
}
}
else
{
/* ??? We mark the the branch mode to be CCmode to prevent the
compare and branch from being combined, since the compare
insn follows IEEE rules that the branch does not. */
branch_mode = CCmode;
}
}
else
{
cmp_mode = DImode;
/* The following optimizations are only for signed compares. */
if (code != LEU && code != LTU && code != GEU && code != GTU)
{
/* Whee. Compare and branch against 0 directly. */
if (op1 == const0_rtx)
cmp_code = NIL, branch_code = code;
/* We want to use cmpcc/bcc when we can, since there is a zero delay
bypass between logicals and br/cmov on EV5. But we don't want to
force valid immediate constants into registers needlessly. */
else if (GET_CODE (op1) == CONST_INT)
{
HOST_WIDE_INT v = INTVAL (op1), n = -v;
if (! CONST_OK_FOR_LETTER_P (v, 'I')
&& (CONST_OK_FOR_LETTER_P (n, 'K')
|| CONST_OK_FOR_LETTER_P (n, 'L')))
{
cmp_code = PLUS, branch_code = code;
op1 = GEN_INT (n);
}
}
}
}
/* Force op0 into a register. */
if (GET_CODE (op0) != REG)
op0 = force_reg (cmp_mode, op0);
/* Emit an initial compare instruction, if necessary. */
tem = op0;
if (cmp_code != NIL)
{
tem = gen_reg_rtx (cmp_mode);
emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1));
}
/* Return the branch comparison. */
return gen_rtx_fmt_ee (branch_code, branch_mode, tem, CONST0_RTX (cmp_mode));
}
/* Rewrite a comparison against zero CMP of the form
(CODE (cc0) (const_int 0)) so it can be written validly in
a conditional move (if_then_else CMP ...).
If both of the operands that set cc0 are non-zero we must emit
an insn to perform the compare (it can't be done within
the conditional move). */
rtx
alpha_emit_conditional_move (cmp, mode)
rtx cmp;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (cmp);
enum rtx_code cmov_code = NE;
rtx op0 = alpha_compare_op0;
rtx op1 = alpha_compare_op1;
enum machine_mode cmp_mode
= (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0));
enum machine_mode cmp_op_mode = alpha_compare_fp_p ? DFmode : DImode;
enum machine_mode cmov_mode = VOIDmode;
rtx tem;
if (alpha_compare_fp_p != FLOAT_MODE_P (mode))
return 0;
/* We may be able to use a conditional move directly.
This avoids emitting spurious compares. */
if (signed_comparison_operator (cmp, cmp_op_mode)
&& (!alpha_compare_fp_p || flag_fast_math)
&& (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode)))
return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
/* We can't put the comparison insides a conditional move;
emit a compare instruction and put that inside the
conditional move. Make sure we emit only comparisons we have;
swap or reverse as necessary. */
switch (code)
{
case EQ: case LE: case LT: case LEU: case LTU:
/* We have these compares: */
break;
case NE:
/* This must be reversed. */
code = reverse_condition (code);
cmov_code = EQ;
break;
case GE: case GT: case GEU: case GTU:
/* These must be swapped. Make sure the new first operand is in
a register. */
code = swap_condition (code);
tem = op0, op0 = op1, op1 = tem;
op0 = force_reg (cmp_mode, op0);
break;
default:
abort ();
}
/* ??? We mark the branch mode to be CCmode to prevent the compare
and cmov from being combined, since the compare insn follows IEEE
rules that the cmov does not. */
if (alpha_compare_fp_p && !flag_fast_math)
cmov_mode = CCmode;
tem = gen_reg_rtx (cmp_op_mode);
emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_op_mode, op0, op1));
return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_op_mode));
}
/* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
unaligned data:
unsigned: signed:
word: ldq_u r1,X(r11) ldq_u r1,X(r11)
ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
lda r3,X(r11) lda r3,X+2(r11)
extwl r1,r3,r1 extql r1,r3,r1
extwh r2,r3,r2 extqh r2,r3,r2
or r1.r2.r1 or r1,r2,r1
sra r1,48,r1
long: ldq_u r1,X(r11) ldq_u r1,X(r11)
ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
lda r3,X(r11) lda r3,X(r11)
extll r1,r3,r1 extll r1,r3,r1
extlh r2,r3,r2 extlh r2,r3,r2
or r1.r2.r1 addl r1,r2,r1
quad: ldq_u r1,X(r11)
ldq_u r2,X+7(r11)
lda r3,X(r11)
extql r1,r3,r1
extqh r2,r3,r2
or r1.r2.r1
*/
void
alpha_expand_unaligned_load (tgt, mem, size, ofs, sign)
rtx tgt, mem;
HOST_WIDE_INT size, ofs;
int sign;
{
rtx meml, memh, addr, extl, exth;
enum machine_mode mode;
meml = gen_reg_rtx (DImode);
memh = gen_reg_rtx (DImode);
addr = gen_reg_rtx (DImode);
extl = gen_reg_rtx (DImode);
exth = gen_reg_rtx (DImode);
emit_move_insn (meml,
change_address (mem, DImode,
gen_rtx_AND (DImode,
plus_constant (XEXP (mem, 0),
ofs),
GEN_INT (-8))));
emit_move_insn (memh,
change_address (mem, DImode,
gen_rtx_AND (DImode,
plus_constant (XEXP (mem, 0),
ofs + size - 1),
GEN_INT (-8))));
if (sign && size == 2)
{
emit_move_insn (addr, plus_constant (XEXP (mem, 0), ofs+2));
emit_insn (gen_extxl (extl, meml, GEN_INT (64), addr));
emit_insn (gen_extqh (exth, memh, addr));
/* We must use tgt here for the target. Alpha-vms port fails if we use
addr for the target, because addr is marked as a pointer and combine
knows that pointers are always sign-extended 32 bit values. */
addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48),
addr, 1, OPTAB_WIDEN);
}
else
{
emit_move_insn (addr, plus_constant (XEXP (mem, 0), ofs));
emit_insn (gen_extxl (extl, meml, GEN_INT (size*8), addr));
switch (size)
{
case 2:
emit_insn (gen_extwh (exth, memh, addr));
mode = HImode;
break;
case 4:
emit_insn (gen_extlh (exth, memh, addr));
mode = SImode;
break;
case 8:
emit_insn (gen_extqh (exth, memh, addr));
mode = DImode;
break;
}
addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl),
gen_lowpart (mode, exth), gen_lowpart (mode, tgt),
sign, OPTAB_WIDEN);
}
if (addr != tgt)
emit_move_insn (tgt, gen_lowpart(GET_MODE (tgt), addr));
}
/* Similarly, use ins and msk instructions to perform unaligned stores. */
void
alpha_expand_unaligned_store (dst, src, size, ofs)
rtx dst, src;
HOST_WIDE_INT size, ofs;
{
rtx dstl, dsth, addr, insl, insh, meml, memh;
dstl = gen_reg_rtx (DImode);
dsth = gen_reg_rtx (DImode);
insl = gen_reg_rtx (DImode);
insh = gen_reg_rtx (DImode);
meml = change_address (dst, DImode,
gen_rtx_AND (DImode,
plus_constant (XEXP (dst, 0), ofs),
GEN_INT (-8)));
memh = change_address (dst, DImode,
gen_rtx_AND (DImode,
plus_constant (XEXP (dst, 0),
ofs+size-1),
GEN_INT (-8)));
emit_move_insn (dsth, memh);
emit_move_insn (dstl, meml);
addr = copy_addr_to_reg (plus_constant (XEXP (dst, 0), ofs));
if (src != const0_rtx)
{
emit_insn (gen_insxh (insh, gen_lowpart (DImode, src),
GEN_INT (size*8), addr));
switch (size)
{
case 2:
emit_insn (gen_inswl (insl, gen_lowpart (HImode, src), addr));
break;
case 4:
emit_insn (gen_insll (insl, gen_lowpart (SImode, src), addr));
break;
case 8:
emit_insn (gen_insql (insl, src, addr));
break;
}
}
emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr));
switch (size)
{
case 2:
emit_insn (gen_mskxl (dstl, dstl, GEN_INT (0xffff), addr));
break;
case 4:
emit_insn (gen_mskxl (dstl, dstl, GEN_INT (0xffffffff), addr));
break;
case 8:
{
#if HOST_BITS_PER_WIDE_INT == 32
rtx msk = immed_double_const (0xffffffff, 0xffffffff, DImode);
#else
rtx msk = immed_double_const (0xffffffffffffffff, 0, DImode);
#endif
emit_insn (gen_mskxl (dstl, dstl, msk, addr));
}
break;
}
if (src != const0_rtx)
{
dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN);
dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN);
}
/* Must store high before low for degenerate case of aligned. */
emit_move_insn (memh, dsth);
emit_move_insn (meml, dstl);
}
/* The block move code tries to maximize speed by separating loads and
stores at the expense of register pressure: we load all of the data
before we store it back out. There are two secondary effects worth
mentioning, that this speeds copying to/from aligned and unaligned
buffers, and that it makes the code significantly easier to write. */
#define MAX_MOVE_WORDS 8
/* Load an integral number of consecutive unaligned quadwords. */
static void
alpha_expand_unaligned_load_words (out_regs, smem, words, ofs)
rtx *out_regs;
rtx smem;
HOST_WIDE_INT words, ofs;
{
rtx const im8 = GEN_INT (-8);
rtx const i64 = GEN_INT (64);
rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1];
rtx sreg, areg;
HOST_WIDE_INT i;
/* Generate all the tmp registers we need. */
for (i = 0; i < words; ++i)
{
data_regs[i] = out_regs[i];
ext_tmps[i] = gen_reg_rtx (DImode);
}
data_regs[words] = gen_reg_rtx (DImode);
if (ofs != 0)
smem = change_address (smem, GET_MODE (smem),
plus_constant (XEXP (smem, 0), ofs));
/* Load up all of the source data. */
for (i = 0; i < words; ++i)
{
emit_move_insn (data_regs[i],
change_address (smem, DImode,
gen_rtx_AND (DImode,
plus_constant (XEXP(smem,0),
8*i),
im8)));
}
emit_move_insn (data_regs[words],
change_address (smem, DImode,
gen_rtx_AND (DImode,
plus_constant (XEXP(smem,0),
8*words - 1),
im8)));
/* Extract the half-word fragments. Unfortunately DEC decided to make
extxh with offset zero a noop instead of zeroing the register, so
we must take care of that edge condition ourselves with cmov. */
sreg = copy_addr_to_reg (XEXP (smem, 0));
areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL,
1, OPTAB_WIDEN);
for (i = 0; i < words; ++i)
{
emit_insn (gen_extxl (data_regs[i], data_regs[i], i64, sreg));
emit_insn (gen_extqh (ext_tmps[i], data_regs[i+1], sreg));
emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i],
gen_rtx_IF_THEN_ELSE (DImode,
gen_rtx_EQ (DImode, areg,
const0_rtx),
const0_rtx, ext_tmps[i])));
}
/* Merge the half-words into whole words. */
for (i = 0; i < words; ++i)
{
out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i],
ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN);
}
}
/* Store an integral number of consecutive unaligned quadwords. DATA_REGS
may be NULL to store zeros. */
static void
alpha_expand_unaligned_store_words (data_regs, dmem, words, ofs)
rtx *data_regs;
rtx dmem;
HOST_WIDE_INT words, ofs;
{
rtx const im8 = GEN_INT (-8);
rtx const i64 = GEN_INT (64);
#if HOST_BITS_PER_WIDE_INT == 32
rtx const im1 = immed_double_const (0xffffffff, 0xffffffff, DImode);
#else
rtx const im1 = immed_double_const (0xffffffffffffffff, 0, DImode);
#endif
rtx ins_tmps[MAX_MOVE_WORDS];
rtx st_tmp_1, st_tmp_2, dreg;
rtx st_addr_1, st_addr_2;
HOST_WIDE_INT i;
/* Generate all the tmp registers we need. */
if (data_regs != NULL)
for (i = 0; i < words; ++i)
ins_tmps[i] = gen_reg_rtx(DImode);
st_tmp_1 = gen_reg_rtx(DImode);
st_tmp_2 = gen_reg_rtx(DImode);
if (ofs != 0)
dmem = change_address (dmem, GET_MODE (dmem),
plus_constant (XEXP (dmem, 0), ofs));
st_addr_2 = change_address (dmem, DImode,
gen_rtx_AND (DImode,
plus_constant (XEXP(dmem,0),
words*8 - 1),
im8));
st_addr_1 = change_address (dmem, DImode,
gen_rtx_AND (DImode,
XEXP (dmem, 0),
im8));
/* Load up the destination end bits. */
emit_move_insn (st_tmp_2, st_addr_2);
emit_move_insn (st_tmp_1, st_addr_1);
/* Shift the input data into place. */
dreg = copy_addr_to_reg (XEXP (dmem, 0));
if (data_regs != NULL)
{
for (i = words-1; i >= 0; --i)
{
emit_insn (gen_insxh (ins_tmps[i], data_regs[i], i64, dreg));
emit_insn (gen_insql (data_regs[i], data_regs[i], dreg));
}
for (i = words-1; i > 0; --i)
{
ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i],
ins_tmps[i-1], ins_tmps[i-1], 1,
OPTAB_WIDEN);
}
}
/* Split and merge the ends with the destination data. */
emit_insn (gen_mskxh (st_tmp_2, st_tmp_2, i64, dreg));
emit_insn (gen_mskxl (st_tmp_1, st_tmp_1, im1, dreg));
if (data_regs != NULL)
{
st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1],
st_tmp_2, 1, OPTAB_WIDEN);
st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0],
st_tmp_1, 1, OPTAB_WIDEN);
}
/* Store it all. */
emit_move_insn (st_addr_2, st_tmp_2);
for (i = words-1; i > 0; --i)
{
emit_move_insn (change_address (dmem, DImode,
gen_rtx_AND (DImode,
plus_constant(XEXP (dmem,0),
i*8),
im8)),
data_regs ? ins_tmps[i-1] : const0_rtx);
}
emit_move_insn (st_addr_1, st_tmp_1);
}
/* Expand string/block move operations.
operands[0] is the pointer to the destination.
operands[1] is the pointer to the source.
operands[2] is the number of bytes to move.
operands[3] is the alignment. */
int
alpha_expand_block_move (operands)
rtx operands[];
{
rtx bytes_rtx = operands[2];
rtx align_rtx = operands[3];
HOST_WIDE_INT bytes = INTVAL (bytes_rtx);
HOST_WIDE_INT src_align = INTVAL (align_rtx);
HOST_WIDE_INT dst_align = src_align;
rtx orig_src = operands[1];
rtx orig_dst = operands[0];
rtx data_regs[2*MAX_MOVE_WORDS+16];
rtx tmp;
int i, words, ofs, nregs = 0;
if (bytes <= 0)
return 1;
if (bytes > MAX_MOVE_WORDS*8)
return 0;
/* Look for additional alignment information from recorded register info. */
tmp = XEXP (orig_src, 0);
if (GET_CODE (tmp) == REG)
{
if (REGNO_POINTER_ALIGN (REGNO (tmp)) > src_align)
src_align = REGNO_POINTER_ALIGN (REGNO (tmp));
}
else if (GET_CODE (tmp) == PLUS
&& GET_CODE (XEXP (tmp, 0)) == REG
&& GET_CODE (XEXP (tmp, 1)) == CONST_INT)
{
HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
if (a > src_align)
{
if (a >= 8 && c % 8 == 0)
src_align = 8;
else if (a >= 4 && c % 4 == 0)
src_align = 4;
else if (a >= 2 && c % 2 == 0)
src_align = 2;
}
}
tmp = XEXP (orig_dst, 0);
if (GET_CODE (tmp) == REG)
{
if (REGNO_POINTER_ALIGN (REGNO (tmp)) > dst_align)
dst_align = REGNO_POINTER_ALIGN (REGNO (tmp));
}
else if (GET_CODE (tmp) == PLUS
&& GET_CODE (XEXP (tmp, 0)) == REG
&& GET_CODE (XEXP (tmp, 1)) == CONST_INT)
{
HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
if (a > dst_align)
{
if (a >= 8 && c % 8 == 0)
dst_align = 8;
else if (a >= 4 && c % 4 == 0)
dst_align = 4;
else if (a >= 2 && c % 2 == 0)
dst_align = 2;
}
}
/*
* Load the entire block into registers.
*/
if (GET_CODE (XEXP (orig_src, 0)) == ADDRESSOF)
{
enum machine_mode mode;
tmp = XEXP (XEXP (orig_src, 0), 0);
mode = mode_for_size (bytes, MODE_INT, 1);
if (mode != BLKmode
&& GET_MODE_SIZE (GET_MODE (tmp)) <= bytes)
{
/* Whee! Optimize the load to use the existing register. */
data_regs[nregs++] = gen_lowpart (mode, tmp);
goto src_done;
}
/* ??? We could potentially be copying 3 bytes or whatnot from
a wider reg. Probably not worth worrying about. */
/* No appropriate mode; fall back on memory. */
orig_src = change_address (orig_src, GET_MODE (orig_src),
copy_addr_to_reg (XEXP (orig_src, 0)));
}
ofs = 0;
if (src_align >= 8 && bytes >= 8)
{
words = bytes / 8;
for (i = 0; i < words; ++i)
data_regs[nregs+i] = gen_reg_rtx(DImode);
for (i = 0; i < words; ++i)
{
emit_move_insn (data_regs[nregs+i],
change_address(orig_src, DImode,
plus_constant (XEXP (orig_src, 0),
ofs + i*8)));
}
nregs += words;
bytes -= words * 8;
ofs += words * 8;
}
if (src_align >= 4 && bytes >= 4)
{
words = bytes / 4;
for (i = 0; i < words; ++i)
data_regs[nregs+i] = gen_reg_rtx(SImode);
for (i = 0; i < words; ++i)
{
emit_move_insn (data_regs[nregs+i],
change_address(orig_src, SImode,
plus_constant (XEXP (orig_src, 0),
ofs + i*4)));
}
nregs += words;
bytes -= words * 4;
ofs += words * 4;
}
if (bytes >= 16)
{
words = bytes / 8;
for (i = 0; i < words+1; ++i)
data_regs[nregs+i] = gen_reg_rtx(DImode);
alpha_expand_unaligned_load_words(data_regs+nregs, orig_src, words, ofs);
nregs += words;
bytes -= words * 8;
ofs += words * 8;
}
if (!TARGET_BWX && bytes >= 8)
{
data_regs[nregs++] = tmp = gen_reg_rtx (DImode);
alpha_expand_unaligned_load (tmp, orig_src, 8, ofs, 0);
bytes -= 8;
ofs += 8;
}
if (!TARGET_BWX && bytes >= 4)
{
data_regs[nregs++] = tmp = gen_reg_rtx (SImode);
alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0);
bytes -= 4;
ofs += 4;
}
if (bytes >= 2)
{
if (src_align >= 2)
{
do {
data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
emit_move_insn (tmp,
change_address (orig_src, HImode,
plus_constant (XEXP (orig_src, 0),
ofs)));
bytes -= 2;
ofs += 2;
} while (bytes >= 2);
}
else if (!TARGET_BWX)
{
data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0);
bytes -= 2;
ofs += 2;
}
}
while (bytes > 0)
{
data_regs[nregs++] = tmp = gen_reg_rtx (QImode);
emit_move_insn (tmp,
change_address (orig_src, QImode,
plus_constant (XEXP (orig_src, 0),
ofs)));
bytes -= 1;
ofs += 1;
}
src_done:
if (nregs > (int)(sizeof(data_regs)/sizeof(*data_regs)))
abort();
/*
* Now save it back out again.
*/
i = 0, ofs = 0;
if (GET_CODE (XEXP (orig_dst, 0)) == ADDRESSOF)
{
enum machine_mode mode;
tmp = XEXP (XEXP (orig_dst, 0), 0);
mode = mode_for_size (bytes, MODE_INT, 1);
if (GET_MODE (tmp) == mode && nregs == 1)
{
emit_move_insn (tmp, data_regs[0]);
i = 1;
goto dst_done;
}
/* ??? If nregs > 1, consider reconstructing the word in regs. */
/* ??? Optimize mode < dst_mode with strict_low_part. */
/* No appropriate mode; fall back on memory. */
orig_dst = change_address (orig_dst, GET_MODE (orig_dst),
copy_addr_to_reg (XEXP (orig_dst, 0)));
}
/* Write out the data in whatever chunks reading the source allowed. */
if (dst_align >= 8)
{
while (i < nregs && GET_MODE (data_regs[i]) == DImode)
{
emit_move_insn (change_address(orig_dst, DImode,
plus_constant (XEXP (orig_dst, 0),
ofs)),
data_regs[i]);
ofs += 8;
i++;
}
}
if (dst_align >= 4)
{
/* If the source has remaining DImode regs, write them out in
two pieces. */
while (i < nregs && GET_MODE (data_regs[i]) == DImode)
{
tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32),
NULL_RTX, 1, OPTAB_WIDEN);
emit_move_insn (change_address(orig_dst, SImode,
plus_constant (XEXP (orig_dst, 0),
ofs)),
gen_lowpart (SImode, data_regs[i]));
emit_move_insn (change_address(orig_dst, SImode,
plus_constant (XEXP (orig_dst, 0),
ofs+4)),
gen_lowpart (SImode, tmp));
ofs += 8;
i++;
}
while (i < nregs && GET_MODE (data_regs[i]) == SImode)
{
emit_move_insn (change_address(orig_dst, SImode,
plus_constant (XEXP (orig_dst, 0),
ofs)),
data_regs[i]);
ofs += 4;
i++;
}
}
if (i < nregs && GET_MODE (data_regs[i]) == DImode)
{
/* Write out a remaining block of words using unaligned methods. */
for (words = 1; i+words < nregs ; ++words)
if (GET_MODE (data_regs[i+words]) != DImode)
break;
if (words == 1)
alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs);
else
alpha_expand_unaligned_store_words (data_regs+i, orig_dst, words, ofs);
i += words;
ofs += words * 8;
}
/* Due to the above, this won't be aligned. */
/* ??? If we have more than one of these, consider constructing full
words in registers and using alpha_expand_unaligned_store_words. */
while (i < nregs && GET_MODE (data_regs[i]) == SImode)
{
alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs);
ofs += 4;
i++;
}
if (dst_align >= 2)
while (i < nregs && GET_MODE (data_regs[i]) == HImode)
{
emit_move_insn (change_address (orig_dst, HImode,
plus_constant (XEXP (orig_dst, 0),
ofs)),
data_regs[i]);
i++;
ofs += 2;
}
else
while (i < nregs && GET_MODE (data_regs[i]) == HImode)
{
alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs);
i++;
ofs += 2;
}
while (i < nregs && GET_MODE (data_regs[i]) == QImode)
{
emit_move_insn (change_address (orig_dst, QImode,
plus_constant (XEXP (orig_dst, 0),
ofs)),
data_regs[i]);
i++;
ofs += 1;
}
dst_done:
if (i != nregs)
abort();
return 1;
}
int
alpha_expand_block_clear (operands)
rtx operands[];
{
rtx bytes_rtx = operands[1];
rtx align_rtx = operands[2];
HOST_WIDE_INT bytes = INTVAL (bytes_rtx);
HOST_WIDE_INT align = INTVAL (align_rtx);
rtx orig_dst = operands[0];
rtx tmp;
HOST_WIDE_INT i, words, ofs = 0;
if (bytes <= 0)
return 1;
if (bytes > MAX_MOVE_WORDS*8)
return 0;
/* Look for stricter alignment. */
tmp = XEXP (orig_dst, 0);
if (GET_CODE (tmp) == REG)
{
if (REGNO_POINTER_ALIGN (REGNO (tmp)) > align)
align = REGNO_POINTER_ALIGN (REGNO (tmp));
}
else if (GET_CODE (tmp) == PLUS
&& GET_CODE (XEXP (tmp, 0)) == REG
&& GET_CODE (XEXP (tmp, 1)) == CONST_INT)
{
HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
if (a > align)
{
if (a >= 8 && c % 8 == 0)
align = 8;
else if (a >= 4 && c % 4 == 0)
align = 4;
else if (a >= 2 && c % 2 == 0)
align = 2;
}
}
/* Handle a block of contiguous words first. */
if (align >= 8 && bytes >= 8)
{
words = bytes / 8;
for (i = 0; i < words; ++i)
{
emit_move_insn (change_address(orig_dst, DImode,
plus_constant (XEXP (orig_dst, 0),
ofs + i*8)),
const0_rtx);
}
bytes -= words * 8;
ofs += words * 8;
}
if (align >= 4 && bytes >= 4)
{
words = bytes / 4;
for (i = 0; i < words; ++i)
{
emit_move_insn (change_address(orig_dst, SImode,
plus_constant (XEXP (orig_dst, 0),
ofs + i*4)),
const0_rtx);
}
bytes -= words * 4;
ofs += words * 4;
}
if (bytes >= 16)
{
words = bytes / 8;
alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs);
bytes -= words * 8;
ofs += words * 8;
}
/* Next clean up any trailing pieces. We know from the contiguous
block move that there are no aligned SImode or DImode hunks left. */
if (!TARGET_BWX && bytes >= 8)
{
alpha_expand_unaligned_store (orig_dst, const0_rtx, 8, ofs);
bytes -= 8;
ofs += 8;
}
if (!TARGET_BWX && bytes >= 4)
{
alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs);
bytes -= 4;
ofs += 4;
}
if (bytes >= 2)
{
if (align >= 2)
{
do {
emit_move_insn (change_address (orig_dst, HImode,
plus_constant (XEXP (orig_dst, 0),
ofs)),
const0_rtx);
bytes -= 2;
ofs += 2;
} while (bytes >= 2);
}
else if (!TARGET_BWX)
{
alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs);
bytes -= 2;
ofs += 2;
}
}
while (bytes > 0)
{
emit_move_insn (change_address (orig_dst, QImode,
plus_constant (XEXP (orig_dst, 0),
ofs)),
const0_rtx);
bytes -= 1;
ofs += 1;
}
return 1;
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
int
alpha_adjust_cost (insn, link, dep_insn, cost)
rtx insn;
rtx link;
rtx dep_insn;
int cost;
{
rtx set, set_src;
enum attr_type insn_type, dep_insn_type;
/* If the dependence is an anti-dependence, there is no cost. For an
output dependence, there is sometimes a cost, but it doesn't seem
worth handling those few cases. */
if (REG_NOTE_KIND (link) != 0)
return 0;
/* If we can't recognize the insns, we can't really do anything. */
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
return cost;
insn_type = get_attr_type (insn);
dep_insn_type = get_attr_type (dep_insn);
/* Bring in the user-defined memory latency. */
if (dep_insn_type == TYPE_ILD
|| dep_insn_type == TYPE_FLD
|| dep_insn_type == TYPE_LDSYM)
cost += alpha_memory_latency-1;
switch (alpha_cpu)
{
case PROCESSOR_EV4:
/* On EV4, if INSN is a store insn and DEP_INSN is setting the data
being stored, we can sometimes lower the cost. */
if ((insn_type == TYPE_IST || insn_type == TYPE_FST)
&& (set = single_set (dep_insn)) != 0
&& GET_CODE (PATTERN (insn)) == SET
&& rtx_equal_p (SET_DEST (set), SET_SRC (PATTERN (insn))))
{
switch (dep_insn_type)
{
case TYPE_ILD:
case TYPE_FLD:
/* No savings here. */
return cost;
case TYPE_IMUL:
/* In these cases, we save one cycle. */
return cost - 1;
default:
/* In all other cases, we save two cycles. */
return MAX (0, cost - 2);
}
}
/* Another case that needs adjustment is an arithmetic or logical
operation. It's cost is usually one cycle, but we default it to
two in the MD file. The only case that it is actually two is
for the address in loads, stores, and jumps. */
if (dep_insn_type == TYPE_IADD || dep_insn_type == TYPE_ILOG)
{
switch (insn_type)
{
case TYPE_ILD:
case TYPE_IST:
case TYPE_FLD:
case TYPE_FST:
case TYPE_JSR:
return cost;
default:
return 1;
}
}
/* The final case is when a compare feeds into an integer branch;
the cost is only one cycle in that case. */
if (dep_insn_type == TYPE_ICMP && insn_type == TYPE_IBR)
return 1;
break;
case PROCESSOR_EV5:
/* And the lord DEC saith: "A special bypass provides an effective
latency of 0 cycles for an ICMP or ILOG insn producing the test
operand of an IBR or ICMOV insn." */
if ((dep_insn_type == TYPE_ICMP || dep_insn_type == TYPE_ILOG)
&& (set = single_set (dep_insn)) != 0)
{
/* A branch only has one input. This must be it. */
if (insn_type == TYPE_IBR)
return 0;
/* A conditional move has three, make sure it is the test. */
if (insn_type == TYPE_ICMOV
&& GET_CODE (set_src = PATTERN (insn)) == SET
&& GET_CODE (set_src = SET_SRC (set_src)) == IF_THEN_ELSE
&& rtx_equal_p (SET_DEST (set), XEXP (set_src, 0)))
return 0;
}
/* "The multiplier is unable to receive data from IEU bypass paths.
The instruction issues at the expected time, but its latency is
increased by the time it takes for the input data to become
available to the multiplier" -- which happens in pipeline stage
six, when results are comitted to the register file. */
if (insn_type == TYPE_IMUL)
{
switch (dep_insn_type)
{
/* These insns produce their results in pipeline stage five. */
case TYPE_ILD:
case TYPE_ICMOV:
case TYPE_IMUL:
case TYPE_MVI:
return cost + 1;
/* Other integer insns produce results in pipeline stage four. */
default:
return cost + 2;
}
}
break;
case PROCESSOR_EV6:
/* There is additional latency to move the result of (most) FP
operations anywhere but the FP register file. */
if ((insn_type == TYPE_FST || insn_type == TYPE_FTOI)
&& (dep_insn_type == TYPE_FADD ||
dep_insn_type == TYPE_FMUL ||
dep_insn_type == TYPE_FCMOV))
return cost + 2;
break;
}
/* Otherwise, return the default cost. */
return cost;
}
/* Functions to save and restore alpha_return_addr_rtx. */
struct machine_function
{
rtx ra_rtx;
};
static void
alpha_save_machine_status (p)
struct function *p;
{
struct machine_function *machine =
(struct machine_function *) xmalloc (sizeof (struct machine_function));
p->machine = machine;
machine->ra_rtx = alpha_return_addr_rtx;
}
static void
alpha_restore_machine_status (p)
struct function *p;
{
struct machine_function *machine = p->machine;
alpha_return_addr_rtx = machine->ra_rtx;
free (machine);
p->machine = (struct machine_function *)0;
}
/* Do anything needed before RTL is emitted for each function. */
void
alpha_init_expanders ()
{
alpha_return_addr_rtx = NULL_RTX;
alpha_eh_epilogue_sp_ofs = NULL_RTX;
/* Arrange to save and restore machine status around nested functions. */
save_machine_status = alpha_save_machine_status;
restore_machine_status = alpha_restore_machine_status;
}
/* Start the ball rolling with RETURN_ADDR_RTX. */
rtx
alpha_return_addr (count, frame)
int count;
rtx frame ATTRIBUTE_UNUSED;
{
rtx init;
if (count != 0)
return const0_rtx;
if (alpha_return_addr_rtx)
return alpha_return_addr_rtx;
/* No rtx yet. Invent one, and initialize it from $26 in the prologue. */
alpha_return_addr_rtx = gen_reg_rtx (Pmode);
init = gen_rtx_SET (VOIDmode, alpha_return_addr_rtx,
gen_rtx_REG (Pmode, REG_RA));
/* Emit the insn to the prologue with the other argument copies. */
push_topmost_sequence ();
emit_insn_after (init, get_insns ());
pop_topmost_sequence ();
return alpha_return_addr_rtx;
}
static int
alpha_ra_ever_killed ()
{
rtx top;
#ifdef ASM_OUTPUT_MI_THUNK
if (current_function_is_thunk)
return 0;
#endif
if (!alpha_return_addr_rtx)
return regs_ever_live[REG_RA];
push_topmost_sequence ();
top = get_insns ();
pop_topmost_sequence ();
return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX);
}
/* Print an operand. Recognize special options, documented below. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
char code;
{
int i;
switch (code)
{
case '&':
/* Generates fp-rounding mode suffix: nothing for normal, 'c' for
chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
mode. alpha_fprm controls which suffix is generated. */
switch (alpha_fprm)
{
case ALPHA_FPRM_NORM:
break;
case ALPHA_FPRM_MINF:
fputc ('m', file);
break;
case ALPHA_FPRM_CHOP:
fputc ('c', file);
break;
case ALPHA_FPRM_DYN:
fputc ('d', file);
break;
}
break;
case '\'':
/* Generates trap-mode suffix for instructions that accept the su
suffix only (cmpt et al). */
if (alpha_tp == ALPHA_TP_INSN)
fputs ("su", file);
break;
case '`':
/* Generates trap-mode suffix for instructions that accept the
v and sv suffix. The only instruction that needs this is cvtql. */
switch (alpha_fptm)
{
case ALPHA_FPTM_N:
break;
case ALPHA_FPTM_U:
fputs ("v", file);
break;
case ALPHA_FPTM_SU:
case ALPHA_FPTM_SUI:
fputs ("sv", file);
break;
}
break;
case '(':
/* Generates trap-mode suffix for instructions that accept the
v, sv, and svi suffix. The only instruction that needs this
is cvttq. */
switch (alpha_fptm)
{
case ALPHA_FPTM_N:
break;
case ALPHA_FPTM_U:
fputs ("v", file);
break;
case ALPHA_FPTM_SU:
fputs ("sv", file);
break;
case ALPHA_FPTM_SUI:
fputs ("svi", file);
break;
}
break;
case ')':
/* Generates trap-mode suffix for instructions that accept the u, su,
and sui suffix. This is the bulk of the IEEE floating point
instructions (addt et al). */
switch (alpha_fptm)
{
case ALPHA_FPTM_N:
break;
case ALPHA_FPTM_U:
fputc ('u', file);
break;
case ALPHA_FPTM_SU:
fputs ("su", file);
break;
case ALPHA_FPTM_SUI:
fputs ("sui", file);
break;
}
break;
case '+':
/* Generates trap-mode suffix for instructions that accept the sui
suffix (cvtqt and cvtqs). */
switch (alpha_fptm)
{
case ALPHA_FPTM_N:
case ALPHA_FPTM_U:
case ALPHA_FPTM_SU: /* cvtqt/cvtqs can't cause underflow */
break;
case ALPHA_FPTM_SUI:
fputs ("sui", file);
break;
}
break;
case ',':
/* Generates single precision instruction suffix. */
fprintf (file, "%c", (TARGET_FLOAT_VAX ? 'f' : 's'));
break;
case '-':
/* Generates double precision instruction suffix. */
fprintf (file, "%c", (TARGET_FLOAT_VAX ? 'g' : 't'));
break;
case 'r':
/* If this operand is the constant zero, write it as "$31". */
if (GET_CODE (x) == REG)
fprintf (file, "%s", reg_names[REGNO (x)]);
else if (x == CONST0_RTX (GET_MODE (x)))
fprintf (file, "$31");
else
output_operand_lossage ("invalid %%r value");
break;
case 'R':
/* Similar, but for floating-point. */
if (GET_CODE (x) == REG)
fprintf (file, "%s", reg_names[REGNO (x)]);
else if (x == CONST0_RTX (GET_MODE (x)))
fprintf (file, "$f31");
else
output_operand_lossage ("invalid %%R value");
break;
case 'N':
/* Write the 1's complement of a constant. */
if (GET_CODE (x) != CONST_INT)
output_operand_lossage ("invalid %%N value");
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
break;
case 'P':
/* Write 1 << C, for a constant C. */
if (GET_CODE (x) != CONST_INT)
output_operand_lossage ("invalid %%P value");
fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x));
break;
case 'h':
/* Write the high-order 16 bits of a constant, sign-extended. */
if (GET_CODE (x) != CONST_INT)
output_operand_lossage ("invalid %%h value");
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16);
break;
case 'L':
/* Write the low-order 16 bits of a constant, sign-extended. */
if (GET_CODE (x) != CONST_INT)
output_operand_lossage ("invalid %%L value");
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
(INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000));
break;
case 'm':
/* Write mask for ZAP insn. */
if (GET_CODE (x) == CONST_DOUBLE)
{
HOST_WIDE_INT mask = 0;
HOST_WIDE_INT value;
value = CONST_DOUBLE_LOW (x);
for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
i++, value >>= 8)
if (value & 0xff)
mask |= (1 << i);
value = CONST_DOUBLE_HIGH (x);
for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
i++, value >>= 8)
if (value & 0xff)
mask |= (1 << (i + sizeof (int)));
fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff);
}
else if (GET_CODE (x) == CONST_INT)
{
HOST_WIDE_INT mask = 0, value = INTVAL (x);
for (i = 0; i < 8; i++, value >>= 8)
if (value & 0xff)
mask |= (1 << i);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask);
}
else
output_operand_lossage ("invalid %%m value");
break;
case 'M':
/* 'b', 'w', 'l', or 'q' as the value of the constant. */
if (GET_CODE (x) != CONST_INT
|| (INTVAL (x) != 8 && INTVAL (x) != 16
&& INTVAL (x) != 32 && INTVAL (x) != 64))
output_operand_lossage ("invalid %%M value");
fprintf (file, "%s",
(INTVAL (x) == 8 ? "b"
: INTVAL (x) == 16 ? "w"
: INTVAL (x) == 32 ? "l"
: "q"));
break;
case 'U':
/* Similar, except do it from the mask. */
if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xff)
fprintf (file, "b");
else if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xffff)
fprintf (file, "w");
else if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xffffffff)
fprintf (file, "l");
#if HOST_BITS_PER_WIDE_INT == 32
else if (GET_CODE (x) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (x) == 0
&& CONST_DOUBLE_LOW (x) == -1)
fprintf (file, "l");
else if (GET_CODE (x) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (x) == -1
&& CONST_DOUBLE_LOW (x) == -1)
fprintf (file, "q");
#else
else if (GET_CODE (x) == CONST_INT && INTVAL (x) == -1)
fprintf (file, "q");
else if (GET_CODE (x) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (x) == 0
&& CONST_DOUBLE_LOW (x) == -1)
fprintf (file, "q");
#endif
else
output_operand_lossage ("invalid %%U value");
break;
case 's':
/* Write the constant value divided by 8. */
if (GET_CODE (x) != CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
&& (INTVAL (x) & 7) != 8)
output_operand_lossage ("invalid %%s value");
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) / 8);
break;
case 'S':
/* Same, except compute (64 - c) / 8 */
if (GET_CODE (x) != CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
&& (INTVAL (x) & 7) != 8)
output_operand_lossage ("invalid %%s value");
fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8);
break;
case 'C': case 'D': case 'c': case 'd':
/* Write out comparison name. */
{
enum rtx_code c = GET_CODE (x);
if (GET_RTX_CLASS (c) != '<')
output_operand_lossage ("invalid %%C value");
if (code == 'D')
c = reverse_condition (c);
else if (code == 'c')
c = swap_condition (c);
else if (code == 'd')
c = swap_condition (reverse_condition (c));
if (c == LEU)
fprintf (file, "ule");
else if (c == LTU)
fprintf (file, "ult");
else
fprintf (file, "%s", GET_RTX_NAME (c));
}
break;
case 'E':
/* Write the divide or modulus operator. */
switch (GET_CODE (x))
{
case DIV:
fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q");
break;
case UDIV:
fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q");
break;
case MOD:
fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q");
break;
case UMOD:
fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q");
break;
default:
output_operand_lossage ("invalid %%E value");
break;
}
break;
case 'A':
/* Write "_u" for unaligned access. */
if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND)
fprintf (file, "_u");
break;
case 0:
if (GET_CODE (x) == REG)
fprintf (file, "%s", reg_names[REGNO (x)]);
else if (GET_CODE (x) == MEM)
output_address (XEXP (x, 0));
else
output_addr_const (file, x);
break;
default:
output_operand_lossage ("invalid %%xn code");
}
}
/* Emit RTL insns to initialize the variable parts of a trampoline at
TRAMP. FNADDR is an RTX for the address of the function's pure
code. CXT is an RTX for the static chain value for the function.
The three offset parameters are for the individual template's
layout. A JMPOFS < 0 indicates that the trampoline does not
contain instructions at all.
We assume here that a function will be called many more times than
its address is taken (e.g., it might be passed to qsort), so we
take the trouble to initialize the "hint" field in the JMP insn.
Note that the hint field is PC (new) + 4 * bits 13:0. */
void
alpha_initialize_trampoline (tramp, fnaddr, cxt, fnofs, cxtofs, jmpofs)
rtx tramp, fnaddr, cxt;
int fnofs, cxtofs, jmpofs;
{
rtx temp, temp1, addr;
/* ??? Something is wrong with VMS codegen in that we get aborts when
using ptr_mode. Hack around it for now. */
enum machine_mode mode = TARGET_OPEN_VMS ? Pmode : ptr_mode;
/* Store function address and CXT. */
addr = memory_address (mode, plus_constant (tramp, fnofs));
emit_move_insn (gen_rtx (MEM, mode, addr), fnaddr);
addr = memory_address (mode, plus_constant (tramp, cxtofs));
emit_move_insn (gen_rtx (MEM, mode, addr), cxt);
/* This has been disabled since the hint only has a 32k range, and in
no existing OS is the stack within 32k of the text segment. */
if (0 && jmpofs >= 0)
{
/* Compute hint value. */
temp = force_operand (plus_constant (tramp, jmpofs+4), NULL_RTX);
temp = expand_binop (DImode, sub_optab, fnaddr, temp, temp, 1,
OPTAB_WIDEN);
temp = expand_shift (RSHIFT_EXPR, Pmode, temp,
build_int_2 (2, 0), NULL_RTX, 1);
temp = expand_and (gen_lowpart (SImode, temp), GEN_INT (0x3fff), 0);
/* Merge in the hint. */
addr = memory_address (SImode, plus_constant (tramp, jmpofs));
temp1 = force_reg (SImode, gen_rtx (MEM, SImode, addr));
temp1 = expand_and (temp1, GEN_INT (0xffffc000), NULL_RTX);
temp1 = expand_binop (SImode, ior_optab, temp1, temp, temp1, 1,
OPTAB_WIDEN);
emit_move_insn (gen_rtx (MEM, SImode, addr), temp1);
}
#ifdef TRANSFER_FROM_TRAMPOLINE
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"),
0, VOIDmode, 1, addr, Pmode);
#endif
if (jmpofs >= 0)
emit_insn (gen_imb ());
}
/* Do what is necessary for `va_start'. The argument is ignored;
We look at the current function to determine if stdarg or varargs
is used and fill in an initial va_list. A pointer to this constructor
is returned. */
struct rtx_def *
alpha_builtin_saveregs (arglist)
tree arglist ATTRIBUTE_UNUSED;
{
rtx block, addr, dest, argsize;
tree fntype = TREE_TYPE (current_function_decl);
int stdarg = (TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
!= void_type_node));
/* Compute the current position into the args, taking into account
both registers and memory. Both of these are already included in
NUM_ARGS. */
argsize = GEN_INT (NUM_ARGS * UNITS_PER_WORD);
/* For Unix, SETUP_INCOMING_VARARGS moves the starting address base up by 48,
storing fp arg registers in the first 48 bytes, and the integer arg
registers in the next 48 bytes. This is only done, however, if any
integer registers need to be stored.
If no integer registers need be stored, then we must subtract 48 in
order to account for the integer arg registers which are counted in
argsize above, but which are not actually stored on the stack. */
if (TARGET_OPEN_VMS)
addr = plus_constant (virtual_incoming_args_rtx,
NUM_ARGS <= 5 + stdarg
? UNITS_PER_WORD : - 6 * UNITS_PER_WORD);
else
addr = (NUM_ARGS <= 5 + stdarg
? plus_constant (virtual_incoming_args_rtx,
6 * UNITS_PER_WORD)
: plus_constant (virtual_incoming_args_rtx,
- (6 * UNITS_PER_WORD)));
/* For VMS, we include the argsize, while on Unix, it's handled as
a separate field. */
if (TARGET_OPEN_VMS)
addr = plus_constant (addr, INTVAL (argsize));
addr = force_operand (addr, NULL_RTX);
#ifdef POINTERS_EXTEND_UNSIGNED
addr = convert_memory_address (ptr_mode, addr);
#endif
if (TARGET_OPEN_VMS)
return addr;
else
{
/* Allocate the va_list constructor */
block = assign_stack_local (BLKmode, 2 * UNITS_PER_WORD, BITS_PER_WORD);
RTX_UNCHANGING_P (block) = 1;
RTX_UNCHANGING_P (XEXP (block, 0)) = 1;
/* Store the address of the first integer register in the __base
member. */
dest = change_address (block, ptr_mode, XEXP (block, 0));
emit_move_insn (dest, addr);
if (current_function_check_memory_usage)
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
dest, ptr_mode,
GEN_INT (GET_MODE_SIZE (ptr_mode)),
TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_RW),
TYPE_MODE (integer_type_node));
/* Store the argsize as the __va_offset member. */
dest = change_address (block, TYPE_MODE (integer_type_node),
plus_constant (XEXP (block, 0),
POINTER_SIZE/BITS_PER_UNIT));
emit_move_insn (dest, argsize);
if (current_function_check_memory_usage)
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
dest, ptr_mode,
GEN_INT (GET_MODE_SIZE
(TYPE_MODE (integer_type_node))),
TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_RW),
TYPE_MODE (integer_type_node));
/* Return the address of the va_list constructor, but don't put it in a
register. Doing so would fail when not optimizing and produce worse
code when optimizing. */
return XEXP (block, 0);
}
}
/* This page contains routines that are used to determine what the function
prologue and epilogue code will do and write them out. */
/* Compute the size of the save area in the stack. */
/* These variables are used for communication between the following functions.
They indicate various things about the current function being compiled
that are used to tell what kind of prologue, epilogue and procedure
descriptior to generate. */
/* Nonzero if we need a stack procedure. */
static int vms_is_stack_procedure;
/* Register number (either FP or SP) that is used to unwind the frame. */
static int vms_unwind_regno;
/* Register number used to save FP. We need not have one for RA since
we don't modify it for register procedures. This is only defined
for register frame procedures. */
static int vms_save_fp_regno;
/* Register number used to reference objects off our PV. */
static int vms_base_regno;
/* Compute register masks for saved registers. */
static void
alpha_sa_mask (imaskP, fmaskP)
unsigned long *imaskP;
unsigned long *fmaskP;
{
unsigned long imask = 0;
unsigned long fmask = 0;
int i;
#ifdef ASM_OUTPUT_MI_THUNK
if (!current_function_is_thunk)
#endif
{
if (TARGET_OPEN_VMS && vms_is_stack_procedure)
imask |= (1L << HARD_FRAME_POINTER_REGNUM);
/* One for every register we have to save. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! fixed_regs[i] && ! call_used_regs[i]
&& regs_ever_live[i] && i != REG_RA)
{
if (i < 32)
imask |= (1L << i);
else
fmask |= (1L << (i - 32));
}
if (imask || fmask || alpha_ra_ever_killed ())
imask |= (1L << REG_RA);
}
*imaskP = imask;
*fmaskP = fmask;
}
int
alpha_sa_size ()
{
int sa_size = 0;
int i;
#ifdef ASM_OUTPUT_MI_THUNK
if (current_function_is_thunk)
sa_size = 0;
else
#endif
{
/* One for every register we have to save. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! fixed_regs[i] && ! call_used_regs[i]
&& regs_ever_live[i] && i != REG_RA)
sa_size++;
}
if (TARGET_OPEN_VMS)
{
/* Start by assuming we can use a register procedure if we don't
make any calls (REG_RA not used) or need to save any
registers and a stack procedure if we do. */
vms_is_stack_procedure = sa_size != 0 || alpha_ra_ever_killed ();
/* Decide whether to refer to objects off our PV via FP or PV.
If we need FP for something else or if we receive a nonlocal
goto (which expects PV to contain the value), we must use PV.
Otherwise, start by assuming we can use FP. */
vms_base_regno = (frame_pointer_needed
|| current_function_has_nonlocal_label
|| vms_is_stack_procedure
|| current_function_outgoing_args_size
? REG_PV : HARD_FRAME_POINTER_REGNUM);
/* If we want to copy PV into FP, we need to find some register
in which to save FP. */
vms_save_fp_regno = -1;
if (vms_base_regno == HARD_FRAME_POINTER_REGNUM)
for (i = 0; i < 32; i++)
if (! fixed_regs[i] && call_used_regs[i] && ! regs_ever_live[i])
vms_save_fp_regno = i;
if (vms_save_fp_regno == -1)
vms_base_regno = REG_PV, vms_is_stack_procedure = 1;
/* Stack unwinding should be done via FP unless we use it for PV. */
vms_unwind_regno = (vms_base_regno == REG_PV
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
/* If this is a stack procedure, allow space for saving FP and RA. */
if (vms_is_stack_procedure)
sa_size += 2;
}
else
{
/* If some registers were saved but not RA, RA must also be saved,
so leave space for it. */
if (sa_size != 0 || alpha_ra_ever_killed ())
sa_size++;
/* Our size must be even (multiple of 16 bytes). */
if (sa_size & 1)
sa_size++;
}
return sa_size * 8;
}
int
alpha_pv_save_size ()
{
alpha_sa_size ();
return vms_is_stack_procedure ? 8 : 0;
}
int
alpha_using_fp ()
{
alpha_sa_size ();
return vms_unwind_regno == HARD_FRAME_POINTER_REGNUM;
}
int
vms_valid_decl_attribute_p (decl, attributes, identifier, args)
tree decl ATTRIBUTE_UNUSED;
tree attributes ATTRIBUTE_UNUSED;
tree identifier;
tree args;
{
if (is_attribute_p ("overlaid", identifier))
return (args == NULL_TREE);
return 0;
}
static int
alpha_does_function_need_gp ()
{
rtx insn;
/* We never need a GP for Windows/NT or VMS. */
if (TARGET_WINDOWS_NT || TARGET_OPEN_VMS)
return 0;
#ifdef TARGET_PROFILING_NEEDS_GP
if (profile_flag)
return 1;
#endif
#ifdef ASM_OUTPUT_MI_THUNK
if (current_function_is_thunk)
return 1;
#endif
/* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
Even if we are a static function, we still need to do this in case
our address is taken and passed to something like qsort. */
push_topmost_sequence ();
insn = get_insns ();
pop_topmost_sequence ();
for (; insn; insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
{
enum attr_type type = get_attr_type (insn);
if (type == TYPE_LDSYM || type == TYPE_JSR)
return 1;
}
return 0;
}
/* Write a version stamp. Don't write anything if we are running as a
cross-compiler. Otherwise, use the versions in /usr/include/stamp.h. */
#ifdef HAVE_STAMP_H
#include <stamp.h>
#endif
void
alpha_write_verstamp (file)
FILE *file;
{
#ifdef MS_STAMP
fprintf (file, "\t.verstamp %d %d\n", MS_STAMP, LS_STAMP);
#endif
}
/* Helper function to set RTX_FRAME_RELATED_P on instructions, including
sequences. */
static rtx
set_frame_related_p ()
{
rtx seq = gen_sequence ();
end_sequence ();
if (GET_CODE (seq) == SEQUENCE)
{
int i = XVECLEN (seq, 0);
while (--i >= 0)
RTX_FRAME_RELATED_P (XVECEXP (seq, 0, i)) = 1;
return emit_insn (seq);
}
else
{
seq = emit_insn (seq);
RTX_FRAME_RELATED_P (seq) = 1;
return seq;
}
}
#define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
/* Write function prologue. */
/* On vms we have two kinds of functions:
- stack frame (PROC_STACK)
these are 'normal' functions with local vars and which are
calling other functions
- register frame (PROC_REGISTER)
keeps all data in registers, needs no stack
We must pass this to the assembler so it can generate the
proper pdsc (procedure descriptor)
This is done with the '.pdesc' command.
On not-vms, we don't really differentiate between the two, as we can
simply allocate stack without saving registers. */
void
alpha_expand_prologue ()
{
/* Registers to save. */
unsigned long imask = 0;
unsigned long fmask = 0;
/* Stack space needed for pushing registers clobbered by us. */
HOST_WIDE_INT sa_size;
/* Complete stack size needed. */
HOST_WIDE_INT frame_size;
/* Offset from base reg to register save area. */
HOST_WIDE_INT reg_offset;
rtx sa_reg, mem;
int i;
sa_size = alpha_sa_size ();
frame_size = get_frame_size ();
if (TARGET_OPEN_VMS)
frame_size = ALPHA_ROUND (sa_size
+ (vms_is_stack_procedure ? 8 : 0)
+ frame_size
+ current_function_pretend_args_size);
else
frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
+ sa_size
+ ALPHA_ROUND (frame_size
+ current_function_pretend_args_size));
if (TARGET_OPEN_VMS)
reg_offset = 8;
else
reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
alpha_sa_mask (&imask, &fmask);
/* Adjust the stack by the frame size. If the frame size is > 4096
bytes, we need to be sure we probe somewhere in the first and last
4096 bytes (we can probably get away without the latter test) and
every 8192 bytes in between. If the frame size is > 32768, we
do this in a loop. Otherwise, we generate the explicit probe
instructions.
Note that we are only allowed to adjust sp once in the prologue. */
if (frame_size <= 32768)
{
if (frame_size > 4096)
{
int probed = 4096;
do
emit_insn (gen_probe_stack (GEN_INT (-probed)));
while ((probed += 8192) < frame_size);
/* We only have to do this probe if we aren't saving registers. */
if (sa_size == 0 && probed + 4096 < frame_size)
emit_insn (gen_probe_stack (GEN_INT (-frame_size)));
}
if (frame_size != 0)
{
FRP (emit_move_insn (stack_pointer_rtx,
plus_constant (stack_pointer_rtx, -frame_size)));
}
}
else
{
/* Here we generate code to set R22 to SP + 4096 and set R23 to the
number of 8192 byte blocks to probe. We then probe each block
in the loop and then set SP to the proper location. If the
amount remaining is > 4096, we have to do one more probe if we
are not saving any registers. */
HOST_WIDE_INT blocks = (frame_size + 4096) / 8192;
HOST_WIDE_INT leftover = frame_size + 4096 - blocks * 8192;
rtx ptr = gen_rtx_REG (DImode, 22);
rtx count = gen_rtx_REG (DImode, 23);
emit_move_insn (count, GEN_INT (blocks));
emit_move_insn (ptr, plus_constant (stack_pointer_rtx, 4096));
/* Because of the difficulty in emitting a new basic block this
late in the compilation, generate the loop as a single insn. */
emit_insn (gen_prologue_stack_probe_loop (count, ptr));
if (leftover > 4096 && sa_size == 0)
{
rtx last = gen_rtx_MEM (DImode, plus_constant (ptr, -leftover));
MEM_VOLATILE_P (last) = 1;
emit_move_insn (last, const0_rtx);
}
ptr = emit_move_insn (stack_pointer_rtx, plus_constant (ptr, -leftover));
/* This alternative is special, because the DWARF code cannot possibly
intuit through the loop above. So we invent this note it looks at
instead. */
RTX_FRAME_RELATED_P (ptr) = 1;
REG_NOTES (ptr)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (-frame_size))),
REG_NOTES (ptr));
}
/* Cope with very large offsets to the register save area. */
sa_reg = stack_pointer_rtx;
if (reg_offset + sa_size > 0x8000)
{
int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
HOST_WIDE_INT bias;
if (low + sa_size <= 0x8000)
bias = reg_offset - low, reg_offset = low;
else
bias = reg_offset, reg_offset = 0;
sa_reg = gen_rtx_REG (DImode, 24);
FRP (emit_move_insn (sa_reg, plus_constant (stack_pointer_rtx, bias)));
}
/* Save regs in stack order. Beginning with VMS PV. */
if (TARGET_OPEN_VMS && vms_is_stack_procedure)
{
mem = gen_rtx_MEM (DImode, stack_pointer_rtx);
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_PV)));
}
/* Save register RA next. */
if (imask & (1L << REG_RA))
{
mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA)));
imask &= ~(1L << REG_RA);
reg_offset += 8;
}
/* Now save any other registers required to be saved. */
for (i = 0; i < 32; i++)
if (imask & (1L << i))
{
mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (mem, gen_rtx_REG (DImode, i)));
reg_offset += 8;
}
for (i = 0; i < 32; i++)
if (fmask & (1L << i))
{
mem = gen_rtx_MEM (DFmode, plus_constant (sa_reg, reg_offset));
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (mem, gen_rtx_REG (DFmode, i+32)));
reg_offset += 8;
}
if (TARGET_OPEN_VMS)
{
if (!vms_is_stack_procedure)
{
/* Register frame procedures fave the fp. */
FRP (emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno),
hard_frame_pointer_rtx));
}
if (vms_base_regno != REG_PV)
FRP (emit_move_insn (gen_rtx_REG (DImode, vms_base_regno),
gen_rtx_REG (DImode, REG_PV)));
if (vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
{
FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
}
/* If we have to allocate space for outgoing args, do it now. */
if (current_function_outgoing_args_size != 0)
{
FRP (emit_move_insn (stack_pointer_rtx,
plus_constant (hard_frame_pointer_rtx,
- ALPHA_ROUND (current_function_outgoing_args_size))));
}
}
else
{
/* If we need a frame pointer, set it from the stack pointer. */
if (frame_pointer_needed)
{
if (TARGET_CAN_FAULT_IN_PROLOGUE)
FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
else
{
/* This must always be the last instruction in the
prologue, thus we emit a special move + clobber. */
FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx,
stack_pointer_rtx, sa_reg)));
}
}
}
/* The ABIs for VMS and OSF/1 say that while we can schedule insns into
the prologue, for exception handling reasons, we cannot do this for
any insn that might fault. We could prevent this for mems with a
(clobber:BLK (scratch)), but this doesn't work for fp insns. So we
have to prevent all such scheduling with a blockage.
Linux, on the other hand, never bothered to implement OSF/1's
exception handling, and so doesn't care about such things. Anyone
planning to use dwarf2 frame-unwind info can also omit the blockage. */
if (! TARGET_CAN_FAULT_IN_PROLOGUE)
emit_insn (gen_blockage ());
}
/* Output the textual info surrounding the prologue. */
void
alpha_start_function (file, fnname, decl)
FILE *file;
char *fnname;
tree decl ATTRIBUTE_UNUSED;
{
unsigned long imask = 0;
unsigned long fmask = 0;
/* Stack space needed for pushing registers clobbered by us. */
HOST_WIDE_INT sa_size;
/* Complete stack size needed. */
HOST_WIDE_INT frame_size;
/* Offset from base reg to register save area. */
HOST_WIDE_INT reg_offset;
char *entry_label = (char *) alloca (strlen (fnname) + 6);
int i;
sa_size = alpha_sa_size ();
frame_size = get_frame_size ();
if (TARGET_OPEN_VMS)
frame_size = ALPHA_ROUND (sa_size
+ (vms_is_stack_procedure ? 8 : 0)
+ frame_size
+ current_function_pretend_args_size);
else
frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
+ sa_size
+ ALPHA_ROUND (frame_size
+ current_function_pretend_args_size));
if (TARGET_OPEN_VMS)
reg_offset = 8;
else
reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
alpha_sa_mask (&imask, &fmask);
/* Ecoff can handle multiple .file directives, so put out file and lineno.
We have to do that before the .ent directive as we cannot switch
files within procedures with native ecoff because line numbers are
linked to procedure descriptors.
Outputting the lineno helps debugging of one line functions as they
would otherwise get no line number at all. Please note that we would
like to put out last_linenum from final.c, but it is not accessible. */
if (write_symbols == SDB_DEBUG)
{
ASM_OUTPUT_SOURCE_FILENAME (file,
DECL_SOURCE_FILE (current_function_decl));
if (debug_info_level != DINFO_LEVEL_TERSE)
ASM_OUTPUT_SOURCE_LINE (file,
DECL_SOURCE_LINE (current_function_decl));
}
/* Issue function start and label. */
if (TARGET_OPEN_VMS || !flag_inhibit_size_directive)
{
fputs ("\t.ent ", file);
assemble_name (file, fnname);
putc ('\n', file);
}
strcpy (entry_label, fnname);
if (TARGET_OPEN_VMS)
strcat (entry_label, "..en");
ASM_OUTPUT_LABEL (file, entry_label);
inside_function = TRUE;
if (TARGET_OPEN_VMS)
fprintf (file, "\t.base $%d\n", vms_base_regno);
if (!TARGET_OPEN_VMS && TARGET_IEEE_CONFORMANT
&& !flag_inhibit_size_directive)
{
/* Set flags in procedure descriptor to request IEEE-conformant
math-library routines. The value we set it to is PDSC_EXC_IEEE
(/usr/include/pdsc.h). */
fputs ("\t.eflag 48\n", file);
}
/* Set up offsets to alpha virtual arg/local debugging pointer. */
alpha_auto_offset = -frame_size + current_function_pretend_args_size;
alpha_arg_offset = -frame_size + 48;
/* Describe our frame. If the frame size is larger than an integer,
print it as zero to avoid an assembler error. We won't be
properly describing such a frame, but that's the best we can do. */
if (TARGET_OPEN_VMS)
{
fprintf (file, "\t.frame $%d,", vms_unwind_regno);
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
frame_size >= (1l << 31) ? 0 : frame_size);
fputs (",$26,", file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, reg_offset);
fputs ("\n", file);
}
else if (!flag_inhibit_size_directive)
{
fprintf (file, "\t.frame $%d,",
(frame_pointer_needed
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM));
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
frame_size >= (1l << 31) ? 0 : frame_size);
fprintf (file, ",$26,%d\n", current_function_pretend_args_size);
}
/* Describe which registers were spilled. */
if (TARGET_OPEN_VMS)
{
if (imask)
/* ??? Does VMS care if mask contains ra? The old code did'nt
set it, so I don't here. */
fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1L << REG_RA));
if (fmask)
fprintf (file, "\t.fmask 0x%lx,0\n", fmask);
if (!vms_is_stack_procedure)
fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno);
}
else if (!flag_inhibit_size_directive)
{
if (imask)
{
fprintf (file, "\t.mask 0x%lx,", imask);
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
frame_size >= (1l << 31) ? 0 : reg_offset - frame_size);
putc ('\n', file);
for (i = 0; i < 32; ++i)
if (imask & (1L << i))
reg_offset += 8;
}
if (fmask)
{
fprintf (file, "\t.fmask 0x%lx,", fmask);
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
frame_size >= (1l << 31) ? 0 : reg_offset - frame_size);
putc ('\n', file);
}
}
/* Emit GP related things. It is rather unfortunate about the alignment
issues surrounding a CODE_LABEL that forces us to do the label in
plain text. */
if (!TARGET_OPEN_VMS && !TARGET_WINDOWS_NT)
{
alpha_function_needs_gp = alpha_does_function_need_gp ();
if (alpha_function_needs_gp)
fputs ("\tldgp $29,0($27)\n", file);
putc ('$', file);
assemble_name (file, fnname);
fputs ("..ng:\n", file);
}
#ifdef OPEN_VMS
/* Ifdef'ed cause readonly_section and link_section are only
available then. */
readonly_section ();
fprintf (file, "\t.align 3\n");
assemble_name (file, fnname); fputs ("..na:\n", file);
fputs ("\t.ascii \"", file);
assemble_name (file, fnname);
fputs ("\\0\"\n", file);
link_section ();
fprintf (file, "\t.align 3\n");
fputs ("\t.name ", file);
assemble_name (file, fnname);
fputs ("..na\n", file);
ASM_OUTPUT_LABEL (file, fnname);
fprintf (file, "\t.pdesc ");
assemble_name (file, fnname);
fprintf (file, "..en,%s\n", vms_is_stack_procedure ? "stack" : "reg");
alpha_need_linkage (fnname, 1);
text_section ();
#endif
}
/* Emit the .prologue note at the scheduled end of the prologue. */
void
output_end_prologue (file)
FILE *file;
{
if (TARGET_OPEN_VMS)
fputs ("\t.prologue\n", file);
else if (TARGET_WINDOWS_NT)
fputs ("\t.prologue 0\n", file);
else if (!flag_inhibit_size_directive)
fprintf (file, "\t.prologue %d\n", alpha_function_needs_gp);
}
/* Write function epilogue. */
/* ??? At some point we will want to support full unwind, and so will
need to mark the epilogue as well. At the moment, we just confuse
dwarf2out. */
#undef FRP
#define FRP(exp) exp
void
alpha_expand_epilogue ()
{
/* Registers to save. */
unsigned long imask = 0;
unsigned long fmask = 0;
/* Stack space needed for pushing registers clobbered by us. */
HOST_WIDE_INT sa_size;
/* Complete stack size needed. */
HOST_WIDE_INT frame_size;
/* Offset from base reg to register save area. */
HOST_WIDE_INT reg_offset;
int fp_is_frame_pointer, fp_offset;
rtx sa_reg, sa_reg_exp = NULL;
rtx sp_adj1, sp_adj2, mem;
int i;
sa_size = alpha_sa_size ();
frame_size = get_frame_size ();
if (TARGET_OPEN_VMS)
frame_size = ALPHA_ROUND (sa_size
+ (vms_is_stack_procedure ? 8 : 0)
+ frame_size
+ current_function_pretend_args_size);
else
frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
+ sa_size
+ ALPHA_ROUND (frame_size
+ current_function_pretend_args_size));
if (TARGET_OPEN_VMS)
reg_offset = 8;
else
reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
alpha_sa_mask (&imask, &fmask);
fp_is_frame_pointer = ((TARGET_OPEN_VMS && vms_is_stack_procedure)
|| (!TARGET_OPEN_VMS && frame_pointer_needed));
if (sa_size)
{
/* If we have a frame pointer, restore SP from it. */
if ((TARGET_OPEN_VMS
&& vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
|| (!TARGET_OPEN_VMS && frame_pointer_needed))
{
FRP (emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx));
}
/* Cope with very large offsets to the register save area. */
sa_reg = stack_pointer_rtx;
if (reg_offset + sa_size > 0x8000)
{
int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
HOST_WIDE_INT bias;
if (low + sa_size <= 0x8000)
bias = reg_offset - low, reg_offset = low;
else
bias = reg_offset, reg_offset = 0;
sa_reg = gen_rtx_REG (DImode, 22);
sa_reg_exp = plus_constant (stack_pointer_rtx, bias);
FRP (emit_move_insn (sa_reg, sa_reg_exp));
}
/* Restore registers in order, excepting a true frame pointer. */
if (! alpha_eh_epilogue_sp_ofs)
{
mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, reg_offset));
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
}
reg_offset += 8;
imask &= ~(1L << REG_RA);
for (i = 0; i < 32; ++i)
if (imask & (1L << i))
{
if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer)
fp_offset = reg_offset;
else
{
mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, reg_offset));
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
}
reg_offset += 8;
}
for (i = 0; i < 32; ++i)
if (fmask & (1L << i))
{
mem = gen_rtx_MEM (DFmode, plus_constant(sa_reg, reg_offset));
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
reg_offset += 8;
}
}
if (frame_size || alpha_eh_epilogue_sp_ofs)
{
sp_adj1 = stack_pointer_rtx;
if (alpha_eh_epilogue_sp_ofs)
{
sp_adj1 = gen_rtx_REG (DImode, 23);
emit_move_insn (sp_adj1,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
alpha_eh_epilogue_sp_ofs));
}
/* If the stack size is large, begin computation into a temporary
register so as not to interfere with a potential fp restore,
which must be consecutive with an SP restore. */
if (frame_size < 32768)
sp_adj2 = GEN_INT (frame_size);
else if (frame_size < 0x40007fffL)
{
int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
sp_adj2 = plus_constant (sp_adj1, frame_size - low);
if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2))
sp_adj1 = sa_reg;
else
{
sp_adj1 = gen_rtx_REG (DImode, 23);
FRP (emit_move_insn (sp_adj1, sp_adj2));
}
sp_adj2 = GEN_INT (low);
}
else
{
rtx tmp = gen_rtx_REG (DImode, 23);
FRP (sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size, 3));
if (!sp_adj2)
{
/* We can't drop new things to memory this late, afaik,
so build it up by pieces. */
FRP (sp_adj2 = alpha_emit_set_long_const (tmp, frame_size,
-(frame_size < 0)));
if (!sp_adj2)
abort ();
}
}
/* From now on, things must be in order. So emit blockages. */
/* Restore the frame pointer. */
if (fp_is_frame_pointer)
{
emit_insn (gen_blockage ());
mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, fp_offset));
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
}
else if (TARGET_OPEN_VMS)
{
emit_insn (gen_blockage ());
FRP (emit_move_insn (hard_frame_pointer_rtx,
gen_rtx_REG (DImode, vms_save_fp_regno)));
}
/* Restore the stack pointer. */
emit_insn (gen_blockage ());
FRP (emit_move_insn (stack_pointer_rtx,
gen_rtx_PLUS (DImode, sp_adj1, sp_adj2)));
}
else
{
if (TARGET_OPEN_VMS && !vms_is_stack_procedure)
{
emit_insn (gen_blockage ());
FRP (emit_move_insn (hard_frame_pointer_rtx,
gen_rtx_REG (DImode, vms_save_fp_regno)));
}
}
/* Return. */
emit_jump_insn (gen_return_internal ());
}
/* Output the rest of the textual info surrounding the epilogue. */
void
alpha_end_function (file, fnname, decl)
FILE *file;
char *fnname;
tree decl ATTRIBUTE_UNUSED;
{
/* End the function. */
if (!flag_inhibit_size_directive)
{
fputs ("\t.end ", file);
assemble_name (file, fnname);
putc ('\n', file);
}
inside_function = FALSE;
/* Show that we know this function if it is called again.
Don't do this for global functions in object files destined for a
shared library because the function may be overridden by the application
or other libraries.
??? Is this just ELF? */
if (!flag_pic || !TREE_PUBLIC (current_function_decl))
SYMBOL_REF_FLAG (XEXP (DECL_RTL (current_function_decl), 0)) = 1;
}
/* Debugging support. */
#include "gstab.h"
/* Count the number of sdb related labels are generated (to find block
start and end boundaries). */
int sdb_label_count = 0;
/* Next label # for each statement. */
static int sym_lineno = 0;
/* Count the number of .file directives, so that .loc is up to date. */
static int num_source_filenames = 0;
/* Name of the file containing the current function. */
static char *current_function_file = "";
/* Offsets to alpha virtual arg/local debugging pointers. */
long alpha_arg_offset;
long alpha_auto_offset;
/* Emit a new filename to a stream. */
void
alpha_output_filename (stream, name)
FILE *stream;
char *name;
{
static int first_time = TRUE;
char ltext_label_name[100];
if (first_time)
{
first_time = FALSE;
++num_source_filenames;
current_function_file = name;
fprintf (stream, "\t.file\t%d ", num_source_filenames);
output_quoted_string (stream, name);
fprintf (stream, "\n");
if (!TARGET_GAS && write_symbols == DBX_DEBUG)
fprintf (stream, "\t#@stabs\n");
}
else if (write_symbols == DBX_DEBUG)
{
ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
fprintf (stream, "%s ", ASM_STABS_OP);
output_quoted_string (stream, name);
fprintf (stream, ",%d,0,0,%s\n", N_SOL, <ext_label_name[1]);
}
else if (name != current_function_file
&& strcmp (name, current_function_file) != 0)
{
if (inside_function && ! TARGET_GAS)
fprintf (stream, "\t#.file\t%d ", num_source_filenames);
else
{
++num_source_filenames;
current_function_file = name;
fprintf (stream, "\t.file\t%d ", num_source_filenames);
}
output_quoted_string (stream, name);
fprintf (stream, "\n");
}
}
/* Emit a linenumber to a stream. */
void
alpha_output_lineno (stream, line)
FILE *stream;
int line;
{
if (write_symbols == DBX_DEBUG)
{
/* mips-tfile doesn't understand .stabd directives. */
++sym_lineno;
fprintf (stream, "$LM%d:\n\t%s %d,0,%d,$LM%d\n",
sym_lineno, ASM_STABN_OP, N_SLINE, line, sym_lineno);
}
else
fprintf (stream, "\n\t.loc\t%d %d\n", num_source_filenames, line);
}
/* Structure to show the current status of registers and memory. */
struct shadow_summary
{
struct {
unsigned long i : 31; /* Mask of int regs */
unsigned long fp : 31; /* Mask of fp regs */
unsigned long mem : 1; /* mem == imem | fpmem */
} used, defd;
};
static void summarize_insn PROTO((rtx, struct shadow_summary *, int));
static void alpha_handle_trap_shadows PROTO((rtx));
/* Summary the effects of expression X on the machine. Update SUM, a pointer
to the summary structure. SET is nonzero if the insn is setting the
object, otherwise zero. */
static void
summarize_insn (x, sum, set)
rtx x;
struct shadow_summary *sum;
int set;
{
char *format_ptr;
int i, j;
if (x == 0)
return;
switch (GET_CODE (x))
{
/* ??? Note that this case would be incorrect if the Alpha had a
ZERO_EXTRACT in SET_DEST. */
case SET:
summarize_insn (SET_SRC (x), sum, 0);
summarize_insn (SET_DEST (x), sum, 1);
break;
case CLOBBER:
summarize_insn (XEXP (x, 0), sum, 1);
break;
case USE:
summarize_insn (XEXP (x, 0), sum, 0);
break;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0);
break;
case PARALLEL:
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
summarize_insn (XVECEXP (x, 0, i), sum, 0);
break;
case SUBREG:
summarize_insn (SUBREG_REG (x), sum, 0);
break;
case REG:
{
int regno = REGNO (x);
unsigned long mask = 1UL << (regno % 32);
if (regno == 31 || regno == 63)
break;
if (set)
{
if (regno < 32)
sum->defd.i |= mask;
else
sum->defd.fp |= mask;
}
else
{
if (regno < 32)
sum->used.i |= mask;
else
sum->used.fp |= mask;
}
}
break;
case MEM:
if (set)
sum->defd.mem = 1;
else
sum->used.mem = 1;
/* Find the regs used in memory address computation: */
summarize_insn (XEXP (x, 0), sum, 0);
break;
case CONST_INT: case CONST_DOUBLE:
case SYMBOL_REF: case LABEL_REF: case CONST:
break;
/* Handle common unary and binary ops for efficiency. */
case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
case MOD: case UDIV: case UMOD: case AND: case IOR:
case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
case NE: case EQ: case GE: case GT: case LE:
case LT: case GEU: case GTU: case LEU: case LTU:
summarize_insn (XEXP (x, 0), sum, 0);
summarize_insn (XEXP (x, 1), sum, 0);
break;
case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
case SQRT: case FFS:
summarize_insn (XEXP (x, 0), sum, 0);
break;
default:
format_ptr = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
switch (format_ptr[i])
{
case 'e':
summarize_insn (XEXP (x, i), sum, 0);
break;
case 'E':
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
summarize_insn (XVECEXP (x, i, j), sum, 0);
break;
case 'i':
break;
default:
abort ();
}
}
}
/* Ensure a sufficient number of `trapb' insns are in the code when
the user requests code with a trap precision of functions or
instructions.
In naive mode, when the user requests a trap-precision of
"instruction", a trapb is needed after every instruction that may
generate a trap. This ensures that the code is resumption safe but
it is also slow.
When optimizations are turned on, we delay issuing a trapb as long
as possible. In this context, a trap shadow is the sequence of
instructions that starts with a (potentially) trap generating
instruction and extends to the next trapb or call_pal instruction
(but GCC never generates call_pal by itself). We can delay (and
therefore sometimes omit) a trapb subject to the following
conditions:
(a) On entry to the trap shadow, if any Alpha register or memory
location contains a value that is used as an operand value by some
instruction in the trap shadow (live on entry), then no instruction
in the trap shadow may modify the register or memory location.
(b) Within the trap shadow, the computation of the base register
for a memory load or store instruction may not involve using the
result of an instruction that might generate an UNPREDICTABLE
result.
(c) Within the trap shadow, no register may be used more than once
as a destination register. (This is to make life easier for the
trap-handler.)
(d) The trap shadow may not include any branch instructions. */
static void
alpha_handle_trap_shadows (insns)
rtx insns;
{
struct shadow_summary shadow;
int trap_pending, exception_nesting;
rtx i, n;
trap_pending = 0;
exception_nesting = 0;
shadow.used.i = 0;
shadow.used.fp = 0;
shadow.used.mem = 0;
shadow.defd = shadow.used;
for (i = insns; i ; i = NEXT_INSN (i))
{
if (GET_CODE (i) == NOTE)
{
switch (NOTE_LINE_NUMBER (i))
{
case NOTE_INSN_EH_REGION_BEG:
exception_nesting++;
if (trap_pending)
goto close_shadow;
break;
case NOTE_INSN_EH_REGION_END:
exception_nesting--;
if (trap_pending)
goto close_shadow;
break;
case NOTE_INSN_EPILOGUE_BEG:
if (trap_pending && alpha_tp >= ALPHA_TP_FUNC)
goto close_shadow;
break;
}
}
else if (trap_pending)
{
if (alpha_tp == ALPHA_TP_FUNC)
{
if (GET_CODE (i) == JUMP_INSN
&& GET_CODE (PATTERN (i)) == RETURN)
goto close_shadow;
}
else if (alpha_tp == ALPHA_TP_INSN)
{
if (optimize > 0)
{
struct shadow_summary sum;
sum.used.i = 0;
sum.used.fp = 0;
sum.used.mem = 0;
sum.defd = sum.used;
switch (GET_CODE (i))
{
case INSN:
/* Annoyingly, get_attr_trap will abort on these. */
if (GET_CODE (PATTERN (i)) == USE
|| GET_CODE (PATTERN (i)) == CLOBBER)
break;
summarize_insn (PATTERN (i), &sum, 0);
if ((sum.defd.i & shadow.defd.i)
|| (sum.defd.fp & shadow.defd.fp))
{
/* (c) would be violated */
goto close_shadow;
}
/* Combine shadow with summary of current insn: */
shadow.used.i |= sum.used.i;
shadow.used.fp |= sum.used.fp;
shadow.used.mem |= sum.used.mem;
shadow.defd.i |= sum.defd.i;
shadow.defd.fp |= sum.defd.fp;
shadow.defd.mem |= sum.defd.mem;
if ((sum.defd.i & shadow.used.i)
|| (sum.defd.fp & shadow.used.fp)
|| (sum.defd.mem & shadow.used.mem))
{
/* (a) would be violated (also takes care of (b)) */
if (get_attr_trap (i) == TRAP_YES
&& ((sum.defd.i & sum.used.i)
|| (sum.defd.fp & sum.used.fp)))
abort ();
goto close_shadow;
}
break;
case JUMP_INSN:
case CALL_INSN:
case CODE_LABEL:
goto close_shadow;
default:
abort ();
}
}
else
{
close_shadow:
n = emit_insn_before (gen_trapb (), i);
PUT_MODE (n, TImode);
PUT_MODE (i, TImode);
trap_pending = 0;
shadow.used.i = 0;
shadow.used.fp = 0;
shadow.used.mem = 0;
shadow.defd = shadow.used;
}
}
}
if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC)
&& GET_CODE (i) == INSN
&& GET_CODE (PATTERN (i)) != USE
&& GET_CODE (PATTERN (i)) != CLOBBER
&& get_attr_trap (i) == TRAP_YES)
{
if (optimize && !trap_pending)
summarize_insn (PATTERN (i), &shadow, 0);
trap_pending = 1;
}
}
}
#ifdef HAIFA
/* Alpha can only issue instruction groups simultaneously if they are
suitibly aligned. This is very processor-specific. */
enum alphaev4_pipe {
EV4_STOP = 0,
EV4_IB0 = 1,
EV4_IB1 = 2,
EV4_IBX = 4
};
enum alphaev5_pipe {
EV5_STOP = 0,
EV5_NONE = 1,
EV5_E01 = 2,
EV5_E0 = 4,
EV5_E1 = 8,
EV5_FAM = 16,
EV5_FA = 32,
EV5_FM = 64
};
static enum alphaev4_pipe alphaev4_insn_pipe PROTO((rtx));
static enum alphaev5_pipe alphaev5_insn_pipe PROTO((rtx));
static rtx alphaev4_next_group PROTO((rtx, int*, int*));
static rtx alphaev5_next_group PROTO((rtx, int*, int*));
static rtx alphaev4_next_nop PROTO((int*));
static rtx alphaev5_next_nop PROTO((int*));
static void alpha_align_insns
PROTO((rtx, int, rtx (*)(rtx, int*, int*), rtx (*)(int*), int));
static enum alphaev4_pipe
alphaev4_insn_pipe (insn)
rtx insn;
{
if (recog_memoized (insn) < 0)
return EV4_STOP;
if (get_attr_length (insn) != 4)
return EV4_STOP;
switch (get_attr_type (insn))
{
case TYPE_ILD:
case TYPE_FLD:
return EV4_IBX;
case TYPE_LDSYM:
case TYPE_IADD:
case TYPE_ILOG:
case TYPE_ICMOV:
case TYPE_ICMP:
case TYPE_IST:
case TYPE_FST:
case TYPE_SHIFT:
case TYPE_IMUL:
case TYPE_FBR:
return EV4_IB0;
case TYPE_MISC:
case TYPE_IBR:
case TYPE_JSR:
case TYPE_FCPYS:
case TYPE_FCMOV:
case TYPE_FADD:
case TYPE_FDIV:
case TYPE_FMUL:
return EV4_IB1;
default:
abort();
}
}
static enum alphaev5_pipe
alphaev5_insn_pipe (insn)
rtx insn;
{
if (recog_memoized (insn) < 0)
return EV5_STOP;
if (get_attr_length (insn) != 4)
return EV5_STOP;
switch (get_attr_type (insn))
{
case TYPE_ILD:
case TYPE_FLD:
case TYPE_LDSYM:
case TYPE_IADD:
case TYPE_ILOG:
case TYPE_ICMOV:
case TYPE_ICMP:
return EV5_E01;
case TYPE_IST:
case TYPE_FST:
case TYPE_SHIFT:
case TYPE_IMUL:
case TYPE_MISC:
case TYPE_MVI:
return EV5_E0;
case TYPE_IBR:
case TYPE_JSR:
return EV5_E1;
case TYPE_FCPYS:
return EV5_FAM;
case TYPE_FBR:
case TYPE_FCMOV:
case TYPE_FADD:
case TYPE_FDIV:
return EV5_FA;
case TYPE_FMUL:
return EV5_FM;
default:
abort();
}
}
/* IN_USE is a mask of the slots currently filled within the insn group.
The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
LEN is, of course, the length of the group in bytes. */
static rtx
alphaev4_next_group (insn, pin_use, plen)
rtx insn;
int *pin_use, *plen;
{
int len, in_use;
len = in_use = 0;
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i'
|| GET_CODE (PATTERN (insn)) == CLOBBER
|| GET_CODE (PATTERN (insn)) == USE)
goto next_and_done;
while (1)
{
enum alphaev4_pipe pipe;
pipe = alphaev4_insn_pipe (insn);
switch (pipe)
{
case EV4_STOP:
/* Force complex instructions to start new groups. */
if (in_use)
goto done;
/* If this is a completely unrecognized insn, its an asm.
We don't know how long it is, so record length as -1 to
signal a needed realignment. */
if (recog_memoized (insn) < 0)
len = -1;
else
len = get_attr_length (insn);
goto next_and_done;
case EV4_IBX:
if (in_use & EV4_IB0)
{
if (in_use & EV4_IB1)
goto done;
in_use |= EV4_IB1;
}
else
in_use |= EV4_IB0 | EV4_IBX;
break;
case EV4_IB0:
if (in_use & EV4_IB0)
{
if (!(in_use & EV4_IBX) || (in_use & EV4_IB1))
goto done;
in_use |= EV4_IB1;
}
in_use |= EV4_IB0;
break;
case EV4_IB1:
if (in_use & EV4_IB1)
goto done;
in_use |= EV4_IB1;
break;
default:
abort();
}
len += 4;
/* Haifa doesn't do well scheduling branches. */
if (GET_CODE (insn) == JUMP_INSN)
goto next_and_done;
next:
insn = next_nonnote_insn (insn);
if (!insn || GET_RTX_CLASS (GET_CODE (insn)) != 'i')
goto done;
/* Let Haifa tell us where it thinks insn group boundaries are. */
if (GET_MODE (insn) == TImode)
goto done;
if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
goto next;
}
next_and_done:
insn = next_nonnote_insn (insn);
done:
*plen = len;
*pin_use = in_use;
return insn;
}
/* IN_USE is a mask of the slots currently filled within the insn group.
The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
LEN is, of course, the length of the group in bytes. */
static rtx
alphaev5_next_group (insn, pin_use, plen)
rtx insn;
int *pin_use, *plen;
{
int len, in_use;
len = in_use = 0;
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i'
|| GET_CODE (PATTERN (insn)) == CLOBBER
|| GET_CODE (PATTERN (insn)) == USE)
goto next_and_done;
while (1)
{
enum alphaev5_pipe pipe;
pipe = alphaev5_insn_pipe (insn);
switch (pipe)
{
case EV5_STOP:
/* Force complex instructions to start new groups. */
if (in_use)
goto done;
/* If this is a completely unrecognized insn, its an asm.
We don't know how long it is, so record length as -1 to
signal a needed realignment. */
if (recog_memoized (insn) < 0)
len = -1;
else
len = get_attr_length (insn);
goto next_and_done;
/* ??? Most of the places below, we would like to abort, as
it would indicate an error either in Haifa, or in the
scheduling description. Unfortunately, Haifa never
schedules the last instruction of the BB, so we don't
have an accurate TI bit to go off. */
case EV5_E01:
if (in_use & EV5_E0)
{
if (in_use & EV5_E1)
goto done;
in_use |= EV5_E1;
}
else
in_use |= EV5_E0 | EV5_E01;
break;
case EV5_E0:
if (in_use & EV5_E0)
{
if (!(in_use & EV5_E01) || (in_use & EV5_E1))
goto done;
in_use |= EV5_E1;
}
in_use |= EV5_E0;
break;
case EV5_E1:
if (in_use & EV5_E1)
goto done;
in_use |= EV5_E1;
break;
case EV5_FAM:
if (in_use & EV5_FA)
{
if (in_use & EV5_FM)
goto done;
in_use |= EV5_FM;
}
else
in_use |= EV5_FA | EV5_FAM;
break;
case EV5_FA:
if (in_use & EV5_FA)
goto done;
in_use |= EV5_FA;
break;
case EV5_FM:
if (in_use & EV5_FM)
goto done;
in_use |= EV5_FM;
break;
case EV5_NONE:
break;
default:
abort();
}
len += 4;
/* Haifa doesn't do well scheduling branches. */
/* ??? If this is predicted not-taken, slotting continues, except
that no more IBR, FBR, or JSR insns may be slotted. */
if (GET_CODE (insn) == JUMP_INSN)
goto next_and_done;
next:
insn = next_nonnote_insn (insn);
if (!insn || GET_RTX_CLASS (GET_CODE (insn)) != 'i')
goto done;
/* Let Haifa tell us where it thinks insn group boundaries are. */
if (GET_MODE (insn) == TImode)
goto done;
if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
goto next;
}
next_and_done:
insn = next_nonnote_insn (insn);
done:
*plen = len;
*pin_use = in_use;
return insn;
}
static rtx
alphaev4_next_nop (pin_use)
int *pin_use;
{
int in_use = *pin_use;
rtx nop;
if (!(in_use & EV4_IB0))
{
in_use |= EV4_IB0;
nop = gen_nop ();
}
else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX)
{
in_use |= EV4_IB1;
nop = gen_nop ();
}
else if (TARGET_FP && !(in_use & EV4_IB1))
{
in_use |= EV4_IB1;
nop = gen_fnop ();
}
else
nop = gen_unop ();
*pin_use = in_use;
return nop;
}
static rtx
alphaev5_next_nop (pin_use)
int *pin_use;
{
int in_use = *pin_use;
rtx nop;
if (!(in_use & EV5_E1))
{
in_use |= EV5_E1;
nop = gen_nop ();
}
else if (TARGET_FP && !(in_use & EV5_FA))
{
in_use |= EV5_FA;
nop = gen_fnop ();
}
else if (TARGET_FP && !(in_use & EV5_FM))
{
in_use |= EV5_FM;
nop = gen_fnop ();
}
else
nop = gen_unop ();
*pin_use = in_use;
return nop;
}
/* The instruction group alignment main loop. */
static void
alpha_align_insns (insns, max_align, next_group, next_nop, gp_in_use)
rtx insns;
int max_align;
rtx (*next_group) PROTO((rtx, int*, int*));
rtx (*next_nop) PROTO((int*));
int gp_in_use;
{
/* ALIGN is the known alignment for the insn group. */
int align;
/* OFS is the offset of the current insn in the insn group. */
int ofs;
int prev_in_use, in_use, len;
rtx i, next;
/* Let shorten branches care for assigning alignments to code labels. */
shorten_branches (insns);
align = (FUNCTION_BOUNDARY/BITS_PER_UNIT < max_align
? FUNCTION_BOUNDARY/BITS_PER_UNIT : max_align);
/* Account for the initial GP load, which happens before the scheduled
prologue we emitted as RTL. */
ofs = prev_in_use = 0;
if (alpha_does_function_need_gp())
{
ofs = 8 & (align - 1);
prev_in_use = gp_in_use;
}
i = insns;
if (GET_CODE (i) == NOTE)
i = next_nonnote_insn (i);
while (i)
{
next = (*next_group)(i, &in_use, &len);
/* When we see a label, resync alignment etc. */
if (GET_CODE (i) == CODE_LABEL)
{
int new_align = 1 << label_to_alignment (i);
if (new_align >= align)
{
align = new_align < max_align ? new_align : max_align;
ofs = 0;
}
else if (ofs & (new_align-1))
ofs = (ofs | (new_align-1)) + 1;
if (len != 0)
abort();
}
/* Handle complex instructions special. */
else if (in_use == 0)
{
/* Asms will have length < 0. This is a signal that we have
lost alignment knowledge. Assume, however, that the asm
will not mis-align instructions. */
if (len < 0)
{
ofs = 0;
align = 4;
len = 0;
}
}
/* If the known alignment is smaller than the recognized insn group,
realign the output. */
else if (align < len)
{
int new_log_align = len > 8 ? 4 : 3;
rtx where;
where = prev_nonnote_insn (i);
if (!where || GET_CODE (where) != CODE_LABEL)
where = i;
emit_insn_before (gen_realign (GEN_INT (new_log_align)), where);
align = 1 << new_log_align;
ofs = 0;
}
/* If the group won't fit in the same INT16 as the previous,
we need to add padding to keep the group together. Rather
than simply leaving the insn filling to the assembler, we
can make use of the knowledge of what sorts of instructions
were issued in the previous group to make sure that all of
the added nops are really free. */
else if (ofs + len > align)
{
int nop_count = (align - ofs) / 4;
rtx where;
/* Insert nops before labels and branches to truely merge the
execution of the nops with the previous instruction group. */
where = prev_nonnote_insn (i);
if (where)
{
if (GET_CODE (where) == CODE_LABEL)
{
rtx where2 = prev_nonnote_insn (where);
if (where2 && GET_CODE (where2) == JUMP_INSN)
where = where2;
}
else if (GET_CODE (where) != JUMP_INSN)
where = i;
}
else
where = i;
do
emit_insn_before ((*next_nop)(&prev_in_use), where);
while (--nop_count);
ofs = 0;
}
ofs = (ofs + len) & (align - 1);
prev_in_use = in_use;
i = next;
}
}
#endif /* HAIFA */
/* Machine dependant reorg pass. */
void
alpha_reorg (insns)
rtx insns;
{
if (alpha_tp != ALPHA_TP_PROG || flag_exceptions)
alpha_handle_trap_shadows (insns);
#ifdef HAIFA
/* Due to the number of extra trapb insns, don't bother fixing up
alignment when trap precision is instruction. Moreover, we can
only do our job when sched2 is run and Haifa is our scheduler. */
if (optimize && !optimize_size
&& alpha_tp != ALPHA_TP_INSN
&& flag_schedule_insns_after_reload)
{
if (alpha_cpu == PROCESSOR_EV4)
alpha_align_insns (insns, 8, alphaev4_next_group,
alphaev4_next_nop, EV4_IB0);
else if (alpha_cpu == PROCESSOR_EV5)
alpha_align_insns (insns, 16, alphaev5_next_group,
alphaev5_next_nop, EV5_E01 | EV5_E0);
}
#endif
}
/* Check a floating-point value for validity for a particular machine mode. */
static char * const float_strings[] =
{
/* These are for FLOAT_VAX. */
"1.70141173319264430e+38", /* 2^127 (2^24 - 1) / 2^24 */
"-1.70141173319264430e+38",
"2.93873587705571877e-39", /* 2^-128 */
"-2.93873587705571877e-39",
/* These are for the default broken IEEE mode, which traps
on infinity or denormal numbers. */
"3.402823466385288598117e+38", /* 2^128 (1 - 2^-24) */
"-3.402823466385288598117e+38",
"1.1754943508222875079687e-38", /* 2^-126 */
"-1.1754943508222875079687e-38",
};
static REAL_VALUE_TYPE float_values[8];
static int inited_float_values = 0;
int
check_float_value (mode, d, overflow)
enum machine_mode mode;
REAL_VALUE_TYPE *d;
int overflow ATTRIBUTE_UNUSED;
{
if (TARGET_IEEE || TARGET_IEEE_CONFORMANT || TARGET_IEEE_WITH_INEXACT)
return 0;
if (inited_float_values == 0)
{
int i;
for (i = 0; i < 8; i++)
float_values[i] = REAL_VALUE_ATOF (float_strings[i], DFmode);
inited_float_values = 1;
}
if (mode == SFmode)
{
REAL_VALUE_TYPE r;
REAL_VALUE_TYPE *fvptr;
if (TARGET_FLOAT_VAX)
fvptr = &float_values[0];
else
fvptr = &float_values[4];
bcopy ((char *) d, (char *) &r, sizeof (REAL_VALUE_TYPE));
if (REAL_VALUES_LESS (fvptr[0], r))
{
bcopy ((char *) &fvptr[0], (char *) d,
sizeof (REAL_VALUE_TYPE));
return 1;
}
else if (REAL_VALUES_LESS (r, fvptr[1]))
{
bcopy ((char *) &fvptr[1], (char *) d,
sizeof (REAL_VALUE_TYPE));
return 1;
}
else if (REAL_VALUES_LESS (dconst0, r)
&& REAL_VALUES_LESS (r, fvptr[2]))
{
bcopy ((char *) &dconst0, (char *) d, sizeof (REAL_VALUE_TYPE));
return 1;
}
else if (REAL_VALUES_LESS (r, dconst0)
&& REAL_VALUES_LESS (fvptr[3], r))
{
bcopy ((char *) &dconst0, (char *) d, sizeof (REAL_VALUE_TYPE));
return 1;
}
}
return 0;
}
#if OPEN_VMS
/* Return the VMS argument type corresponding to MODE. */
enum avms_arg_type
alpha_arg_type (mode)
enum machine_mode mode;
{
switch (mode)
{
case SFmode:
return TARGET_FLOAT_VAX ? FF : FS;
case DFmode:
return TARGET_FLOAT_VAX ? FD : FT;
default:
return I64;
}
}
/* Return an rtx for an integer representing the VMS Argument Information
register value. */
struct rtx_def *
alpha_arg_info_reg_val (cum)
CUMULATIVE_ARGS cum;
{
unsigned HOST_WIDE_INT regval = cum.num_args;
int i;
for (i = 0; i < 6; i++)
regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
return GEN_INT (regval);
}
/* Structure to collect function names for final output
in link section. */
enum links_kind {KIND_UNUSED, KIND_LOCAL, KIND_EXTERN};
struct alpha_links {
struct alpha_links *next;
char *name;
enum links_kind kind;
};
static struct alpha_links *alpha_links_base = 0;
/* Make (or fake) .linkage entry for function call.
IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
void
alpha_need_linkage (name, is_local)
char *name;
int is_local;
{
rtx x;
struct alpha_links *lptr, *nptr;
if (name[0] == '*')
name++;
/* Is this name already defined ? */
for (lptr = alpha_links_base; lptr; lptr = lptr->next)
if (strcmp (lptr->name, name) == 0)
{
if (is_local)
{
/* Defined here but external assumed. */
if (lptr->kind == KIND_EXTERN)
lptr->kind = KIND_LOCAL;
}
else
{
/* Used here but unused assumed. */
if (lptr->kind == KIND_UNUSED)
lptr->kind = KIND_LOCAL;
}
return;
}
nptr = (struct alpha_links *) xmalloc (sizeof (struct alpha_links));
nptr->next = alpha_links_base;
nptr->name = xstrdup (name);
/* Assume external if no definition. */
nptr->kind = (is_local ? KIND_UNUSED : KIND_EXTERN);
/* Ensure we have an IDENTIFIER so assemble_name can mark is used. */
get_identifier (name);
alpha_links_base = nptr;
return;
}
void
alpha_write_linkage (stream)
FILE *stream;
{
struct alpha_links *lptr, *nptr;
readonly_section ();
fprintf (stream, "\t.align 3\n");
for (lptr = alpha_links_base; lptr; lptr = nptr)
{
nptr = lptr->next;
if (lptr->kind == KIND_UNUSED
|| ! TREE_SYMBOL_REFERENCED (get_identifier (lptr->name)))
continue;
fprintf (stream, "$%s..lk:\n", lptr->name);
if (lptr->kind == KIND_LOCAL)
{
/* Local and used, build linkage pair. */
fprintf (stream, "\t.quad %s..en\n", lptr->name);
fprintf (stream, "\t.quad %s\n", lptr->name);
}
else
/* External and used, request linkage pair. */
fprintf (stream, "\t.linkage %s\n", lptr->name);
}
}
#else
void
alpha_need_linkage (name, is_local)
char *name ATTRIBUTE_UNUSED;
int is_local ATTRIBUTE_UNUSED;
{
}
#endif /* OPEN_VMS */
|