1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
|
/* Definitions of target machine for GNU compiler, for DEC Alpha.
Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "\
-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
/* Write out the correct language type definition for the header files.
Unless we have assembler language, write out the symbols for C. */
#define CPP_SPEC "\
%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
%{mieee:-D_IEEE_FP} \
%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
/* Set the spec to use for signed char. The default tests the above macro
but DEC's compiler can't handle the conditional in a "constant"
operand. */
#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
/* Under OSF/1, -p and -pg require -lprof1. */
#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
optimizing, -O1 if we are not. Pass -shared, -non_shared or
-call_shared as appropriate. Also pass -pg. */
#define LINK_SPEC \
"-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
%{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
%{rpath*}"
#define WORD_SWITCH_TAKES_ARG(STR) \
(!strcmp (STR, "rpath") || !strcmp (STR, "include") \
|| !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
|| !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
|| !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
|| !strcmp (STR, "isystem"))
#define STARTFILE_SPEC \
"%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION
/* Default this to not be compiling for Windows/NT. */
#ifndef WINDOWS_NT
#define WINDOWS_NT 0
#endif
/* Define the location for the startup file on OSF/1 for Alpha. */
#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
/* Run-time compilation parameters selecting different hardware subsets. */
enum alpha_trap_precision
{
ALPHA_TP_PROG, /* No precision (default). */
ALPHA_TP_FUNC, /* Trap contained within originating function. */
ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
};
enum alpha_fp_rounding_mode
{
ALPHA_FPRM_NORM, /* Normal rounding mode. */
ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
ALPHA_FPRM_DYN /* Dynamic rounding mode. */
};
enum alpha_fp_trap_mode
{
ALPHA_FPTM_N, /* Normal trap mode. */
ALPHA_FPTM_U, /* Underflow traps enabled. */
ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
};
extern int target_flags;
extern enum alpha_trap_precision alpha_tp;
extern enum alpha_fp_rounding_mode alpha_fprm;
extern enum alpha_fp_trap_mode alpha_fptm;
/* This means that floating-point support exists in the target implementation
of the Alpha architecture. This is usually the default. */
#define MASK_FP 1
#define TARGET_FP (target_flags & MASK_FP)
/* This means that floating-point registers are allowed to be used. Note
that Alpha implementations without FP operations are required to
provide the FP registers. */
#define MASK_FPREGS 2
#define TARGET_FPREGS (target_flags & MASK_FPREGS)
/* This means that gas is used to process the assembler file. */
#define MASK_GAS 4
#define TARGET_GAS (target_flags & MASK_GAS)
/* This means that we should mark procedures as IEEE conformant. */
#define MASK_IEEE_CONFORMANT 8
#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
/* This means we should be IEEE-compliant except for inexact. */
#define MASK_IEEE 16
#define TARGET_IEEE (target_flags & MASK_IEEE)
/* This means we should be fully IEEE-compliant. */
#define MASK_IEEE_WITH_INEXACT 32
#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ {"no-soft-float", MASK_FP}, \
{"soft-float", - MASK_FP}, \
{"fp-regs", MASK_FPREGS}, \
{"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
{"alpha-as", -MASK_GAS}, \
{"gas", MASK_GAS}, \
{"ieee-conformant", MASK_IEEE_CONFORMANT}, \
{"ieee", MASK_IEEE}, \
{"ieee-with-inexact", MASK_IEEE_WITH_INEXACT}, \
{"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
#define TARGET_DEFAULT 3
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an initializer
with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the fixed
part of the option name, and the address of a variable. The
variable, type `char *', is set to the variable part of the given
option if the fixed part matches. The actual option name is made
by appending `-m' to the specified name.
Here is an example which defines `-mshort-data-NUMBER'. If the
given option is `-mshort-data-512', the variable `m88k_short_data'
will be set to the string `"512"'.
extern char *m88k_short_data;
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
#define TARGET_OPTIONS \
{ \
{"fp-rounding-mode=", &alpha_fprm_string}, \
{"fp-trap-mode=", &alpha_fptm_string}, \
{"trap-precision=", &alpha_tp_string}, \
}
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
On the Alpha, it is used to translate target-option strings into
numeric values. */
extern void override_options ();
#define OVERRIDE_OPTIONS override_options ()
/* Define this macro to change register usage conditional on target flags.
On the Alpha, we use this to disable the floating-point registers when
they don't exist. */
#define CONDITIONAL_REGISTER_USAGE \
if (! TARGET_FPREGS) \
for (i = 32; i < 63; i++) \
fixed_regs[i] = call_used_regs[i] = 1;
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* target machine storage layout */
/* Define to enable software floating point emulation. */
#define REAL_ARITHMETIC
/* Define the size of `int'. The default is the same as the word size. */
#define INT_TYPE_SIZE 32
/* Define the size of `long long'. The default is the twice the word size. */
#define LONG_LONG_TYPE_SIZE 64
/* The two floating-point formats we support are S-floating, which is
4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
and `long double' are T. */
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
#define WCHAR_TYPE "unsigned int"
#define WCHAR_TYPE_SIZE 32
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type.
For Alpha, we always store objects in a full register. 32-bit objects
are always sign-extended, but smaller objects retain their signedness. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
{ \
if ((MODE) == SImode) \
(UNSIGNEDP) = 0; \
(MODE) = DImode; \
}
/* Define this if function arguments should also be promoted using the above
procedure. */
#define PROMOTE_FUNCTION_ARGS
/* Likewise, if the function return value is promoted. */
#define PROMOTE_FUNCTION_RETURN
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
There are no such instructions on the Alpha, but the documentation
is little endian. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered.
This is false on the Alpha. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is lowest
numbered.
For Alpha we can decide arbitrarily since there are no machine instructions
for them. Might as well be consistent with bytes. */
#define WORDS_BIG_ENDIAN 0
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 8
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 64
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 64
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 64
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 64
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 64
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Align loop starts for optimal branching.
??? Kludge this and the next macro for the moment by not doing anything if
we don't optimize and also if we are writing ECOFF symbols to work around
a bug in DEC's assembler. */
#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
if (optimize > 0 && write_symbols != SDB_DEBUG) \
ASM_OUTPUT_ALIGN (FILE, 5)
/* This is how to align an instruction for optimal branching.
On Alpha we'll get better performance by aligning on a quadword
boundary. */
#define ASM_OUTPUT_ALIGN_CODE(FILE) \
if (optimize > 0 && write_symbols != SDB_DEBUG) \
ASM_OUTPUT_ALIGN ((FILE), 4)
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 64
/* Align all constants and variables to at least a word boundary so
we can pick up pieces of them faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
/* Set this non-zero if move instructions will actually fail to work
when given unaligned data.
Since we get an error message when we do one, call them invalid. */
#define STRICT_ALIGNMENT 1
/* Set this non-zero if unaligned move instructions are extremely slow.
On the Alpha, they trap. */
#define SLOW_UNALIGNED_ACCESS 1
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
We define all 32 integer registers, even though $31 is always zero,
and all 32 floating-point registers, even though $f31 is also
always zero. We do not bother defining the FP status register and
there are no other registers.
Since $31 is always zero, we will use register number 31 as the
argument pointer. It will never appear in the generated code
because we will always be eliminating it in favor of the stack
pointer or hardware frame pointer.
Likewise, we use $f31 for the frame pointer, which will always
be eliminated in favor of the hardware frame pointer or the
stack pointer. */
#define FIRST_PSEUDO_REGISTER 64
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
We allocate in the following order:
$f1 (nonsaved floating-point register)
$f10-$f15 (likewise)
$f22-$f30 (likewise)
$f21-$f16 (likewise, but input args)
$f0 (nonsaved, but return value)
$f2-$f9 (saved floating-point registers)
$1-$8 (nonsaved integer registers)
$22-$25 (likewise)
$28 (likewise)
$0 (likewise, but return value)
$21-$16 (likewise, but input args)
$27 (procedure value in OSF, nonsaved in NT)
$9-$14 (saved integer registers)
$26 (return PC)
$15 (frame pointer)
$29 (global pointer)
$30, $31, $f31 (stack pointer and always zero/ap & fp) */
#define REG_ALLOC_ORDER \
{33, \
42, 43, 44, 45, 46, 47, \
54, 55, 56, 57, 58, 59, 60, 61, 62, \
53, 52, 51, 50, 49, 48, \
32, \
34, 35, 36, 37, 38, 39, 40, 41, \
1, 2, 3, 4, 5, 6, 7, 8, \
22, 23, 24, 25, \
28, \
0, \
21, 20, 19, 18, 17, 16, \
27, \
9, 10, 11, 12, 13, 14, \
26, \
15, \
29, \
30, 31, 63 }
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On Alpha, the integer registers can hold any mode. The floating-point
registers can hold 32-bit and 64-bit integers as well, but not 16-bit
or 8-bit values. If we only allowed the larger integers into FP registers,
we'd have to say that QImode and SImode aren't tiable, which is a
pain. So say all registers can hold everything and see how that works. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) 1
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Alpha pc isn't overloaded on a register that the compiler knows about. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 30
/* Base register for access to local variables of the function. */
#define HARD_FRAME_POINTER_REGNUM 15
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 31
/* Base register for access to local variables of function. */
#define FRAME_POINTER_REGNUM 63
/* Register in which static-chain is passed to a function.
For the Alpha, this is based on an example; the calling sequence
doesn't seem to specify this. */
#define STATIC_CHAIN_REGNUM 1
/* Register in which address to store a structure value
arrives in the function. On the Alpha, the address is passed
as a hidden argument. */
#define STRUCT_VALUE 0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
LIM_REG_CLASSES };
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'f' ? FLOAT_REGS : NO_REGS)
/* Define this macro to change register usage conditional on target flags. */
/* #define CONDITIONAL_REGISTER_USAGE */
/* The letters I, J, K, L, M, N, O, and P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
For Alpha:
`I' is used for the range of constants most insns can contain.
`J' is the constant zero.
`K' is used for the constant in an LDA insn.
`L' is used for the constant in a LDAH insn.
`M' is used for the constants that can be AND'ed with using a ZAP insn.
`N' is used for complemented 8-bit constants.
`O' is used for negated 8-bit constants.
`P' is used for the constants 1, 2 and 3. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
: (C) == 'J' ? (VALUE) == 0 \
: (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
: (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
&& (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
&& ((HOST_BITS_PER_WIDE_INT == 64 \
|| (unsigned) (VALUE) != 0x80000000U))) \
: (C) == 'M' ? zap_mask (VALUE) \
: (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
: (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
: (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
: 0)
/* Similar, but for floating or large integer constants, and defining letters
G and H. Here VALUE is the CONST_DOUBLE rtx itself.
For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
that is the operand of a ZAP insn. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
: (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
&& zap_mask (CONST_DOUBLE_LOW (VALUE)) \
&& zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
: 0)
/* Optional extra constraints for this machine.
For the Alpha, `Q' means that this is a memory operand but not a
reference to an unaligned location.
`R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
function. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
: (C) == 'R' ? current_file_function_operand (OP, Pmode) \
: 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
On the Alpha, all constants except zero go into a floating-point
register via memory. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
(CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
: (CLASS))
/* Loading and storing HImode or QImode values to and from memory
usually requires a scratch register. The exceptions are loading
QImode and HImode from an aligned address to a general register.
We also cannot load an unaligned address or a paradoxical SUBREG into an
FP register. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
(((GET_CODE (IN) == MEM \
|| (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
|| (GET_CODE (IN) == SUBREG \
&& (GET_CODE (SUBREG_REG (IN)) == MEM \
|| (GET_CODE (SUBREG_REG (IN)) == REG \
&& REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
&& (((CLASS) == FLOAT_REGS \
&& ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
|| (((MODE) == QImode || (MODE) == HImode) \
&& unaligned_memory_operand (IN, MODE)))) \
? GENERAL_REGS \
: ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
&& GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
: ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
&& (GET_MODE_SIZE (GET_MODE (IN)) \
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
: NO_REGS)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
(((GET_CODE (OUT) == MEM \
|| (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
|| (GET_CODE (OUT) == SUBREG \
&& (GET_CODE (SUBREG_REG (OUT)) == MEM \
|| (GET_CODE (SUBREG_REG (OUT)) == REG \
&& REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
&& (((MODE) == HImode || (MODE) == QImode \
|| ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
? GENERAL_REGS \
: ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
&& GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
: ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
&& (GET_MODE_SIZE (GET_MODE (OUT)) \
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
: NO_REGS)
/* If we are copying between general and FP registers, we need a memory
location. */
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
/* Specify the mode to be used for memory when a secondary memory
location is needed. If MODE is floating-point, use it. Otherwise,
widen to a word like the default. This is needed because we always
store integers in FP registers in quadword format. This whole
area is very tricky! */
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
(GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
: GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
: mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* If defined, gives a class of registers that cannot be used as the
operand of a SUBREG that changes the size of the object. */
#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
/* Define the cost of moving between registers of various classes. Moving
between FLOAT_REGS and anything else except float regs is expensive.
In fact, we make it quite expensive because we really don't want to
do these moves unless it is clearly worth it. Optimizations may
reduce the impact of not being able to allocate a pseudo to a
hard register. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
(((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
/* A C expressions returning the cost of moving data of MODE from a register to
or from memory.
On the Alpha, bump this up a bit. */
#define MEMORY_MOVE_COST(MODE) 6
/* Provide the cost of a branch. Exact meaning under development. */
#define BRANCH_COST 5
/* Adjust the cost of dependencies. */
#define ADJUST_COST(INSN,LINK,DEP,COST) \
(COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD */
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On Alpha, don't define this because there are no push insns. */
/* #define PUSH_ROUNDING(BYTES) */
/* Define this if the maximum size of all the outgoing args is to be
accumulated and pushed during the prologue. The amount can be
found in the variable current_function_outgoing_args_size. */
#define ACCUMULATE_OUTGOING_ARGS
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Definitions for register eliminations.
We have two registers that can be eliminated on the Alpha. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer. */
/* This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
/* Given FROM and TO register numbers, say whether this elimination is allowed.
Frame pointer elimination is automatically handled.
All eliminations are valid since the cases where FP can't be
eliminated are already handled. */
#define CAN_ELIMINATE(FROM, TO) 1
/* Round up to a multiple of 16 bytes. */
#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ if ((FROM) == FRAME_POINTER_REGNUM) \
(OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
+ alpha_sa_size ()); \
else if ((FROM) == ARG_POINTER_REGNUM) \
(OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
+ alpha_sa_size () \
+ (ALPHA_ROUND (get_frame_size () \
+ current_function_pretend_args_size) \
- current_function_pretend_args_size)); \
}
/* Define this if stack space is still allocated for a parameter passed
in a register. */
/* #define REG_PARM_STACK_SPACE */
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0.
On Alpha the value is found in $0 for integer functions and
$f0 for floating-point functions. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, \
(INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
? word_mode : TYPE_MODE (VALTYPE), \
TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx (REG, MODE, \
TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
/* The definition of this macro implies that there are cases where
a scalar value cannot be returned in registers.
For the Alpha, any structure or union type is returned in memory, as
are integers whose size is larger than 64 bits. */
#define RETURN_IN_MEMORY(TYPE) \
(TYPE_MODE (TYPE) == BLKmode \
|| (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
/* 1 if N is a possible register number for a function value
as seen by the caller. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
/* 1 if N is a possible register number for function argument passing.
On Alpha, these are $16-$21 and $f16-$f21. */
#define FUNCTION_ARG_REGNO_P(N) \
(((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On Alpha, this is a single integer, which is a number of words
of arguments scanned so far.
Thus 6 or more means all following args should go on the stack. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
/* Define intermediate macro to compute the size (in registers) of an argument
for the Alpha. */
#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
: (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
if (MUST_PASS_IN_STACK (MODE, TYPE)) \
(CUM) = 6; \
else \
(CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On Alpha the first 6 words of args are normally in registers
and the rest are pushed. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
? gen_rtx(REG, (MODE), \
(CUM) + 16 + ((TARGET_FPREGS \
&& (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
|| GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
* 32)) \
: 0)
/* Specify the padding direction of arguments.
On the Alpha, we must pad upwards in order to be able to pass args in
registers. */
#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
? 6 - (CUM) : 0)
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments.
CUM is as above.
MODE and TYPE are the mode and type of the current parameter.
PRETEND_SIZE is a variable that should be set to the amount of stack
that must be pushed by the prolog to pretend that our caller pushed
it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed.
On the Alpha, we allocate space for all 12 arg registers, but only
push those that are remaining.
However, if NO registers need to be saved, don't allocate any space.
This is not only because we won't need the space, but because AP includes
the current_pretend_args_size and we don't want to mess up any
ap-relative addresses already made.
If we are not to use the floating-point registers, save the integer
registers where we would put the floating-point registers. This is
not the most efficient way to implement varargs with just one register
class, but it isn't worth doing anything more efficient in this rare
case. */
#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
{ if ((CUM) < 6) \
{ \
if (! (NO_RTL)) \
{ \
move_block_from_reg \
(16 + CUM, \
gen_rtx (MEM, BLKmode, \
plus_constant (virtual_incoming_args_rtx, \
((CUM) + 6)* UNITS_PER_WORD)), \
6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
move_block_from_reg \
(16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
gen_rtx (MEM, BLKmode, \
plus_constant (virtual_incoming_args_rtx, \
(CUM) * UNITS_PER_WORD)), \
6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
} \
PRETEND_SIZE = 12 * UNITS_PER_WORD; \
} \
}
/* Try to output insns to set TARGET equal to the constant C if it can be
done in less than N insns. Do all computations in MODE. Returns the place
where the output has been placed if it can be done and the insns have been
emitted. If it would take more than N insns, zero is returned and no
insns and emitted. */
extern struct rtx_def *alpha_emit_set_const ();
/* Generate necessary RTL for __builtin_saveregs().
ARGLIST is the argument list; see expr.c. */
extern struct rtx_def *alpha_builtin_saveregs ();
#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. Note that we can't use "rtx" here
since it hasn't been defined! */
extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
extern int alpha_compare_fp_p;
/* This macro produces the initial definition of a function name. On the
Alpha, we need to save the function name for the prologue and epilogue. */
extern char *alpha_function_name;
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
{ \
alpha_function_name = NAME; \
}
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. Under OSF/1, profiling is enabled
by simply passing -pg to the assembler and linker. */
#define FUNCTION_PROFILER(FILE, LABELNO)
/* Output assembler code to FILE to initialize this source file's
basic block profiling info, if that has not already been done.
This assumes that __bb_init_func doesn't garble a1-a5. */
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
do { \
ASM_OUTPUT_REG_PUSH (FILE, 16); \
fputs ("\tlda $16,$PBX32\n", (FILE)); \
fputs ("\tldq $26,0($16)\n", (FILE)); \
fputs ("\tbne $26,1f\n", (FILE)); \
fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
fputs ("\tldgp $29,0($26)\n", (FILE)); \
fputs ("1:\n", (FILE)); \
ASM_OUTPUT_REG_POP (FILE, 16); \
} while (0);
/* Output assembler code to FILE to increment the entry-count for
the BLOCKNO'th basic block in this source file. */
#define BLOCK_PROFILER(FILE, BLOCKNO) \
do { \
int blockn = (BLOCKNO); \
fputs ("\tsubq $30,16,$30\n", (FILE)); \
fputs ("\tstq $26,0($30)\n", (FILE)); \
fputs ("\tstq $27,8($30)\n", (FILE)); \
fputs ("\tlda $26,$PBX34\n", (FILE)); \
fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
fputs ("\taddq $27,1,$27\n", (FILE)); \
fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
fputs ("\tldq $26,0($30)\n", (FILE)); \
fputs ("\tldq $27,8($30)\n", (FILE)); \
fputs ("\taddq $30,16,$30\n", (FILE)); \
} while (0)
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts.
The trampoline should set the static chain pointer to value placed
into the trampoline and should branch to the specified routine.
Note that $27 has been set to the address of the trampoline, so we can
use it for addressability of the two data items. Trampolines are always
aligned to FUNCTION_BOUNDARY, which is 64 bits. */
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
fprintf (FILE, "\tldq $1,24($27)\n"); \
fprintf (FILE, "\tldq $27,16($27)\n"); \
fprintf (FILE, "\tjmp $31,($27),0\n"); \
fprintf (FILE, "\tnop\n"); \
fprintf (FILE, "\t.quad 0,0\n"); \
}
/* Section in which to place the trampoline. On Alpha, instructions
may only be placed in a text segment. */
#define TRAMPOLINE_SECTION text_section
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 32
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. We assume
here that a function will be called many more times than its address
is taken (e.g., it might be passed to qsort), so we take the trouble
to initialize the "hint" field in the JMP insn. Note that the hint
field is PC (new) + 4 * bits 13:0. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
rtx _temp, _temp1, _addr; \
\
_addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
_addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
\
_temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
_temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
OPTAB_WIDEN); \
_temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
build_int_2 (2, 0), NULL_RTX, 1); \
_temp = expand_and (gen_lowpart (SImode, _temp), \
GEN_INT (0x3fff), 0); \
\
_addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
_temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
_temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
_temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
OPTAB_WIDEN); \
\
emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
\
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
"__enable_execute_stack"), \
0, VOIDmode, 1,_addr, Pmode); \
\
emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
gen_rtvec (1, const0_rtx), 0)); \
}
/* Attempt to turn on access permissions for the stack. */
#define TRANSFER_FROM_TRAMPOLINE \
\
void \
__enable_execute_stack (addr) \
void *addr; \
{ \
long size = getpagesize (); \
long mask = ~(size-1); \
char *page = (char *) (((long) addr) & mask); \
char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
\
/* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
if (mprotect (page, end - page, 7) < 0) \
perror ("mprotect of trampoline code"); \
}
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame.
FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
This definition for Alpha is broken, but is put in at the request of
Mike Stump. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
((COUNT == 0 && alpha_sa_size () == 0 && 0 /* not right. */) \
? gen_rtx (REG, Pmode, 26) \
: gen_rtx (MEM, Pmode, \
memory_address (Pmode, FRAME)))
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT */
/* #define HAVE_POST_DECREMENT */
/* #define HAVE_PRE_DECREMENT */
/* #define HAVE_PRE_INCREMENT */
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
|| (REGNO) == 63 || reg_renumber[REGNO] == 63)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
/* Recognize any constant value that is a valid address. For the Alpha,
there are only constants none since we want to use LDA to load any
symbolic addresses into registers. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == CONST_INT \
&& (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
/* Include all constant integers and constant doubles, but not
floating-point, except for floating-point zero. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
|| (X) == CONST0_RTX (GET_MODE (X)))
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
For Alpha, we have either a constant address or the sum of a register
and a constant address, or just a register. For DImode, any of those
forms can be surrounded with an AND that clear the low-order three bits;
this is an "unaligned" access.
First define the basic valid address. */
#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
goto ADDR; \
if (CONSTANT_ADDRESS_P (X)) \
goto ADDR; \
if (GET_CODE (X) == PLUS \
&& REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_ADDRESS_P (XEXP (X, 1))) \
goto ADDR; \
}
/* Now accept the simple address, or, for DImode only, an AND of a simple
address that turns off the low three bits. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
if ((MODE) == DImode \
&& GET_CODE (X) == AND \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& INTVAL (XEXP (X, 1)) == -8) \
GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the Alpha, there are three cases we handle:
(1) If the address is (plus reg const_int) and the CONST_INT is not a
valid offset, compute the high part of the constant and add it to the
register. Then our address is (plus temp low-part-const).
(2) If the address is (const (plus FOO const_int)), find the low-order
part of the CONST_INT. Then load FOO plus any high-order part of the
CONST_INT into a register. Our address is (plus reg low-part-const).
This is done to reduce the number of GOT entries.
(3) If we have a (plus reg const), emit the load as in (2), then add
the two registers, and finally generate (plus reg low-part-const) as
our address. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
HOST_WIDE_INT highpart = val - lowpart; \
rtx high = GEN_INT (highpart); \
rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
\
(X) = plus_constant (temp, lowpart); \
goto WIN; \
} \
else if (GET_CODE (X) == CONST \
&& GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
HOST_WIDE_INT highpart = val - lowpart; \
rtx high = XEXP (XEXP (X, 0), 0); \
\
if (highpart) \
high = plus_constant (high, highpart); \
\
(X) = plus_constant (force_reg (Pmode, high), lowpart); \
goto WIN; \
} \
else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == CONST \
&& GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
HOST_WIDE_INT highpart = val - lowpart; \
rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
\
if (highpart) \
high = plus_constant (high, highpart); \
\
high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
force_reg (Pmode, high), \
high, 1, OPTAB_LIB_WIDEN); \
(X) = plus_constant (high, lowpart); \
goto WIN; \
} \
}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the Alpha this is true only for the unaligned modes. We can
simplify this test since we know that the address must be valid. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ if (GET_CODE (ADDR) == AND) goto LABEL; }
/* Compute the cost of an address. For the Alpha, all valid addresses are
the same cost. */
#define ADDRESS_COST(X) 0
/* Define this if some processing needs to be done immediately before
emitting code for an insn. */
extern void final_prescan_insn ();
#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
final_prescan_insn ((INSN), (OPERANDS), (NOPERANDS))
/* Define this if FINAL_PRESCAN_INSN should be called for a CODE_LABEL. */
#define FINAL_PRESCAN_LABEL
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses.
On the Alpha, the table is really GP-relative, not relative to the PC
of the table, but we pretend that it is PC-relative; this should be OK,
but we should try to find some better way sometime. */
#define CASE_VECTOR_PC_RELATIVE
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one.
We actually lie a bit here as overflow conditions are different. But
they aren't being checked anyway. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* Max number of bytes we can move to or from memory
in one reasonably fast instruction. */
#define MOVE_MAX 8
/* Largest number of bytes of an object that can be placed in a register.
On the Alpha we have plenty of registers, so use TImode. */
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
/* Nonzero if access to memory by bytes is no faster than for words.
Also non-zero if doing byte operations (specifically shifts) in registers
is undesirable.
On the Alpha, we want to not use the byte operation and instead use
masking operations to access fields; these will save instructions. */
#define SLOW_BYTE_ACCESS 1
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Define the value returned by a floating-point comparison instruction. */
#define FLOAT_STORE_FLAG_VALUE 0.5
/* Canonicalize a comparison from one we don't have to one we do have. */
#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
do { \
if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
&& (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
{ \
rtx tem = (OP0); \
(OP0) = (OP1); \
(OP1) = tem; \
(CODE) = swap_condition (CODE); \
} \
if (((CODE) == LT || (CODE) == LTU) \
&& GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
{ \
(CODE) = (CODE) == LT ? LE : LEU; \
(OP1) = GEN_INT (255); \
} \
} while (0)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode DImode
/* Mode of a function address in a call instruction (for indexing purposes). */
#define FUNCTION_MODE Pmode
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap.
We define this on the Alpha so that gen_call and gen_call_value
get to see the SYMBOL_REF (for the hint field of the jsr). It will
then copy it into a register, thus actually letting the address be
cse'ed. */
#define NO_FUNCTION_CSE
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED 1
/* Use atexit for static constructors/destructors, instead of defining
our own exit function. */
#define HAVE_ATEXIT
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch.
If this is an 8-bit constant, return zero since it can be used
nearly anywhere with no cost. If it is a valid operand for an
ADD or AND, likewise return 0 if we know it will be used in that
context. Otherwise, return 2 since it might be used there later.
All other constants take at least two insns. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
return 0; \
case CONST_DOUBLE: \
if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
|| ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
return 0; \
else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
return 2; \
else \
return COSTS_N_INSNS (2); \
case CONST: \
case SYMBOL_REF: \
case LABEL_REF: \
return COSTS_N_INSNS (3);
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case PLUS: case MINUS: \
if (FLOAT_MODE_P (GET_MODE (X))) \
return COSTS_N_INSNS (6); \
else if (GET_CODE (XEXP (X, 0)) == MULT \
&& const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
+ rtx_cost (XEXP (X, 1), OUTER_CODE)); \
break; \
case MULT: \
if (FLOAT_MODE_P (GET_MODE (X))) \
return COSTS_N_INSNS (6); \
return COSTS_N_INSNS (23); \
case ASHIFT: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& INTVAL (XEXP (X, 1)) <= 3) \
break; \
/* ... fall through ... */ \
case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
return COSTS_N_INSNS (2); \
case DIV: case UDIV: case MOD: case UMOD: \
if (GET_MODE (X) == SFmode) \
return COSTS_N_INSNS (34); \
else if (GET_MODE (X) == DFmode) \
return COSTS_N_INSNS (63); \
else \
return COSTS_N_INSNS (70); \
case MEM: \
return COSTS_N_INSNS (3); \
case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
return COSTS_N_INSNS (6); \
case NEG: case ABS: \
if (FLOAT_MODE_P (GET_MODE (X))) \
return COSTS_N_INSNS (6); \
break;
/* Control the assembler format that we output. */
/* Output at beginning of assembler file. */
#define ASM_FILE_START(FILE) \
{ \
alpha_write_verstamp (FILE); \
fprintf (FILE, "\t.set noreorder\n"); \
fprintf (FILE, "\t.set volatile\n"); \
fprintf (FILE, "\t.set noat\n"); \
ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
}
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
#define TEXT_SECTION_ASM_OP ".text"
/* Output before read-only data. */
#define READONLY_DATA_SECTION_ASM_OP ".rdata"
/* Output before writable data. */
#define DATA_SECTION_ASM_OP ".data"
/* Define an extra section for read-only data, a routine to enter it, and
indicate that it is for read-only data.
The first time we enter the readonly data section for a file, we write
eight bytes of zero. This works around a bug in DEC's assembler in
some versions of OSF/1 V3.x. */
#define EXTRA_SECTIONS readonly_data
#define EXTRA_SECTION_FUNCTIONS \
void \
literal_section () \
{ \
if (in_section != readonly_data) \
{ \
static int firsttime = 1; \
\
fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
if (firsttime) \
{ \
firsttime = 0; \
ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
} \
\
in_section = readonly_data; \
} \
} \
#define READONLY_DATA_SECTION literal_section
/* If we are referencing a function that is static, make the SYMBOL_REF
special. We use this to see indicate we can branch to this function
without setting PV or restoring GP. */
#define ENCODE_SECTION_INFO(DECL) \
if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
"$9", "$10", "$11", "$12", "$13", "$14", "$15", \
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
"$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
"$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fprintf (FILE, "%s", NAME)
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
if ((PREFIX)[0] == 'L') \
fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
else \
fprintf (FILE, "%s%d:\n", PREFIX, NUM);
/* This is how to output a label for a jump table. Arguments are the same as
for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
passed. */
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
if ((PREFIX)[0] == 'L') \
sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
else \
sprintf (LABEL, "*%s%d", PREFIX, NUM)
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
{ \
if (REAL_VALUE_ISINF (VALUE) \
|| REAL_VALUE_ISNAN (VALUE) \
|| REAL_VALUE_MINUS_ZERO (VALUE)) \
{ \
long t[2]; \
REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
t[1] & 0xffffffff, t[0] & 0xffffffff); \
} \
else \
{ \
char str[30]; \
REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
fprintf (FILE, "\t.t_floating %s\n", str); \
} \
}
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
{ \
if (REAL_VALUE_ISINF (VALUE) \
|| REAL_VALUE_ISNAN (VALUE) \
|| REAL_VALUE_MINUS_ZERO (VALUE)) \
{ \
long t; \
REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
} \
else \
{ \
char str[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
fprintf (FILE, "\t.s_floating %s\n", str); \
} \
}
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "\t.long "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line defining a `long' constant. */
#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
( fprintf (FILE, "\t.quad "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
fprintf (FILE, "\t.word %d\n", \
(GET_CODE (VALUE) == CONST_INT \
? INTVAL (VALUE) & 0xffff : (abort (), 0)))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
fprintf (FILE, "\t.byte %d\n", \
(GET_CODE (VALUE) == CONST_INT \
? INTVAL (VALUE) & 0xff : (abort (), 0)))
/* We use the default ASCII-output routine, except that we don't write more
than 50 characters since the assembler doesn't support very long lines. */
#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
do { \
FILE *_hide_asm_out_file = (MYFILE); \
unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
int _hide_thissize = (MYLENGTH); \
int _size_so_far = 0; \
{ \
FILE *asm_out_file = _hide_asm_out_file; \
unsigned char *p = _hide_p; \
int thissize = _hide_thissize; \
int i; \
fprintf (asm_out_file, "\t.ascii \""); \
\
for (i = 0; i < thissize; i++) \
{ \
register int c = p[i]; \
\
if (_size_so_far ++ > 50 && i < thissize - 4) \
_size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
\
if (c == '\"' || c == '\\') \
putc ('\\', asm_out_file); \
if (c >= ' ' && c < 0177) \
putc (c, asm_out_file); \
else \
{ \
fprintf (asm_out_file, "\\%o", c); \
/* After an octal-escape, if a digit follows, \
terminate one string constant and start another. \
The Vax assembler fails to stop reading the escape \
after three digits, so this is the only way we \
can get it to parse the data properly. */ \
if (i < thissize - 1 \
&& p[i + 1] >= '0' && p[i + 1] <= '9') \
_size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
} \
} \
fprintf (asm_out_file, "\"\n"); \
} \
} \
while (0)
/* This is how to output an insn to push a register on the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
(REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
(REGNO) & 31);
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
(REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
(REGNO) & 31);
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
/* This is how to output an element of a case-vector that is absolute.
(Alpha does not use such vectors, but we must define this macro anyway.) */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
/* This is how to output an element of a case-vector that is relative. */
#if WINDOWS_NT
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t.long $%d\n", (VALUE) + 32)
#else
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
#endif
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", LOG);
/* This is how to advance the location counter by SIZE bytes. */
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %d\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%d\n", (SIZE)))
/* This says how to output an assembler line
to define a local common symbol. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
( fputs ("\t.lcomm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%d\n", (SIZE)))
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* Determine which codes are valid without a following integer. These must
not be alphabetic (the characters are chosen so that
PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
using ASCII).
& Generates fp-rounding mode suffix: nothing for normal, 'c' for
chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
mode. alpha_fprm controls which suffix is generated.
' Generates trap-mode suffix for instructions that accept the
su suffix only (cmpt et al).
) Generates trap-mode suffix for instructions that accept the
u, su, and sui suffix. This is the bulk of the IEEE floating
point instructions (addt et al).
+ Generates trap-mode suffix for instructions that accept the
sui suffix (cvtqt and cvtqs).
*/
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '&' || (CODE) == '\'' || (CODE) == ')' || (CODE) == '+')
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
{ rtx addr = (ADDR); \
int basereg = 31; \
HOST_WIDE_INT offset = 0; \
\
if (GET_CODE (addr) == AND) \
addr = XEXP (addr, 0); \
\
if (GET_CODE (addr) == REG) \
basereg = REGNO (addr); \
else if (GET_CODE (addr) == CONST_INT) \
offset = INTVAL (addr); \
else if (GET_CODE (addr) == PLUS \
&& GET_CODE (XEXP (addr, 0)) == REG \
&& GET_CODE (XEXP (addr, 1)) == CONST_INT) \
basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
else \
abort (); \
\
fprintf (FILE, "%d($%d)", offset, basereg); \
}
/* Define the codes that are matched by predicates in alpha.c. */
#define PREDICATE_CODES \
{"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
{"cint8_operand", {CONST_INT}}, \
{"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
{"add_operand", {SUBREG, REG, CONST_INT}}, \
{"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
{"const48_operand", {CONST_INT}}, \
{"and_operand", {SUBREG, REG, CONST_INT}}, \
{"or_operand", {SUBREG, REG, CONST_INT}}, \
{"mode_mask_operand", {CONST_INT}}, \
{"mul8_operand", {CONST_INT}}, \
{"mode_width_operand", {CONST_INT}}, \
{"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
{"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
{"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
{"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
{"fp0_operand", {CONST_DOUBLE}}, \
{"current_file_function_operand", {SYMBOL_REF}}, \
{"call_operand", {REG, SYMBOL_REF}}, \
{"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
SYMBOL_REF, CONST, LABEL_REF}}, \
{"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
SYMBOL_REF, CONST, LABEL_REF}}, \
{"aligned_memory_operand", {MEM}}, \
{"unaligned_memory_operand", {MEM}}, \
{"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
{"any_memory_operand", {MEM}},
/* Tell collect that the object format is ECOFF. */
#define OBJECT_FORMAT_COFF
#define EXTENDED_COFF
/* If we use NM, pass -g to it so it only lists globals. */
#define NM_FLAGS "-pg"
/* Definitions for debugging. */
#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
#define DBX_DEBUGGING_INFO /* generate embedded stabs */
#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
#define PREFERRED_DEBUGGING_TYPE \
((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
#endif
/* Correct the offset of automatic variables and arguments. Note that
the Alpha debug format wants all automatic variables and arguments
to be in terms of two different offsets from the virtual frame pointer,
which is the stack pointer before any adjustment in the function.
The offset for the argument pointer is fixed for the native compiler,
it is either zero (for the no arguments case) or large enough to hold
all argument registers.
The offset for the auto pointer is the fourth argument to the .frame
directive (local_offset).
To stay compatible with the native tools we use the same offsets
from the virtual frame pointer and adjust the debugger arg/auto offsets
accordingly. These debugger offsets are set up in output_prolog. */
extern long alpha_arg_offset;
extern long alpha_auto_offset;
#define DEBUGGER_AUTO_OFFSET(X) \
((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
alpha_output_lineno (STREAM, LINE)
extern void alpha_output_lineno ();
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
alpha_output_filename (STREAM, NAME)
extern void alpha_output_filename ();
/* mips-tfile.c limits us to strings of one page. */
#define DBX_CONTIN_LENGTH 4000
/* By default, turn on GDB extensions. */
#define DEFAULT_GDB_EXTENSIONS 1
/* If we are smuggling stabs through the ALPHA ECOFF object
format, put a comment in front of the .stab<x> operation so
that the ALPHA assembler does not choke. The mips-tfile program
will correctly put the stab into the object file. */
#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
/* Forward references to tags are allowed. */
#define SDB_ALLOW_FORWARD_REFERENCES
/* Unknown tags are also allowed. */
#define SDB_ALLOW_UNKNOWN_REFERENCES
#define PUT_SDB_DEF(a) \
do { \
fprintf (asm_out_file, "\t%s.def\t", \
(TARGET_GAS) ? "" : "#"); \
ASM_OUTPUT_LABELREF (asm_out_file, a); \
fputc (';', asm_out_file); \
} while (0)
#define PUT_SDB_PLAIN_DEF(a) \
do { \
fprintf (asm_out_file, "\t%s.def\t.%s;", \
(TARGET_GAS) ? "" : "#", (a)); \
} while (0)
#define PUT_SDB_TYPE(a) \
do { \
fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
} while (0)
/* For block start and end, we create labels, so that
later we can figure out where the correct offset is.
The normal .ent/.end serve well enough for functions,
so those are just commented out. */
extern int sdb_label_count; /* block start/end next label # */
#define PUT_SDB_BLOCK_START(LINE) \
do { \
fprintf (asm_out_file, \
"$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
sdb_label_count, \
(TARGET_GAS) ? "" : "#", \
sdb_label_count, \
(LINE)); \
sdb_label_count++; \
} while (0)
#define PUT_SDB_BLOCK_END(LINE) \
do { \
fprintf (asm_out_file, \
"$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
sdb_label_count, \
(TARGET_GAS) ? "" : "#", \
sdb_label_count, \
(LINE)); \
sdb_label_count++; \
} while (0)
#define PUT_SDB_FUNCTION_START(LINE)
#define PUT_SDB_FUNCTION_END(LINE)
#define PUT_SDB_EPILOGUE_END(NAME)
/* No point in running CPP on our assembler output. */
#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
/* Don't pass -g to GNU as, because some versions don't accept this option. */
#define ASM_SPEC "%{malpha-as:-g} -nocpp %{pg}"
#else
/* In OSF/1 v3.2c, the assembler by default does not output file names which
causes mips-tfile to fail. Passing -g to the assembler fixes this problem.
??? Stricly speaking, we only need -g if the user specifies -g. Passing
it always means that we get slightly larger than necessary object files
if the user does not specify -g. If we don't pass -g, then mips-tfile
will need to be fixed to work in this case. */
#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg}"
#endif
/* Specify to run a post-processor, mips-tfile after the assembler
has run to stuff the ecoff debug information into the object file.
This is needed because the Alpha assembler provides no way
of specifying such information in the assembly file. */
#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
#define ASM_FINAL_SPEC "\
%{malpha-as: %{!mno-mips-tfile: \
\n mips-tfile %{v*: -v} \
%{K: -I %b.o~} \
%{!K: %{save-temps: -I %b.o~}} \
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
%{.s:%i} %{!.s:%g.s}}}"
#else
#define ASM_FINAL_SPEC "\
%{!mgas: %{!mno-mips-tfile: \
\n mips-tfile %{v*: -v} \
%{K: -I %b.o~} \
%{!K: %{save-temps: -I %b.o~}} \
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
%{.s:%i} %{!.s:%g.s}}}"
#endif
/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
mips-tdump.c to print them out.
These must match the corresponding definitions in gdb/mipsread.c.
Unfortunately, gcc and gdb do not currently share any directories. */
#define CODE_MASK 0x8F300
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
/* Override some mips-tfile definitions. */
#define SHASH_SIZE 511
#define THASH_SIZE 55
/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
/* The system headers under OSF/1 are C++-aware. */
#define NO_IMPLICIT_EXTERN_C
/* The linker will stick __main into the .init section. */
#define HAS_INIT_SECTION
#define LD_INIT_SWITCH "-init"
#define LD_FINI_SWITCH "-fini"
|